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Abstract

Humans routinely segregate a complex acoustic scene into different auditory

streams, through the extraction of bottom-up perceptual cues and the use of top-

down selective attention. To determine the neural mechanisms underlying this

process, neural responses obtained through magnetoencephalography (MEG)

were correlated with behavioral performance in the context of an informational

masking paradigm. In half the trials, subjects were asked to detect frequency

deviants in a target stream, consisting of a rhythmic tone sequence, embedded in a

separate masker stream composed of a random cloud of tones. In the other half of

the trials, subjects were exposed to identical stimuli but asked to perform a different

task—to detect tone-length changes in the random cloud of tones. In order to verify

that the normalized neural response to the target sequence served as an indicator

of streaming, we correlated neural responses with behavioral performance under a

variety of stimulus parameters (target tone rate, target tone frequency, and the

‘‘protection zone’’, that is, the spectral area with no tones around the target

frequency) and attentional states (changing task objective while maintaining the

same stimuli). In all conditions that facilitated target/masker streaming behaviorally,

MEG normalized neural responses also changed in a manner consistent with the

behavior. Thus, attending to the target stream caused a significant increase in

power and phase coherence of the responses in recording channels correlated with

an increase in the behavioral performance of the listeners. Normalized neural target

responses also increased as the protection zone widened and as the frequency of

the target tones increased. Finally, when the target sequence rate increased, the
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buildup of the normalized neural responses was significantly faster, mirroring the

accelerated buildup of the streaming percepts. Our data thus support close links

between the perceptual and neural consequences of the auditory stream

segregation.

Introduction

The segregation of an auditory scene into multiple streams is a highly complex

task facilitated by informative cues in the acoustic stimulus along both the

temporal and spectral dimensions. Although there have been intensive studies on

the behavioral and neural bases of auditory stream segregation over the last

decades, key features of this process still remain to be explored [1–3].

A commonly used paradigm for studying auditory perceptual organization is

paired sequences of pure tones, alternating in time, which can be perceived as

either a single or two segregated auditory objects, under different conditions

[1, 4]. Such tone sequences have been instrumental in unraveling a number of

perceptual processes and neural underpinning underlying streaming, but these

stimuli are limited in how closely they reflect realistic auditory streams occurring

in everyday environments. It has been proposed that use of a spectrotemporally

richer stimulus commonly used for ‘‘informational masking’’ (IM) studies [5]

invokes similar mechanisms, but also provides many more degrees of freedom to

probe additional mechanism involved in streaming. Such a stimulus typically

consists of a target tone sequence embedded in a cloud of masker tones that are

randomly desynchronized (Fig. 1A) and has been shown to yield streaming

percepts analogous to those of the simpler two-tone sequences [5–8], both in their

systematic dependence on stimulus parameters, as well as the improvement of

detection over the time course of few seconds (the so-called buildup of streaming

[9–11]).

As in an earlier study [12], we expanded the investigation of the premise that

such informational masking stimuli invoke similar mechanisms to those involved

in steam segregation. We probe the correlation between neural responses to an IM

stimulus recorded using Magnetoencephalography (MEG) and behavioral

responses in psychoacoustic experiments while manipulating stimulus parameters

under different attentional states of the listeners. Specifically, the IM paradigm is

used to explore stream formation in a single tone sequence (target) as (1) a

function of target/masker separation, (2) target tone frequency and (3) target

repetition rates, all while manipulating the attentional state of listeners to and

away from the target sequence. In the target task, subjects detect a frequency-

shifted deviant in the target sequence; in the masker task subjects detect a sudden

elongation of the masker tones in time. Both tasks require focused attention, but

to spectrally and temporally different features of the auditory scene. Since the
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stimuli presented in both tasks are identical, any difference in neural

representation of the sounds is deemed a result of attentional modulation.

Overall, the results demonstrate that performance measures and neural

responses to IM stimuli are correlated across all stimulus and task conditions,

suggesting that the neural signal can be viewed as an indicator of the streaming

percept.

A second critical goal of the current study is to investigate the different roles of

different rates of temporal modulations. Modulation rates in the range of 2–10 Hz

are crucially important in grouping the physical and perceptual cues in a complex

acoustic scene and stream formation [13–15]; however, among the primarily

unknown facts is the exact role of these modulatory rates and their relative

importance in the streaming process.

In a study by Xiang et al. 2010 [16], the interaction between task-driven and

stimulus-driven attentional processes for two competing rhythmic sequences at

two relatively different rates (4 and 7 Hz) was explored. The faster sequence

(7 Hz) was behaviorally quite different from the slower (4 Hz), especially for the

buildup over the time course of each trial. Here, we were interested in using a

paradigm based on that of [12], in which an informational masking stimulus with

a repeating target note at 4 Hz in the midst of random interferers was employed.

Here, though we replaced the slow target rate (4 Hz) with a faster rate (7 Hz) to

explore the neural and behavioral responses to the faster presentation rate more

independently as well as conducting a richer behavioral study on the buildup of

target detectability as a function of target sequence presentation rate.

Fig. 1. Stimulus paradigm and behavioral performance. (A) Schematic representation of the stimulus design. A rhythmic sequence of pure tones (target
sequence, red) is placed within a background of randomly distributed (in time and frequency) tones (maskers, yellow) and ‘protected’ by a spectral zone with
no stimulus energy (green region). In the target task, subjects detected a randomly occurring frequency-shifted tone (red arrow). In the masker task, subjects
were instructed to detect an elongation of all constituent tones of the masker in a 0.5 s time window (blue arrows). Each trial contained only one type of
deviant, both, or none. Subjects performed the tasks in separate blocks, with the order counterbalanced across subjects. (B) Behavioral performance in the
target task as a function of protection zone in a range from 0 to 16 semitones (Psychoacoustic experiment A, N514) (C) Behavioral build-up of detection in
the target task. Histogram of time constants obtained from exponential fitting to the buildup curves of the behavioral responses as a function of the size of the
protection zone (0 to16 semitones). The inset shows behavioral buildup of target task detection for a sample subject illustrating the changes in the buildup
speed as a function of different protection zone sizes.

doi:10.1371/journal.pone.0114427.g001
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Methods

The effect of manipulating stimulus parameters and attentional modulation on

both task performance and neural responses was explored in 4 different

experimental sections, 2 psychoacoustic (experiments A, B), and 2 MEG

(experiments C, D). Psychoacoustic experiment A and MEG experiment C,

investigated the effect of different spectral protection zone widths. Psychoacoustic

experiment B, investigated the effect of different target sequence rates with a fixed

protection zone. MEG experiment D investigated the dependence of the responses

on target frequency, as well as changes in buildup and lateralization in the

different tasks, all in the context of a fixed protection zone and target tone rate.

