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Abstract

To gain insight into the functional relationship between the capsid (CA) domains of the

Gag polyproteins of simian and feline immunodeficiency viruses (SIV and FIV,

respectively), we constructed chimeric SIVs in which the CA-coding region was partially

or totally replaced by the equivalent region of the FIV CA. The phenotypic

characterization of the chimeras allowed us to group them into three categories: the

chimeric viruses that, while being assembly-competent, exhibit a virion-associated

unstable FIV CA; a second group represented only by the chimeric SIV carrying the N-

terminal domain (NTD) of the FIV CA which proved to be assembly-defective; and a

third group constituted by the chimeric viruses that produce virions exhibiting a mature

and stable FIVCAprotein, andwhich incorporate the envelope glycoprotein and contain

wild-type levels of viral genome RNA and reverse transcriptase. Further analysis of the

latter group of chimeric SIVs demonstrated that they are non-infectious due to a post-

entry impairment, such as uncoating of the viral core, reverse transcription or nuclear

import of the preintegration complex. Furthermore, we show here that the carboxyl-

terminus domain (CTD) of the FIV CA has an intrinsic ability to dimerize in vitro and form

high-molecular-weight oligomers, which, together with our finding that the FIV CA-CTD

is sufficient to confer assembly competence to the resulting chimeric SIV Gag

polyprotein, provides evidence that the CA-CTD exhibits more functional plasticity than

the CA-NTD. Taken together, our results provide relevant information on the biological

relationship between the CA proteins of primate and nonprimate lentiviruses.
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Introduction

Virion morphogenesis in lentiviruses is the result of a series of steps driven by

multimerization of the structural polyprotein Gag at the plasma membrane of the

infected cell (reviewed in refs. [1, 2]). Indeed, the intrinsic biological property of

Gag to self-assemble into spherical virus-like particles both in cell cultures or in in

vitro systems is well documented [3–9]. Like in all retroviruses, the simian

immunodeficiency virus (SIV) Gag precursor is composed of the three

functionally conserved domains: matrix (MA), which not only contains the

molecular determinants necessary for Gag targeting and association with the

plasma membrane but also participates in envelope (Env) glycoprotein

incorporation into virions [10–12], capsid (CA) which in the mature virion

constitutes the protein shell enclosing the dimeric RNA genome, and nucleocapsid

(NC), which is involved in genomic RNA packaging and reverse transcription

[1, 2]. SIV Gag also contains the C-terminal p6 domain which bears binding sites

for the accessory viral proteins Vpr and Vpx (in some SIVs) [13] as well as for

components of the endosomal sorting complexes required for transport (ESCRT)

implicated in virus budding (reviewed in refs. [2, 14]). In addition, the SIV

precursor contains two short spacer peptides SP1 and SP2 which separate the CA

and NC and the NC and p6 domains, respectively.

Concomitantly with virus budding from the host cell, the Gag precursor is

cleaved by the virus-encoded protease into its functional domains [15]. This step

is accompanied by a series of structural rearrangements that convert the roughly

spherical Gag shell of the immature virion into the mature infectious particle

exhibiting the characteristic lentiviral electron-dense conical core [1, 2, 16]. In this

regard, the central CA domain of Gag plays distinct roles during lentiviral

morphogenesis: as part of the Gag precursor, it participates in the protein-protein

interactions that drive Gag multimerization into immature particles [9, 17–21],

whereas as an independent protein of the mature virion that self-assembles into

the core structure, it protects the viral components required for the next steps of

virus infection and spreading [2, 17, 22, 23]. The CA domains of retroviral Gag

polyproteins exhibit low sequence similarity except for a 20-amino-acid motif

known as the major homology region (MHR) which is unique in that it is

conserved across retroviruses [24]. However, the comparison of the solution

structures of different retroviral CA proteins shows a common organization in

two highly a-helical regions that fold independently of each other: an N-terminal

domain (CA-NTD) that is linked via a flexible region to a C-terminal domain

(CA-CTD) [1, 2, 25, 26]. Indeed, it has been shown for different orthoretroviruses

that the assembly of Gag into particles results in the formation of a hexagonal

lattice in which the CA-NTD organizes into hexameric rings connected by CA-

CTD homodimers [18, 19, 21, 26–28].