Participants

A total of 14 subjects participated in psychoacoustic experiment A (6 male/8

female; mean age, 26 years; range 19–33 years), and 12 subjects (5 male/7 female;

mean age 25 years; range 19–30 years) participated in psychoacoustic experiment

B. For MEG experiment C, 12 (7 male/5 female; mean age, 25 years, range 18–33

years) participated in the study; in MEG experiment D, 12 subjects (6 male/6

female; mean age, 23 years, range 18–33 years) participated. Six subjects took part

in all experiments. Psychoacoustic and MEG experiments were conducted over a

period exceeding 15 months and subjects participating in different experiments

were partly non-overlapping.

Participants were all right handed [17], and had no history of hearing problems

or neurological disorders. Subjects were compensated for their participation. The

University of Maryland Institutional Review Board approved the experiments, and

written informed consent was obtained from each participant.

Stimulus Design

The stimulus paradigm is related to previous stream segregation experiments in

terms of stimulus parameters governing performance [10, 18–20], but using an

Informational Masking stimulus, a regular foreground embedded within an

irregular background, as in [12]. Specifically, each stimulus consisted of two

concurrent streams; a narrow-band temporally regular target tone sequence and a

wide-band cloud of tones that were temporally irregular—the masker stimulus.

Subjects were asked to detect either a deviation in frequency of one tone in the

target sequence (target task), or a deviation in duration in one of the masker tones

(masker task), in separate blocks. Identical stimuli were thus presented in the two

different tasks, but with the subject’s attention guided to different aspects of the

stimuli in the two tasks.

The target sequence was a sequence of identical pure tones with frequency

chosen randomly in the range of 250–500 Hz (in 2 semitone steps). The pure

tones were presented at a fixed rate in the range of 2–10 Hz, depending on the

experimental condition. The masker stimulus formed a complex acoustic

background consisting of pure tones placed at randomized temporal and spectral
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positions. The temporal positions of the tones were uniformly distributed over

time at a density of 50 tones/s and over frequency at a spectral resolution of 2

semitones. The spectral positions were chosen uniformly in logarithmic frequency

in a range of 5 octaves centered at 353 Hz (ranging from approximately 62 Hz to

1997 Hz), excluding a spectral protection zone, i.e. a frequency band around the

target sequence with no masker tone allowed in it. The random sampling of

frequencies kept the probability of harmonically related maskers at a minimum.

The protection zone on either side of the target sequence varied in width, ranging

from 0–16 semitones in 4 semitone steps. The duration of the target and masker

tones was 75 ms with 10 ms onset and offset cosine ramps.

For the target and masker tasks, deviations were introduced at a randomly

chosen constituent tone for either sequence, introducing a frequency, or a

duration change, respectively. There were 4 types of trials: (i) null condition (no

deviant); (ii) target condition (one target deviant per stimulus); (iii) masker

condition (one masker deviant per stimulus); and (iv) combined condition (one

target and one masker deviant independently, per stimulus). A target deviant was

an upward or downward displacement, of a randomly chosen target note, from

the target frequency by 2 semitones. A masker deviant was a single 500 ms

window in which all masker tones starting in this window were elongated from

75 ms to 400 ms. For each condition 15 exemplars were generated, differing in the

position/tone which was modified.

The stimuli were generated using MATLAB (The MathWorks). Each trial

stimulus was 5.5 s long and sampled at 44.1 kHz.

Psychoacoustic studies

Participants performed the tasks at a computer in a soundproof room. They were

asked to control the computer using a Graphical User Interface (GUI) and they

were allowed to adjust the volume to a comfortable level before starting the

experiment. No change of stimulus intensity was allowed after starting the

experiment. A complete explanation of the required task, as well as the basic

instructions on using the GUI, was given in advance.

Psychoacoustic Experiment A

In psychoacoustic experiment A, the effect of different protection zone widths (0,

4, 8, 12 and 16 semitones) with a fixed target rate of 7 Hz was examined. A block

of 200 stimuli consisting of 5 protection zones 64 conditions 610 exemplars

were presented to the subjects. Participants could proceed from one trial to the

next by pressing a button when they were ready. For this experiment, participants

were required to do the target task only.

A training block of 15 trials in a decreasing order with respect to the protection

zones was played for the subjects prior to the actual experiment. Participants

could listen to each sound as many times as desired and after each trial, they were

asked about the presence of deviants in that trial with the correct answer displayed

on the screen afterwards.
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For the real experiment stimulus was presented only once, and no feedback was

given after each trial. This part lasted approximately 1 h.

Psychoacoustic Experiment B

In psychoacoustic experiment B, the protection zone was fixed to 8 semitones and

the rates were varied from 2–10 Hz in steps of 2 Hz. A block of 200 trials

consisted of 5 target sequence rates 64 conditions 610 exemplars with fixed

protection zone were presented to the subjects. For each block participants were

required to do the target task only.

Training sets of 20 stimuli were provided for each section and they were

allowed to listen to each sound as many times as they needed to be able to perform

the task. The training block was presented with rates increasing from 2 to 10 in

steps of 2 Hz.

For the real experiment, stimulus was presented only once, and no feedback was

given after each trial. This part lasted approximately 1 h.

Participants performed experiments A and B of the psychoacoustic experiment

on 2 different days.

MEG recordings

MEG Experiments C & D

The presentation software package (Neurobehavioral Systems) was used to present

stimuli to the subjects. The sounds (approximately 70 dB SPL) were delivered to

the participants’ ears with 50V sound tubing (E-A-RTONE 3A; Etymotic

Research), attached to E-A-RLINK foam plugs inserted into the ear canal. The

entire acoustic delivery system is equalized to give an approximately flat transfer

function from 40–3000 Hz, i.e. encompassing the range of the presently delivered

stimuli.

MEG signals were recorded in a dimly lit magnetically shielded room

(Yokogawa Electric Corporation) using a 160-channel whole-head system

(Kanazawa Institute of Technology, Kanazawa, Japan). Its detection coils are

arranged in a uniform array on a helmet-shaped surface on the bottom of the

dewar, with ,25 mm between the centers of two adjacent 15.5-mm-diameter

coils. Sensors are configured as first-order axial gradiometers with a baseline of

50 mm; their field sensitivities are 5 fT/Hz or better in the white noise region.

Three of the 160 channels are magnetometers separated from the others and

used as reference channels in noise-filtering methods [21]. The magnetic signals

were filtered to the range of 1 Hz and 200 Hz, notch filtered at 60 Hz, and

sampled at 1 kHz.

A pre-experiment consisting of 200 repetitions of a 1 kHz, 50 ms tone pip was

presented before starting the real experiment. The inter-trial intervals were

randomized between 0.75 ms and 1.55 s, and participants were asked to count the

tone pips. The experiment was done as a control condition to check the M100

response (a prominent peak approximately 100 ms after pip onset) and verify that

the location and strength of neural signals fell within a normal range.

Neural Correlates of a Streaming Percept in an IM Paradigm

PLOS ONE | DOI:10.1371/journal.pone.0114427 December 9, 2014 6 / 23



A training block of 20 trials was presented before each task and for each

experiment. For the target task, training trials were played in a decreasing order

with respect to the protection zones and for the masker task, the order was

increasing. Participants verbally indicated the existence of the deviants and the

correct answer was given afterwards by the investigator.

In the MEG experiment C, 3 identical blocks of 72 trials (3 protection regions

64 conditions 66 exemplars) presented for each task (totaling 432 trials),

whereas in MEG experiment D, only the 8 semitones protection zone stimuli was

used and more trials from the same condition were collected. 3 identical blocks of

60 stimuli (1 protection region 64 conditions 615 exemplars) were presented

for each task (totaling 360 trials). For both parts, the inter-trial intervals were

randomly chosen to be 1.8, 1.9, and 2.0 s. Participants were allowed to rest after

each block, but otherwise required to stay still. For both target and masker tasks,

an identical stimulus ensemble (including identical inter-trial intervals was

presented for all subjects and the participants were asked to listen for the presence

of a frequency deviant in the target rhythm (target task), or duration deviant in

the masker (masker task), based on the task order. Each task deviant was present

in exactly half of the trials.

In the main experiment, participants were presented with three blocks of

stimuli described above. They performed both the masker and the target tasks,

with task orders counterbalanced across participants, and were instructed to press

a button whenever they heard the appropriate deviant. The button controller was

held in the right hand, far away from the sensors. Each stimulus was presented

only once, and no feedback was given after each trial. The entire session of both

tasks lasted approximately 2 hr.

Data Analysis

Behavioral performance analysis

To evaluate the ability of the participants to perform each task, a d-prime (d9)

measure of performance was calculated [22]. The hit rate and false alarm

probabilities corresponding to deviant detection for each requested task were

calculated and converted to z-scores to compute the d9 value.

To investigate the effect of the pure tone frequency of the target sequences on

the behavioral responses in psychoacoustic experiment A, the stimuli were divided

into two spectral groups (low-frequency target and high-frequency target),

depending on whether the target tone was lower or higher than the middle

frequency 353 Hz (those with target frequency of 353 Hz itself were randomly

assigned to low- or high-frequency classes). Then we derived a d9 measure for

each frequency class and across different tasks.

To study the build-up of detectability of the target deviant in psychoacoustic

part A, we divided the deviant trials into 5 groups according to the deviant’s

location in time, such that each group covered two possible temporal locations for

the deviant throughout the stimulus sequence (out of 10 possible temporal

locations for deviants). The hit probability was measured for each group and the
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false alarm rate was averaged over all groups, independent of its occurrence time

because of the uncertainty in false alarm trials. The specific hit rate for each time

segment and the averaged false alarm were used to calculate the d9 value for

corresponding segments. Only one participant had a strongly negative d9 (20.7)

due to a high false alarm rate and low hit rate, and was excluded from the analysis

of build-up.

For the psychoacoustic experiment B, d9 values were computed as a function of

different target sequence rates (Fig. 2A). We repeated the same build-up analysis

as above for different rate conditions to investigate the interaction between target

sequence rate and build-up of target detectability (Fig. 2B).

Neural Data analysis

To analyze recordings from MEG experiments C and D, in each trial the temporal

range from 1.21 to 5.5 s was selected to exclude onset effects. All shortened

responses were concatenated then to make an extended response with duration

T54.29 s6 number of trials 6 number of blocks, for each channel and for each

task block. Each extended response was translated to the frequency domain using

a discrete Fourier transform (DFT), yielding a frequency spectrum from 0 to

500 Hz at a resolution of 1/T Hz. The complex magnetic field strength was

obtained by the product of the DFT and the sampling interval (1/fs). Power

spectral densities were computed by squaring the complex magnetic field strength

and normalizing by the duration T of the signal. Then we calculated the square

magnitude of the frequency component at 7 Hz, divided by the average square

magnitude of the frequency components in a window around 7 Hz (1 Hz on each

side), excluding the component at 7 Hz. The resulting quantity will be referred to

as the Normalized Neural Response at 7 Hz and we averaged this quantity over the

20 channels with the strongest normalized responses for each participant. For

channel selection, we pooled all trials together regardless of the performed task

and 20 best channels with strongest response to the target sequence were chosen.