Most of the work on lentiviral CA proteins has almost exclusively focused on

that of HIV-1. In this regard, numerous structural studies have compared the

architecture of the immature HIV-1 Gag particle [18, 20, 21] with that of the

mature virion exhibiting the CA-made core [26, 28–33]. These studies have
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provided a detailed model of the intra- and inter-hexameric subunit interactions

that are established between the CA-NTD and CA-CTD upon HIV-1 Gag

assembly. Moreover, a wealth of biochemical experiments have helped to define

the contributions of the HIV-1 CA to the multifunctional properties of Gag

during the virus life cycle such as its role in virion uncoating and nuclear import

of the preintegration complex [17, 23, 34–38] as well as to identify the cellular

proteins that are able to block virus replication by interacting either directly or

indirectly with the CA protein [36, 39–42].

By contrast, little is known about other lentiviral CA proteins. As retroviruses

belonging to the lentivirus genus, SIV and the feline immunodeficiency viruses

(FIV) have common structural and biological properties but also exhibit

important differences, which reflects both their evolutionary relationship and

divergence. These lentiviruses share the same cell tropism (CD4+ T lymphocytes

and macrophages) but utilize different receptor/coreceptor complexes to enter

their target cells (CD4 and CCR5 for SIV; CD134 and CXCR4 for FIV) [43–47].

Moreover, the FIV genome lacks tat, vpr and nef which are iconic genes of primate

lentiviruses [48] and vpx which is present only in some SIVs and HIV-2 [49–51].

Instead, FIV codes for the multifunctional protein Orf-A/Orf-2 which is involved

in virus production and infectivity and has been shown to be related to the

primate lentiviral protein Vpr [52, 53]. Moreover, FIV Gag contains the C-

terminal p2 peptide, an 18-amino-acid-long domain that harbors the highly

conserved PSAP motif involved in promoting virion budding, which is

functionally equivalent to the p6 region in the Gag polyproteins of HIV and SIV

[54–56].

With regard to the CA domains of the SIV and FIV Gag polyproteins, we have

previously demonstrated that the C-terminal third portion of the CA and the

entire NC is the minimal SIV Gag subdomain capable of interacting in vitro with

GagDp6 at wild-type levels [9]. Furthermore, experiments performed with FIV

Gag have allowed us to show that the CA-NC region is the principal Gag domain

responsible for the protein-protein interactions that drive immature particle

assembly [57].

Therefore, to gain insight into the functional equivalence between the SIV and

FIV CA proteins and to investigate whether the structurally distinct regions in the

CA domain of SIV Gag can be functionally replaced by their cognate FIV CA

counterparts, we characterized the assembly and infectivity phenotypes of

chimeric SIVs carrying different FIV CA-derived regions.

Results

Construction of the chimeric SIV proviral DNAs

The analysis of the SIV and FIV CA primary sequences reveals a similar

organization: a CA-NTD of 151 residues for SIV and of 144 amino acids for FIV,

and a CA-CTD that includes the MHR and whose length is 79 and 78 residues for

SIV and FIV, respectively. However, the SIV and FIV CA proteins only share 30%

Chimeric SIVs Carrying FIV CA Domains

PLOS ONE | DOI:10.1371/journal.pone.0114299 December 2, 2014 3 / 27



identity and 52% similarity at the amino acid level. Therefore, to investigate the

functional relationship between the CA domains of these two phylogenetically

distant lentiviruses, we generated a series of SIVSMM-PBj proviral DNAs carrying

different CA-coding sequences of the Petaluma isolate of FIV (Fig. 1). In the

chimeric virus SIVFIV CA the first thirteen SIV CA residues were joined to the FIV

CA sequences coding for amino acids 14–222 without eliminating the C-terminal

six residues of the SIV CA so as to ensure proper processing at both the MA-CA

and CA-SP1 protease cleavage sites. In addition, to examine how the assembly of

the chimeric SIV Gag polyproteins is modulated by the FIV sequences that lie

directly C-terminal to the CA domain, we constructed two chimeric proviral

DNAs: SIVFIV CA-p1, in which the FIV spacer peptide p1 was linked to the last

seven residues of SIV SP1, and SIVFIV CA-p1-NC(1-9), in which the FIV sequences

encoding the entire CA domain as well as p1 and the first nine residues of NC

were substituted for the equivalent region in the SIVSMM-PBj genome (Fig. 1).

Moreover, the chimeras SIVFIV CA(NTD) and SIVFIV CA(CTD) were designed to study

the functional homology between the SIV and FIV CA N-terminal and C-terminal

domains, respectively (Fig. 1).