The average square magnitude of the frequency components in the mentioned

window (excluding the 7Hz frequency bin) did not show any significant difference

across tasks, so the normalization is task independent i.e. it was not biased by one

of the two tasks.

To explore the effect of protection zone width on neural response strength,

normalized response amplitude for target and masker tasks per protection zone

width were calculated for each participant and averaged over all 12 participants in

MEG experiment C.

We investigated the effect of attention on neural response strength by taking the

ratio between the normalized responses to the target vs. masker tasks per

participant in MEG experiment D.

As described above, the effect of the pure tone frequency of the target sequences

on the behavioral responses in MEG experiment D was explored by dividing the

stimuli into two spectral groups (low-frequency target and high-frequency target)

depending on whether the target tone was lower or higher than the middle
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frequency 353 Hz. Then the normalized neural response was calculated for each

frequency class and across different tasks.

To study the effect of attention across different frequencies in MEG experiment

D, the difference of normalized responses for two tasks was calculated at 7 Hz and

5 other frequencies: two adjacent bins (7 Hz - df and 7 Hz+df), with df57/30 Hz

and 3 other frequencies in theta, alpha and low beta frequency bands that were

multiple integers of df (21 df<4.9, 43 df<10 and 64 df<15). Calculated

differences did not show a significant task-dependent effect, since there is not a

significant difference over average squared magnitude of the frequency

components between 6 Hz and 8 Hz except for the 7 Hz.

A sensor-based coherence analysis analogous to that in [12] was performed.

Since the results were so similar to those of the earlier study (only the target rate

shows a significant enhancement [signed ranks test, p,0.001], both within and

across hemispheres), they are not reported.

To analyze the possibility of hemispheric difference in response to stimuli in

MEG experiment D, the 20 best channels i.e. with the strongest normalized neural

response at the target sequence rate, were chosen from each hemisphere

separately. The hemispheric normalized neural responses showed no significant

lateralization in either task, in contrast to analogous results with the present

paradigm at 4 Hz [12], hence hemispheric differences were not further analyzed.

The significance of this lack of lateralization is addressed in Discussion.

The build-up of detectability was studied in MEG experiment D by dividing the

entire responses into five temporal segments of approximately 714 ms duration

since shorter segments did not show any buildup effect. Corresponding segments

extracted from all trials were concatenated to form single extended responses with

duration T<0.714 s660 trials 63 blocks for each channel. Then we computed

discrete Fourier transform (DFT) from each single response, resulting in a single

Fig. 2. Behavioral performance improvement with target sequence rate reflected in neural build-up curve. (A) Behavioral performance
(Psychoacoustic experiment B, N512) as a function of target sequence rate for an expanded range from 2 to 10 Hz, in steps of 2 Hz. Overall performance
increased with presentation rate, eventually reaching the ceiling value of d’54.1 (for 200 trials) (B) Build-up of the behavioral performance as a function of
presentation rate. The time for achieving ceiling detection performance is reduced for faster presentation rates. Results are depicted as median and
[25,75]% percentiles.

doi:10.1371/journal.pone.0114427.g002
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Fourier response in the range from 0 to 500 Hz with a frequency resolution of 1/T

Hz. Different segment durations were used to find the time-scale on which the

build-up can be best resolved. Segment lengths were chosen to span an integer

number of periods at 7 Hz since we expect to see the build-up in detectability over

time windows corresponding to the target sequence rate of 7 Hz.

Behavioral versus neural correlation and bootstrap analysis

We correlated the effect of high versus low target frequencies on the behavioral

and normalized neural responses from MEG experiment B by correlating the

psychometric and neurometric measures for each subject. Specifically, we

computed

L~atan2(½NNR(HF){NNR(LF)�,½d0(HF){d0(LF)�)

Where NNR(HF) and NNR(LF) stand for averaged normalized neural response

at High (HF) and low frequencies (LF). This slope angle represents the

relationship between the effects of target frequency and neurometric/psychometric

measures. The reason for the use of slope angle rather than slope is that bootstrap

analysis produced occasional instances of infinite (and zero) slope, whereas

converting the slopes into angles removed this mathematical inconvenience. It

also maintains the virtue of keeping within-subject correlations including their

sign relation, but discarding absolute co-scaling of the two measures. The across-

participant angle was then combined using circular statistics to yield an angular

mean for each task [23]. As a preprocessing step, we scaled the neural data (the

normalized responses to target) by a factor of two in order to match the absolute

ranges of both neural and behavioral values.

We then performed a bootstrap procedure in order to confirm the positive

(respectively, negative) correlation between the neurometric and psychometric

functions in the target, respectively, masker task. We followed a balanced

bootstrap sampling procedure [24], by randomly selecting 12 participants with

replacement and computing their angular sample mean and repeating this process

1000 times. The procedure was controlled to ensure that all participants appeared

the same number of times over all 1000 bootstrap samplings. Confidence

measures were then derived from the bootstrap statistics.

Neural source localization

In order to localize the source regions in the brain underlying the magnetic

response in all MEG experiments, we used equivalent current dipole analysis. A

limited set of complex equivalent current dipoles, best fitting the complex

magnetic field configuration at 7 Hz peak in each hemisphere were computed

[25]. Only cortical sources are considered since MEG is not sensitive to

subcortical neural sources. The same localization process was done for the M100

neural responses obtained in an auditory test prior to the experiment, in which

pure 1 kHz tones was presented to the subjects. Significance of the relative
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displacement between the target and M100 dipole sources were determined by a

two-tailed paired t-test in each of three dimensions: lateral/medial, anterior/

posterior, and superior/inferior. The Goodness of Fit was computed as the

residual variance ratio, as a function of the complex current-equivalent dipole

[25]. Only channels with SNR .4 were used in the fitting.

Statistical Analysis

Non-parametric tests were used throughout the study to avoid assumptions

regarding distributional shape. Single group medians were assessed with the

Wilcoxon signed rank test, two group median comparisons with the Mann-

Whitney U-test, and multiple groups with the Friedman test, all available in the

Matlab Statistics Toolbox (The MathWorks, Natick).