Assembly phenotype of the SIV chimera carrying the FIV CA

domain

To determine whether the FIV CA is able to functionally replace the equivalent

SIV domain and confer assembly competence to the chimeric SIV Gag, we

transfected the wild-type SIV and chimeric SIVFIV CA proviral DNAs into 293T

cells. Analysis of the cell and virion lysates by Western blotting using an antiserum

directed against the SIV MA showed that the chimeric SIVFIV CA Gag polyprotein

was expressed and processed at wild-type levels and that it assembled into virions

(Fig. 2A and 2C). However, probing for the SIV and FIV CA proteins revealed

that the chimeric SIVFIV CA particles contained, besides the mature FIV CA

protein, additional low-molecular-weight bands derived from the FIV CA (Fig. 2B

and 2D), which suggests that maturation of the chimeric SIVFIV CA virions is

accompanied by certain degree of instability of the FIV CA domain.

Particle production by the SIV chimera expressing the FIV CA-p1

domain

Based on the results described above, we next asked whether the inclusion of the FIV

p1 spacer peptide in place of the first 10 amino acids of SP1 could reverse the FIV

CA instability observed for the mature chimeric SIVFIV CA particles.

Immunoblotting of both cell lysates (Fig. 3A) and virion fractions (Fig. 3B) of

transfected cells with the anti-FIV CA MAb indicated that the chimeric SIVFIV CA-p1

virions display additional FIV CA-derived bands of a molecular mass lower than

24 kDa similar to the protein pattern of the chimeric SIVFIV CA virions.
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Assembly of the SIVFIV CA-p1-NC(1-9) chimera

We then examined the assembly competence of a chimeric SIV expressing the FIV

Gag region comprising the CA domain, p1, and the NC sequences upstream of the

first zinc-finger motif (SIVFIV CA-p1-NC(1–9); Fig. 1). The proviral DNAs for wild-

type SIVSMM-PBj and the SIVFIV CA-p1-NC(1–9) chimera were transfected into 293T

cells and both the cell and virion lysates were then assayed for the presence of viral

proteins by Western blotting using the anti-SIV MA serum or the MAbs specific

Figure 1. Schematic diagram of the chimeric Gag polyproteins encoded by the proviral SIV constructs.
The organization of the wild-type SIV and FIV Gag precursors is depicted at the top showing the structurally
conserved domains (MA, CA, and NC), the C-terminal p6 domain in SIV Gag, as well as the spacer peptides
(SP1 and SP2 in SIV Gag; p1 and p2 in FIV Gag). The positions of the CA MHR, and the N-terminal (ZFN) and
C-terminal (ZFC) zinc-finger motifs in the NC domains of both SIV and FIV Gag proteins are indicated: The
numbers refer to the length of each of the chimeric Gag polyproteins with residue 1 corresponding to the
initiator methionine in the Gag precursors.

doi:10.1371/journal.pone.0114299.g001
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for either the SIV or FIV CA proteins (Fig. 4). The SIVFIV CA-p1-NC(1–9) chimeric

virus exhibited an assembly-competent phenotype similar to that of the SIVFIV CA

and SIVFIV CA-p1 chimeras; however, in contrast to the latter chimeric viruses, the

SIV GagFIV CA-p1-NC(1–9) polyprotein assembled into virions containing a mature

and stable FIV CA protein (Fig. 4B). In addition, a Gag intermediate of higher

molecular mass, most likely corresponding to FIV CA-p1-NC, was also detected in

these chimeric particles (Fig. 4B).

Infectivity, reverse transcriptase activity and RNA content of the

SIVFIV CA-p1-NC(1–9) virions

Given the stability of the FIV CA protein in the virions produced by SIVFIV CA-p1-

NC(1–9), we decided to investigate whether this chimeric virus was infectious.

When the culture supernatants from transfected cells were used to assess virus

infectivity in TZM-bl cells, we found that the chimeric SIVFIV CA-p1-NC(1–9) virus

had only 3.0¡0.9% of wild-type infectivity (average of five independent

Figure 2. Assembly phenotype of the chimeric SIVFIV CA virus. 293Tcells were transfected in parallel with
the wild-type SIVSMM-PBj and SIVFIV CA proviral DNAs. At 48 h post-transfection, cell and virion lysates were
resolved on SDS-polyacrylamide gels, transferred to nitrocellulose membranes and detected with antibodies
specific for the SIV MA (A and C) and for the SIVand FIV CA proteins (B and D). The positions of the wild-type
and chimeric Gag proteins as well as those of the MA and CA proteins are shown. Numbers refer to the
positions of the molecular weight standards (in kDa).

doi:10.1371/journal.pone.0114299.g002
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experiments ¡ the standard deviation). It should be mentioned that the TZM-bl

cells derive from the HeLa cell line which is only partially restrictive to FIV

replication [58]. The reduced infectivity of SIVFIV CA-p1-NC(1–9) could not be

attributed to impaired Env glycoprotein incorporation since probing of the virion

samples with an anti-gp41 MAb showed that the chimeric particles exhibited gp41

levels similar to those of wild-type SIV (Fig. 4C). In addition, pseudotyping of the

chimeric virus with the vesicular stomatitis virus glycoprotein (VSV-G) did not

increase virus infectivity in the indicator TZM-bl cells (data not shown). These

results prompted us to analyze whether the low infectivity exhibited by the SIVFIV