Results

Psychoacoustic Results

Wider protection zones facilitate the target task and increase build-up speed

The protection zone—i.e., the spectral energy gap around the target sequence—

partially controls thedifficulty of segregating the target from the competing

maskers background and can induce varying degrees of stream formation.

We investigated the effect of protection zones ranging from 0 to 16 semitones in

steps of 4 semitones in psychoacoustic experiment part A (Fig. 1B), asking

participants to perform the target task. A positive correlation between the

protection zone width and behavioral performance of the target task was

measured using bootstrap across participants (p,0.001). An exponential recovery

curve was fitted to the performance curve, yielding a decay constant of 9.2

semitones and a positive asymptote of 4.4 starting at 0.8. This indicates a

progression of the behavioral performance over a large range of protection zones.

Notably, even with no protection zone (PZ50), performance remained above

chance (d-prime 50.8, signed ranks test, p,0.001, d-prime value for chance level

is 0), since in this case a frequency change in the target sequence was cued by a

disappearance of the target tone at its expected frequency.

We next investigated the build-up of streaming by considering the progression

of behavioral performance when the deviants were placed at different times in the

target sequence. In the target task the detection performance followed roughly an

exponential time course and improved with the width of the protection zone

(Fig. 1C, inset shows data from a sample subject to reveal the trend for buildup

speed as a function of protection zone). This is quantified by the asymptotic

values of the exponential fits being positive, a necessary condition to demonstrate

build-up (Bootstrap across participants, p,0.001).

Time constants of the fitted exponentials decreased significantly from 0

semitones to 4 semitones (6.2 to 5.1 s, bootstrap across participants, p,0.001)

and from 4 semitones to 8 semitones (5.1 to 2.6 s, bootstrap across participants,

p,0.001), but did not change significantly from 8 to 12 semitones (2.6 to 2.4 s,
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p.0.05). It also had a significant drop from 12 semitones to 16 semitones (2.4 to

1 s, bootstrap across participants, p,0.001). To better demonstrate the

distribution of time constants as a function of different protection zones, a

histogram of the time constants for fitted exponential curves to the behavioral

buildup curves of individual subjects is plotted for different protection zone

widths in Fig. 1C. The inset shows example buildup curves of an individual

subject. These results suggested that the detection of the target task was easier for

larger protection zones, while more buildup time was required for smaller

protection zones.

Faster presentation rates facilitate the target task

Facilitation of task performance in the context of stream segregation has been

studied in a number of previous studies [4, 26, 27]. Here, we studied the effect of

the presentation rate of a sequence of stimuli for its known influence on stream

formation in the well-known ABA two-tone paradigm [15]. We investigated this

dependence in the Informational Masking stimulus tasks with targets at different

rates in psychoacoustic experiment B (Fig. 2A). Using a fixed protection zone

width (8 semitones), the rate was varied between 2 and 10 Hz in steps of 2 Hz.

The trials were presented in 5 consecutive blocks corresponding to 5 different

rates. Over the range of tested rates, the performance showed significant variation,

with higher rates leading to improved detection performance (Fig. 2A, signed

rank test, p,0.0001). Behavioral performance increased over 2 and 4 Hz

presentation rates and hit the maximum level at 6, 8 and 10 Hz (Fig. 2A). Looking

at the build-up of task detectability as a function of presentation rate, faster build-

up is observed for higher presentation rates (Fig. 2B, d-prime 52.65, for the 40

trials in each condition).

MEG Results

Magnetic field distribution showed a stereotypical pattern for neural activity

The magnetic field distributions of the target sequence rate response component

revealed the stereotypical pattern for neural activity originating separately in the

left and right auditory cortex. The neural sources of all target rhythm response

components with high signal-to-noise ratio (SNR.4) originated in auditory

cortex [25]. The mean displacement of the neural source from the source of the

auditory M100 response [28] was calculated for each hemisphere. The

displacement was significantly different in the anterior direction for both right

(11.5¡5.8) and left hemisphere (10.8¡4.3), using a two-tailed t-test (t53.1,

p50.022 in the right and t52.4, p50.016 in the left hemisphere), but no

statistically significant displacement was observed in other directions.

Goodness of fit for these sources was 0.6¡0.18 (artificially reduced in

accordance with [25]). Assuming a M100 origin of planum temporale, this is

consistent with an origin for the neural response to the target rhythm in Heschl’s

gyrus, the site of the core auditory cortex, a region known for its good phase-

locking to most naturally occurring rates (,40 Hz) [14, 29, 30].
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Attentional modulation of response power and phase coherence

Neural responses to the acoustic stimuli are expected to reflect the physical

attributes of the stimulus, but also aspects of the subject’s attentional state. Since

the stimuli were acoustically identical for the two tasks, differences in the neural

responses during the two tasks must arise only from differences in the attentional

state.

We used the phase-locked response to the target sequence rate at 7 Hz in MEG

experiment C, as an indicator for the strength of representation of the target

stream [12]. As expected, this phase-locked response was stronger during the

target task than during the masker task, as indicated by the amplitude of the

response power spectrum at 7 Hz (Fig. 3A).

The individually normalized neural responses at a target rate of 7 Hz showed a

larger average power gain than for 4 Hz [12]. Power gain is here defined as the

ratio of normalized neural response to the target sequence in target vs. masker

task. For the present case of 7 Hz the power gain was 3.86 (SEM50.87, Fig. 3B,

red error bars 5 target task, blue error bars 5 masker tasks), compared to 2.1 at

4 Hz in [12]; additionally, overall amplitudes at 7 Hz were almost a factor 10

smaller than those at 4 Hz. This overall reduction in amplitudes was likely a

consequence of the well-known low-pass property of auditory cortical responses

[31–34].

Wider protection zones facilitate the target task, but not the masker task

To get a better understanding of the neural mechanism underlying performance

increase as a function of wider protection zones as shown above, we used 4, 8, and

12 semitone protection zones to perform MEG experiment C. Behavioral and

neural results for both target and masker tasks are shown in Fig. 4.