CA-p1-NC(1–9) virus was due to reduced reverse transcriptase (RT) activity of the

chimeric virons and/or to a defect in genomic RNA packaging. After normalizing

for the amount of SIV MA protein in the samples, virion-associated RT was

measured using an enzymatic assay as described in Materials and Methods. No

significant defect in virion-associated RT activity was observed for the SIVFIV CA-

p1-NC(1–9) virions as compared to the wild-type values (15.0¡0.2 ng RT/ml for the

Figure 3. Assembly phenotype of the SIVFIV CA-p1 chimera. 293T cells were transfected in parallel with
wild-type SIVSMM-PBj and SIVFIV CA-p1 proviral DNAs. Protein blots of cell (A) and virion (B) lysates were
probed with antibodies specific for the SIV MA, SIV CA, and FIV CA proteins. The positions of the wild-type
and chimeric Gag precursors, as well as those of the mature SIV MA, SIV CA, and FIV CA proteins are
shown. Numbers indicate the positions of the molecular weight standards (in kDa).

doi:10.1371/journal.pone.0114299.g003
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chimera versus 16.0¡0.3 ng RT/ml for wild-type SIV; average of three

independent experiments ¡ the standard deviation). We next evaluated whether

the FIV Gag-derived sequences affected the RNA packaging efficiency of the

SIVFIV CA-p1-NC(1–9) virions. The presence of genomic RNA in viral particles was

determined by using reverse transcription coupled to semiquantitative polymerase

Figure 4. Analysis of particle production and Env incorporation into virions for SIVFIV CA-p1-NC(1–9). 293T
cells were transfected in parallel with wild-type SIVSMM-PBj and SIVFIV CA-p1-NC(1–9) proviral DNAs. Cell- (A) and
virion-associated (B) proteins were detected by Western blotting with antibodies directed against the SIV MA,
the SIV CA, and the FIV CA proteins. (C) Env incorporation into the wild-type SIVSMM-PBj and chimeric SIVFIV

CA-p1-NC(1–9) virions was determined by probing with an anti-SIV gp41 MAb (right panel). Virions were
normalized for their MA content (left panel). The positions of the wild-type and chimeric Gag precursors, as
well as those of the mature SIV MA, SIV CA, FIV CA and SIV gp41 proteins are shown. Numbers indicate the
positions of the molecular weight standards (in kDa).

doi:10.1371/journal.pone.0114299.g004
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chain reaction (RT-sqPCR) for the amplification of the SIV sequence spanning the

packaging signal y and the 59end of the MA-coding region. The resulting DNA

products were then quantitated by densitometry of the stained agarose gels. We

have previously applied this strategy to quantitate the RNA content in in vitro

assembled FIV Gag particles [8]. Wild-type and chimeric virion samples were first

normalized for SIV MA protein levels so as to compare equal amounts of viral

particles with respect to RNA content. As shown in Fig. 5A (upper panel), after 25

or 30 PCR cycles, similar amounts of the amplified DNA product were detected

from the wild-type SIV and chimera samples. As control, when the RT was

omitted form the reactions no DNA products were obtained (Fig. 5B). To

confirm that under our experimental conditions exponential amplification

occurred during 25 cycles, one-half volume of the first-strand cDNA from SIVFIV

CA-p1-NC(1–9) RNA with respect to that of wild-type virions was subjected to PCR.

Using this amount of cDNA from the chimera in 25-cycle reactions we found that

the levels of the corresponding PCR product represented 59¡6% of the wild-type

value (Fig. 5A, lower panel). By contrast, 30 PCR cycles yielded comparable

amounts of the wild-type and chimeric PCR products (Fig. 5A, lower panel),

indicating that the plateau phase of the reaction is indeed reached in the 30-cycle

reactions. Therefore, based on the fact that similar amounts of PCR product are

obtained for both the wild-type SIV and chimera samples during 25 cycles of

exponential amplification (Fig. 5A, upper panel), we conclude that SIVFIV CA-p1-

NC(1–9) virions package genomic RNA as efficiently as wild-type SIV particles.

Analysis of the replication capacity of the SIVFIV CA-p1-NC(1–9)

chimera in non-restrictive 293T cells

Given that our data showed that the low infectivity of the chimeric SIVFIV CA-p1-

NC(1–9) virions was not due to an impairment in Env incorporation, defects in

virion-associated RT or genomic RNA packaging, we aimed to identify the steps

in the viral life cycle following virus entry that were affected by the presence of the

FIV CA-p1-NC(1–9) sequences within the chimeric SIV genome. We therefore

examined whether the SIVFIV CA-p1-NC(1–9) chimera is able to undergo reverse

transcription by performing single-round infections of 293T cells with VSV-G-

pseudotyped viruses. To exclude the possibility that the tripartite motif protein

TRIM5-a may mediate restriction of the chimeric virus through targeting of the

FIV CA-derived sequences, we chose the 293T cell line for this experiment since it

has proven to be notably permissive for FIV [58] and SIV [59] vectors. The

detection of the circular forms of unintegrated viral DNA serves as criterion of

import of full-length viral DNA into the nucleus and, therefore, of a productive

viral infection [60–62]. Circular low-molecular-weight DNA from wild-type SIV-

and chimeric SIVFIV CA-p1-NC(1–9)-infected cells was isolated and PCR amplified

with primers specific for the late circular DNA forms as described in Materials and

Methods. As shown in Fig. 6A, while the 1-LTR-circle species was present in cells

infected with wild-type SIV, this DNA form was not detected in SIVFIV CA-p1-NC(1–

9)-infected cells. The absence of the LTR-derived PCR product in the latter case is
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not due to differences in the total number of cells in each sample, since

amplification of the human b-actin gene from total cellular DNA of both samples

yielded equivalent amounts of the expected PCR product (Fig. 6B). DNA

sequencing confirmed that the PCR product obtained from wild-type SIV-

infected cells corresponds to the 1-LTR circular form (data not shown).

Moreover, it is well established that in HIV-1-, SIV-, and FIV-infected cells the 2-

Figure 5. Analysis of the genomic RNA content in the chimeric SIVFIV CA-p1-NC(1–9) virions by RT-sqPCR.
(A) Upper panel: Equal aliquots of first-strand cDNAs prepared from genomic RNA extracted from equal
amounts of wild-type SIV (lanes 1, 3, and 5) and SIVFIV CA-p1-NC(1–9) virions (lanes 2, 4, and 6) were used as
templates in PCR reactions involving 20, 25, or 30 cycles for the amplification of the SIV genomic region
encompassing nt 589–987. Lower panel: In parallel, the same round of PCR cycles as above was carried out
using one-half volume of the cDNA product from SIVFIV CA-p1-NC(1–9) virions (lanes 2, 4, and 6) with respect to
that from wild-type virions (lanes 1, 3, and 5). (B) Parallel reactions (30 PCR cycles) for genomic RNAs
extracted from wild-type SIV (lane 1) or SIVFIV CA-p1-NC(1–9) (lane 2) virions performed without the addition of
RT (RT minus) demonstrates the absence of plasmid DNA contamination. The reaction products were
separated by agarose gel electrophoresis and visualized by ethidium bromide staining. Numbers on the left
refer to the positions of the DNA molecular weight markers (in base pairs), whereas the viral genomic RNA
region amplified by RT-PCR using the SIV-specific 59and 39primers is indicated on the right.

doi:10.1371/journal.pone.0114299.g005
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LTR form is less abundant than the 1-LTR circle [60–62], which is in agreement

with our results.

Replacement in SIV Gag of the CA N-terminal or C-terminal

domains by the equivalent regions of FIV CA

To further investigate the relationship between the SIV and FIV CA proteins, we

next asked whether either the FIV CA-NTD or the CA-CTD was capable of

functionally replacing its cognate SIV CA domain. To this end, we examined the

assembly phenotype of the chimeric proviruses SIVFIV CA(NTD) and SIVFIV CA(CTD).

293T cells were transfected in parallel with the wild-type or chimeric proviral

DNAs and the resulting cell and virions lysates were analyzed by Western blotting

with the anti-SIV MA and either the anti-SIV CA or anti-FIV CA antibodies

(Fig. 7 and Fig. 8). The steady-state expression levels and processing patterns of

both chimeric Gag polyproteins were similar to those of wild-type SIV Gag

(Fig. 7A, 8A and 8B). However, these chimeric viruses exhibited markedly

distinct assembly phenotypes: while the substitution of the FIV CA-NTD for the

equivalent region in the SIV CA was completely detrimental to virion assembly

(Fig. 7B), the FIV CA-CTD proved to be able to drive the assembly of the

chimeric SIV GagFIV CA(CTD) precursor into particles (Fig. 8C). It should be

mentioned that a chimeric SIV carrying the first 13 residues of the SIV CA joined