For the target task, widening the protection zone facilitated the segregation of

the target tones and hence the detection of the frequency deviant (Fig. 4A, right

panel, signed rank test, p,0.001; significantly positive slope, bootstrap across

participants, p,0.001) in agreement with the results obtained in psychoacoustic

experiment A. A corresponding increase in the normalized neural response to the

target sequence as a function of protection zone was consistent with the changes

in the behavioral results (Fig. 4A, right panel, signed rank test, p,0.001;

significantly positive slope, bootstrap across participants, p,0.001). However, for

the masker task, increasing the protection zone did not have a significant effect on

behavioral performance (Fig. 4A, left panel, signed rank test, p50.21).

Consistently, there was no significant change in neural activity recorded during

the same task (signed rank test, p50.1).

Faster rates facilitates the buildup of target detectability

As an extension to psychoacoustic study part B, we examined whether the

normalized neural responses reflected a similarly rapid build-up of performance

for higher target presentation rates To this end, neural and behavioral responses

from MEG experiment D were compared with those of a 4 Hz target rate [12]. In

the current study, behavioral detectability of the target deviant was calculated for

Neural Correlates of a Streaming Percept in an IM Paradigm

PLOS ONE | DOI:10.1371/journal.pone.0114427 December 9, 2014 13 / 23



each of the 5 time segments corresponding to the target deviant’s location

(Fig. 4B, left panel, green). The build-up of the normalized neural response was

measured over the duration of the trial by separating the response into non-

overlapping segments and computing the 7 Hz contributions in each segment. No

build-up was observed for window sizes less than 5 cycles, likely due to lack of

sufficient statistical power. A weak build-up as a flattened curve was obtained for

segment length approximately 714 ms (5 cycles) (Fig. 4B, right panel, green),

consistent with the progression speed of behavioral response (in MEG recording

session, left panel, green). Time constants given by fitted exponentials to both

neural and behavioral curves in the 7 Hz target, were significantly positive but

small (0.63 s for neural curve and 0.1 s for behavioral curve, signed rank test,

p50.03). Given the fast build-up obtained psychoacoustically for the 8 semitone

protection zone of the 7 Hz target (Fig. 1C, 3rd panel), we conjecture that a fast

neural build-up was occurring at the beginning of trials, but early enough that it

could not be resolved using the current analysis.

To further validate this analysis, we reanalyzed the old 4 Hz target data from

[12]. For better comparison of the neural build-up curves, the normalized neural

responses for both 4 and 7 Hz target sequence rates were further normalized by

the average power of the normalized neural responses in the corresponding

masker tasks (Fig. 4B, right panel). A significant build-up was obtained using a

750 ms time windows (three periods) for 4 Hz. The time constants obtained from

exponential curve fittings were significantly positive (1.17 ms for the neural data

curve and 11.8 ms for the behavioral data, signed rank test, p,0.01) and larger

than the ones for the 7 Hz curves (rank sum test; p,0.003 for behavioral curves

Fig. 3. Attention modulates the normalized neural response. (A) The power at the target sequence rate is larger in the target task compared to the
masker task (MEG experiment D, N512, 20 best channels selected for each participant, see Methods for details). (B) Normalized neural response to the
target sequence for each participant is plotted in target-masker normalized response space for each participant. The normalized neural response is
computed as the ratio of the neural response power at the target sequence rate (7 Hz) to the average power of the background neural activity (from 6–8 Hz).
Error bars represent the standard error for the target task (red, orthogonal bars) and the masker task (blue, horizontal bars). Inset: the MEG magnetic field
distributions of the target rhythm response component for a single participant, with red and green representing the target magnetic field strength projected
onto a line with constant phase.

doi:10.1371/journal.pone.0114427.g003
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and p,0.02 for neural curves), suggesting that the detection task for the 4 Hz

target sequence embedded in a 8 semitone protection region was harder than the

detection task for the 7 Hz target sequence under similar conditions.

High frequency targets facilitate the target task

Acoustic stimulus parameters influence the saliency of a streaming percept. One

such parameter is the frequency of the target tone sequence, which influenced the

results both for behavioral and neural data. In MEG experiment D, target

sequences were divided into high and low frequency tones (above or below

353 Hz). Both behavioral and neural data showed a significantly positive slope

(bootstrap across participants, p,0.001) as a function of target frequency in the

Fig. 4. Larger protection zones ease the target task, but not the masker task. (A) Behavioral performance
and neural results (MEG experiment C, N512) for the target task (left panel) and the masker task (right panel),
as a function of protection zone. (B) Analysis of neural and behavioral build-up over time for the target task.
Behavioral performance (left panel) and normalized neural responses, normalized with respect to the masker
task neural response power (right panel) are plotted as a function of time for both the 4 and 7 Hz target
sequence rate (orange and green curves, respectively), averaged over participants. Data shown for the 4 Hz
target rate is obtained from the study by Elhilali et al. 2009. Neural responses and corresponding behavioral
performances are acquired only for the 8 semitones protection zone.

doi:10.1371/journal.pone.0114427.g004
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target detection task (dark/light red line, Fig. 5A, left panel), indicating that high

frequency tones facilitated target detection. Neither slope was significantly non-

zero in the masker task for the average behavioral and normalized neural

responses (Fig. 5A; right panel); however, the individual behavioral and

normalized neural response trends showed a significantly negative correlation as

explained below.

To better demonstrate the correspondence between the normalized neural

response and behavioral measures, we computed the correlation between the two

indicators during both tasks as a function of target frequency. As described in

Methods, we computed an angular measure relating neurometric and psycho-

metric changes as a function of frequency. The resulting average angle over

subjects was positive 42.4˚ for the target task and 229.8˚ for the masker task

Fig. 5. Bottom-up saliency of the target sequence increases for higher target frequencies. (A)
Behavioral and neural responses (MEG experiment C, N512) as a function of target frequency. In the left
panel, the red/orange line corresponds to behavioral and neural responses for the target task with respect to
the low and high target frequency. In the left panel dark/light blue corresponds to behavioral and neural
responses for the masker task. Error hull represent 1 SEM. (B) Correlation of the behavioral and neural
responses as a function of target frequency. The ratio of the neural to behavioral response differences as a
function of target frequency is averaged across participants. A mean slope angle of 42.4˚ for target (left plot)
task and 229.8˚ for masker (right plot) task (yellow line) were obtained in this analysis. As detailed in
Methods, the slope angle corresponds to the strength of correlation between neural and behavioral data.
Bootstrap estimates (overlying green lines) and their 95% confidence intervals (pink and blue background for
the target and masker task, respectively) confirm the positive/negative correlations for target/masker task.

doi:10.1371/journal.pone.0114427.g005
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(Fig. 5B, yellow line). Bootstrap analysis was performed across participants and

the estimated angle is plotted as a green line with the corresponding 95%

confidence interval as the pink/blue backgrounds for the target/masker tasks. The

positive and negative correlations obtained for target and masker task respectively,

confirmed that behavioral performance in the target task is better for higher

frequency targets (.350 Hz) than for lower frequencies (sum rank test, p,0.01).

An increase to the neural response of the target is correlated with this trend.

Conversely, the masker task showed a trend of being oppositely affected by the

physical saliency of the target task despite the independence of the two tasks.

Attention to the target stream leads to selective power and phase enhancement

at target rate

The normalized neural response to the 7 Hz rhythms obtained from MEG

experiment D, showed a significant increase in the target vs. masker task (Fig. 6,

signed rank test, p,0.0001). In contrast, no significant change in the normalized

neural response to the nearby or distant frequencies was obtained, suggesting that

the sustained attention to the target stream leads to a feature-selective modulation

of the cortical response, but has no significant impact on responses to the other

nearby or distant frequencies (signed rank test, p-values 50.15).

Discussion

Stream formation is a central process in parsing out the acoustic environment.

Perceptual cues and attentional focus modify this segmentation, both qualitatively

and quantitatively.

In the present study, we pursued two main goals. The first goal was to examine

the correspondence between the mechanisms and percepts of stream segregation

versus those of the informational masking paradigm, and especially their

dependence on the spectrotemporal properties of the stimuli. The second goal was

to investigate the potential mechanisms of stream segregation and their

interaction with selective attention, for which we employed neuromagnetic

imaging. Specifically, while holding the stimulus fixed, we investigated the

changes in the neural responses as attention was directed to different components

of the acoustic scene. This was repeated under different spectrotemporal stimulus

conditions so as to explain the integration of perceptual features of a complex

acoustic scene mediated by the processes of attention.

We based our experimental paradigm and analysis on the hypothesis that target

sequence detection relies on similar neural mechanisms both in our informational

masking paradigm and the classic streaming paradigm.

This hypothesis is supported by a number of earlier studies in which the

similarities between these paradigms were discussed [8, 12]. First, in line with the

arguments discussed in [8] , we hypothesize that systematic dependence of

performance on the size of the protection zone is analogous to the frequency

separation parameter in streaming experiments using the classic two tone
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paradigm [1]. This dependence ultimately relies on the frequency selectivity of

neurons in the central auditory system, a low-level neural mechanism [10, 18]. It

was also shown in [8], that detection performance in the target task decreases if

the target tone is presented every other burst. This is consistent with results in

[35], that the degree of streaming is related to the gaps between successive tones in

a stream. Moreover, in regard to buildup, it has been shown in the classic

streaming paradigm that detection improves in the target task with increasing the

number of tone bursts in the target sequence, quite similar to the analogous effect

here. The underlying mechanism in both cases might be explained via

accumulation of sensory evidence, with a causal relationship to the build-up of

stream segregation.

While these arguments rule out some potential differences between the IM and

two-tone cases, it is also possible that detection of the repeating target tones could

have different mechanisms on different levels, and their effects nonetheless are

correlated on the behavioral level.

Comparing behavioral and neural measures, we have confirmed that attending

to one stream significantly modulates the neural response to the attended

stimulus. Despite the known transient effects of attention on auditory signals

[36, 37], a sustained increase in the normalized neural response was found to

correlate with sustained attention. This enhancement is consistent with the

behavioral improvement in target detection for individual subjects, which

supports the hypothesis that attentional manipulation can lead to increased

responses to the attended features, and suppression of the response to the

background or unattended features [12, 38–43].

It is also possible that the neural response enhancement in the target task arises

directly from the occurrence of more trials in which listeners are aware of the

Fig. 6. Stream formation recruits more widespread brain areas at the target sequence rate. Power
enhancement during the target task. The difference between the normalized neural responses in the target
task versus the masker task (MEG experiment D, N512) shows a significant and highly precise enhancement
at the frequency of the target sequence (7 Hz, circled in red). Error bars represent 1 SEM in each graph.

doi:10.1371/journal.pone.0114427.g006
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presence of the target sequence vs. masker task. Therefore, this study cannot

directly establish whether the enhanced neural power is a cause or an effect of

selective attention.

Recent studies suggest that oscillatory entrainment in various frequency bands

can be enhanced by attention [44–46]; however, the results of this experiment are

unlikely to be a consequence of entrainment since the normalized neural

responses show a significant power change only at frequency of the target

presentation rate and no other frequencies, even nearby frequency bins (See

results and Fig. 6).

We also observed a systematic dependence of performance and normalized

neural response strength on the width of protection zone for the target task. This

is analogous to the increase in frequency separation between two-tone sequences

studied in the more traditional A-B-A streaming paradigms [1]. According to our

findings, increasing the spectral separation improves behavioral detection and,

notably, also causes an increase in the normalized neural response. This can be

speculatively attributed to well-known lateral inhibitory interactions, which may

occur between tones as much as an octave or more apart in cortex [47–49]. In this

case, the boundary between energetic and informational masking becomes

somewhat blurred, and very close spectral distances between target and masker

tones eventually inhabit the same frequency band (dependent on the tuning width

of auditory neurons), and thus could be considered as energetic masking rather

than informational masking. But it is also possible that these suppressive

interactions between the two temporally incoherent streams (target and masker)

are inherently due to the desynchronized activation of these respective frequency

channels, and not simply to pre-existing inhibitory connections [50]. If so, we

would predict that this enhancement of response amplitude with increasing

frequency separation would also occur for two alternating tones despite the fact

that they are not simultaneous. Given our observation of no significant change of

the neural response for the masker task, we postulate attention to be a required

component to instantiate the increase of neural responses in the target task.