to amino acids 14–142 of the FIV CA-NTD exhibited the same assembly-

incompetent phenotype as the chimera SIVFIV CA(NTD) (data not shown). Of note,

the viral particles produced by SIVFIV CA(CTD) contained, besides the expected

mature chimeric SIV CAFIV CA(CTD) protein a Gag-derived processing product

that, based on its molecular mass and antibody reactivity, corresponds to the

chimeric SIV CAFIVCA(CTD)-SP1 intermediate (Fig. 8D). Similar to the case of

SIVFIV CA-p1-NC(1–9), we found that the chimeric SIVFIV CA(CTD) virions

incorporated the Env glycoprotein at levels comparable to those of wild-type

SIVSMM-PBj, but were non-infectious in the infectivity assays using the indicator

TZM-bl cells or in permissive 293T cells infected with the VSV-G-pseudotyped

chimeric virus, as judged by the absence of the viral circular DNA forms in

infected cells (data not shown).

Oligomerization ability of the C-terminal domain of the FIV CA

Our analysis of the assembly competence of the chimeric SIV Gag polyproteins

pointed to a functional plasticity character of the FIV CA-CTD since it had proven

to be the minimal FIV CA-derived region capable of replacing its SIV CA

counterpart in the context of the entire SIV Gag precursor during virus particle

assembly and maturation. To investigate this issue further, we examined whether

the FIV CA-CTD is able to oligomerize in solution by performing in vitro

assembly reactions with recombinant FIV CA-CTD similar to those that we have

described for the SIV [9] and FIV Gag polyproteins [8]. In parallel, we analyzed, as

control, the products resulting from the in vitro assembly reaction of the FIV CA
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protein. Both the FIV CA and FIV CA-CTD polypeptides were overexpressed in

Escherichia coli as N-terminally His-tagged fusion proteins and purified by affinity

chromatography. The recombinant FIV CA-CTD protein was further treated with

enterokinase as described in Materials and Methods to remove the histidine tag.

The multimerization ability of the purified FIV CA protein was determined by

analyzing the products of the in vitro assembly reactions by both sedimentation

assays [7] and native gel electrophoresis as we have previously reported [8, 9]. As

shown in Fig. 9A, analysis of the pellet and soluble fractions obtained after

centrifugation of the assembly reactions showed that a substantial proportion of

the recombinant FIV CA protein partitioned in the pellet fraction. In addition, a

sodium dodecyl sulfate (SDS)-resistant protein species that might represent FIV

CA dimers was detected in the pellet fraction (Fig. 9A). In this regard, it is

noteworthy to mention that the SIV CA protein is also capable of forming SDS-

resistant dimers [9]. When the in vitro assembly reaction of the FIV CA protein

was directly analyzed by native gel electrophoresis coupled to Western blotting

using the MAb specific for the FIV CA, a high-molecular-mass oligomer of 310–

340 kDa was detected (Fig. 9B). This protein species is compatible with the self-

Figure 6. Analysis of the replication capacity of the SIVFIV CA-p1-NC(1–9) chimera in permissive 293T cells
by detecting the nuclear circular forms of unintegrated viral DNA. (A) Left panel: Detection of late RT
products at 48 h post-infection of 293T cells with VSV-G-pseudotyped wild-type SIVSMM-PBj (lane 1), VSV-G-
pseudotyped SIVFIV CA-p1-NC(1–9) (lane 2), or env-minus SIVSMM-PBj (lane 3). Right panel: Schematic
representation of the PCR product resulting from the 1-LTR circle using the 59env- and 39 gag-specific primers
(denoted as arrows). (B) To control for the amount of total DNA in each sample, a human b-actin gene region
was amplified from an aliquot of total DNA from cells infected with VSV-G-pseudotyped wild-type SIVSMM-PBj

(lane 1), VSV-G-pseudotyped SIVFIV CA-p1-NC(1–9) (lane 2), or env-minus SIVSMM-PBj (lane 3). The PCR
amplifications were performed as explained in Materials and Methods. The reaction products were separated
by agarose gel electrophoresis and visualized by ethidium bromide staining. Numbers indicate the positions of
the DNA molecular weight markers (in kb).

doi:10.1371/journal.pone.0114299.g006
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assembly of the FIV CA into a multimeric complex. Indeed, our data are in

keeping with the results recently reported showing that the FIV CA is mainly

dimeric at high protein concentration and that it assembles into higher-order

oligomers [63].