Higher target tone frequencies produced stronger normalized neural responses,

and their deviants were easier to detect. This effect may be due to an enhanced

bottom-up saliency that increases as a function of frequency, i.e. tones at higher

frequencies (350 Hz to 500 Hz) are perceived to be louder compared to low

frequency tones (250 Hz to 350 Hz) at the same amplitude (ISO 226:2003).

Interestingly, the strong, positive correlation between the behavioral and

normalized neural response for the target task was complemented by a significant

negative correlation in the masker condition. Thus, subjects with a positive/

negative behavioral trend as a function of sound frequency, showed a decrease/

increase in their corresponding normalized neural response, respectively. This

could be explained by the competitive nature of the tasks, i.e. better detection in

the masker task requires more effective suppression (decrease) of the competing

target sequence. This finding is also significant as it confirms that the difficulty of

the tasks was sufficient to manipulate the listener’s attention towards or away

from the target sequence.
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Similarly, increasing the presentation rate of the target sequence had a

significant, positive effect on behavioral performance (2–10 Hz range) and its

neural correlates in the target detection task (4 vs. 7 Hz), presumably because of

the more rapid buildup of target/masker segregation (streaming). This is

consistent with previously measured effects of temporal rates in auditory scene

analysis in which faster rates induced stronger streaming effects [1]. An earlier

study by Xiang et al. 2010 [16] found conflicting results when presenting

competing pairs of different temporal rate sequences (4 and 7 Hz) to the subjects,

and instructed them to attend to one of the two rhythms and detect in it a deviant

temporal jitter. This psychoacoustic study found a streaming advantage for the

4 Hz rhythms relative to the 7 Hz, inconsistent with our current findings and

classical streaming studies [1]. We conjecture that this may simply have been a

consequence of the reliance on temporal jitter as the deviant, which is more

difficult to detect with faster rates, leading to a decrease in the detection scores of

the 7 Hz sequence.

Finally, average temporal alignment (termed ‘coherence’) has recently been

suggested as a dominant contributor to stream formation [12, 50, 51]. According

to the temporal coherence hypothesis, distinct neural populations with temporally

correlated responses are grouped together representing one single stream, whereas

neural populations with uncorrelated temporal responses are segregated

representing different streams. In the present study, temporal alignment did not

play an important role for binding across multiple frequency channels, since target

and masker streams were temporally uncorrelated (due to the random nature of

the masker). However, this lack of coherence may have been used as a

discriminating factor, strengthening the perceptual and neural activity indepen-

dence between the target and masker components of the stimulus, leading to a

better target/masker segregation ability for listeners.

There was no measurable hemispheric asymmetry in either task. This is in

contrast to the left-biased hemispheric asymmetry seen for a 4 Hz target rate

during the target task in [12] (not the 7 Hz of this study). This may be due to a

cancellation of competing asymmetries, since a right-biased asymmetry has also

been observed for 7 Hz (during a different task than in this study; different

competing stimulus and different deviants than in this study, but the targets

themselves were identical) [16].

Using both behavioral and neural measures we have shown that conditions,

which facilitate target detection, are paralleled by enhancements in neural activity.

This suggests that the neural sources of the MEG signal associated with the target

sequence are already affected by the conditions that give rise to the streaming

percepts, and are in fact good indicators of the perceptual state of the subjects in

perceiving the presence of informational masking in the auditory scene, and

perhaps other scenes as well.
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Conclusion

Stream segregation/formation can be performed effortlessly by human subjects in

many natural scenes; for example, in crowded environments, we are able to listen

to a specific speaker and perceive the attended speech as a distinct auditory

stream, despite the complex acoustic signal we receive from all other sources such

as other speakers and music. The present study indicates that different properties

such as bottom-up saliency of target frequency, top-down attentional modulation

and frequency separation in an auditory scene, influence our streaming ability

significantly, suggesting that they correspond to properties that distinguish the

emitters of different sounds.

Further, the present findings shed some light on the similarities and differences

of the modulation rates in the range of 2–10 Hz, which are known to be crucially

important in grouping the physical and perceptual cues in a complex acoustic

scene and stream formation [13–15].
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29. Liégeois-Chauvel C, Lorenzi C, Trébuchon A, Régis J, Chauvel P (2004) Temporal envelope
processing in the human left and right auditory cortices. Cerebral Cortex 14: 731–740.

30. Steinschneider M, Nourski KV, Fishman YI (2013) Representation of speech in human auditory
cortex: Is it special? Hearing Research 305: 57–73.

31. Eggermont JJ (1991) Rate and synchronization measures of periodicity coding in cat primary auditory
cortex. Hearing research 56: 153–167.

32. Kilgard MP, Merzenich MM (1999) Distributed representation of spectral and temporal information in rat
primary auditory cortex. Hearing research 134: 16–28.

Neural Correlates of a Streaming Percept in an IM Paradigm

PLOS ONE | DOI:10.1371/journal.pone.0114427 December 9, 2014 22 / 23



33. Phillips D, Hall S, Hollett J (1989) Repetition rate and signal level effects on neuronal responses to brief
tone pulses in cat auditory cortex. The Journal of the Acoustical Society of America 85: 2537–2549.

34. Schreiner CE, Raggio MW (1996) Neuronal responses in cat primary auditory cortex to electrical
cochlear stimulation. II. Repetition rate coding. Journal of neurophysiology 75: 1283–1300.

35. Bregman AS, Ahad PA, Crum PA, O’Reilly J (2000) Effects of time intervals and tone durations on
auditory stream segregation. Perception & psychophysics 62: 626–636.
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