To determine whether the CA-CTD is responsible for the ability of the FIV CA

to dimerize and thereby form high-molecular-mass complexes, we first evaluated

how the addition of SDS to the sample buffer affected the electrophoretic behavior

of the purified recombinant FIV CA-CTD polypeptide. As expected, under totally

denaturing conditions, the FIV CA-CTD migrated in SDS-polyacrylamide gels

with an apparent molecular mass of 7.4 kDa (Fig. 9C, lane 1). Interestingly, when

the SDS was omitted from the sample buffer an additional band of 16.2 kDa was

consistently detected which, due to its electrophoretic mobility, most likely

corresponds to a CA-CTD dimer (Fig. 9C, lane 2). Furthermore, analysis of the in

vitro assembly reaction of the FIV CA-CTD by native gel electrophoresis revealed

that this polypeptide self-assembles into 74.8 kDa oligomers (Fig. 9D). Similar

results were obtained when we applied other nondenaturing electrophoresis

systems such as the Blue Native [64] and Tris-His-based methods [65] (data not

shown). Collectively, these results demonstrate that the FIV CA-CTD oligomerizes

in vitro, and that the FIV CA-CTD dimers are likely to constitute the basic

assembly unit necessary for the formation of the FIV CA multimers that we detect

in the in vitro assembly reactions.

Figure 7. Effect of the replacement of the SIV CA-NTD by its FIV counterpart on Gag assembly. 293T
cells were transfected in parallel with the wild-type SIVSMM-PBj and SIVFIV CA(NTD) proviral DNAs. At 48 h post-
transfection, cell (A) and virion (B) lysates were resolved on SDS-polyacrylamide gels, transferred to
nitrocellulose membranes and detected with antibodies specific for the SIV MA and CA proteins. The relative
mobilities of the wild-type and chimeric Gag and CA proteins are shown, as well as that of the SIV MA.
Numbers refer to the positions of the molecular weight standards (in kDa).

doi:10.1371/journal.pone.0114299.g007
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Discussion

A distinctive biological feature of the retroviral Gag polyproteins is their ability to

drive virion morphogenesis. In particular, the CA domain of Gag is involved not

only in the assembly and maturation steps of the viral particles but also in the

early stages of the virus life cycle such as virion uncoating and nuclear import of

the preintegration complex [37]. Based on the accepted view that all retroviral CA

proteins are structurally organized in two different domains, we decided to

investigate the functional homology between the CA proteins of two distantly

related lentiviruses. We therefore characterized chimeric SIVs in which the gag

region coding for the CA domain was partially or fully replaced by its equivalent

FIV counterpart. Substitution of the FIV CA residues 14 to 222 alone (chimera

SIVFIV CA) or together with the adjacent p1 peptide (chimera SIVFIV CA-p1) for the

equivalent region of SIV Gag does not affect the ability of the chimeric viruses to

assemble into particles. However, maturation of both chimeric SIVFIV CA and

Figure 8. Effect on Gag assembly of the replacement of the SIV CA-CTD by its FIV counterpart. 293T
cells were transfected in parallel with the wild-type SIVSMM-PBj and SIVFIV CA(CTD) proviral DNAs. Protein blots
of cell (A and B) and virion (C and D) lysates were probed with antibodies specific for the SIV MA (A and C),
SIV CA (B and D), and FIV CA (B and D) proteins. The relative mobilities of the wild-type and chimeric Gag
and CA proteins are shown, as well as that of the SIV MA protein. Numbers refer to the positions of the
molecular weight standards (in kDa).

doi:10.1371/journal.pone.0114299.g008
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SIVFIV CA-p1 virions triggers CA instability, which may reflect that, upon

processing of the chimeric Gag, the FIV CA is unable to form a stable core lattice

structure. The strategy for the construction of these chimeric viruses was based on

the studies performed in HIV-1 which have demonstrated that proteolytic

processing at the MA-CA site of the Gag precursor induces the refolding of the

first thirteen residues in the mature CA protein into a b-hairpin structure

Figure 9. In vitro oligomerization ability of the FIV CA and FIV CA-CTD polypeptides. (A) Sedimentation
analysis of the in vitro assembly reaction for recombinant FIV CA. The purified His-FIV CA protein was
incubated under the conditions described in Materials and Methods and the assembly mixture was separated
by centrifugation into the pellet (P) and supernatant (S) fractions which were then subjected to SDS-PAGE
followed by Western blotting using an anti-FIV CA MAb. The asterisk indicates SDS-resistant CA dimers. (B)
To examine the oligomeric arrangement of the FIV CA, an aliquot of the in vitro assembly reaction for the
recombinant FIV CA protein was analyzed by native gel electrophoresis (5% non-denaturing polyacrylamide
gel) followed by Western blotting using an anti-FIV CA antibody. (C) Electrophoretic analysis of the FIV CA-
CTD polypeptide under denaturing conditions. The His-tagged FIV CA-CTD protein was purified by affinity
chromatography, digested with enterokinase, and run on an SDS-polyacrylamide gel in Laemmli loading
buffer with (lane 1) or without SDS (lane 2) followed by staining with Coomassie G-250. The asterisk denotes
dimers of the FIV CA-CTD. (D) Assembly reaction for the FIV CA-CTD polypeptide. The recombinant FIV CA-
CTD protein was incubated under the same conditions used for the FIV CA and the assembly mixture was
then analyzed by Western blotting of native gels using the anti-FIV CA MAb. The migration positions of the
molecular mass markers (in kDa) for the denaturing (A and C) and native (B and D) gel electrophoresis are
indicated on the left.

doi:10.1371/journal.pone.0114299.g009
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stabilized by a salt bridge between Pro1 and Asp51 [29, 66]. This b-hairpin

structure is essential for the generation of mature CA hexamers which in turn is

necessary for the formation of mature infectious virions [17, 67]. Of note, the

structural study of the equine infectious anemia virus CA has led to the proposal

that the function of the maturational refolding in CA is to extend a-helix H1 at

the N terminus to enhance the multimerization of the CA-NTD for assembly [68].

In this regard, in both SIVFIV CA and SIVFIV CA-p1 chimeras the N-terminal 13

residues of the SIV CA, which share 54% similarity with the equivalent region in

the FIV CA, were maintained and joined to the downstream sequences coding for

the FIV CA residues 14–222 so as not to affect the formation of a salt bridge

between SIV CA Pro1 and FIV CA Asp50 during maturation of the chimeric SIV

Gag polyproteins. It should be mentioned that the Asp residue predicted to be

involved in the salt bridge with Pro1 lies at position 50 in both SIV and FIV CA

proteins. Therefore, the CA instability observed for these chimeric SIV Gag

particles is unlikely to result from an impairment in the formation of the Pro1-

Asp50 salt bridge. By contrast, the SIVFIV CA-p1-NC(1–9) and SIVFIV CA(CTD) proviral

constructs produced virions exhibiting an intact and stable mature CA protein.

We demonstrate here that both the SIVFIV CA-p1-NC(1–9) and the SIVFIV CA(CTD)

chimeras are able to assemble into virions that incorporate the Env glycoprotein,

package wild-type levels of the viral genomic RNA and contain a functional RT.

However, these chimeric viruses are non-infectious. When the VSV-G-

pseudotyped chimeric viruses were used to infect permissive cells no evidence of

the nuclear viral circular DNA forms, which are indicative of productive infection,

was obtained. Therefore, it is likely that these assembly-competent chimeric

viruses are non-infectious due to a defect at a post-entry step, such as uncoating of

the viral core, reverse transcription, or nuclear import of the preintegration

complex. Moreover, it has been shown that although only about 50% of the total

HIV-1 mature CA protein assembles into the viral core [69, 70], the presence of

small amounts of Gag processing intermediates such as CA-SP1 exert a dominant-

negative effect on virion maturation and infectivity [71–73]. Of note, the murine

leukemia virus MA-CA intermediate also acts as a strong trans-dominant

inhibitor of virus maturation and infectivity [74]. Therefore, given that the SIVFIV

CA-p1-NC(1–9) and the SIVFIV CA(CTD) virions exhibit, in addition to a stable mature

CA protein, the Gag processing intermediates CA-p1-NC and CA-SP1,

respectively, it could be speculated that these virion-associated Gag subproducts

are responsible for the non-infectious phenotype of these chimeras. In this regard,

similar defective phenotypes have been observed for some HIV-1 CA mutants

[17, 75]. Our results together with those in HIV-1 highlight the relevance of the

CA protein in organizing the structure for viral replication that ensures that the

disassembly/uncoating and reverse transcription steps proceed in an ordered and

synchronized manner upon viral entry.

Of note, while the FIV CA-CTD is able to provide a protein-protein interface

that promotes the assembly of the chimeric SIV GagFIV CA(CTD) polyprotein, the

FIV CA-NTD proved to be functionally incompatible with the rest of the SIV Gag

sequences and cannot serve as an assembly platform for the chimeric SIV GagFIV
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CA(NTD). The difference in the assembly behavior of these chimeric viruses may be

attributed in part to the fact that the CA-CTDs of SIV and FIV share higher

sequence homology (43.6% sequence identity; 65.4% sequence similarity) than

their respective CA-NTDs (23.6% sequence identity; 45.1% sequence similarity).

Moreover, based on the study by Bharat et al. on retroviral particles [21], the

assembly-defective phenotype of SIVFIV CA(NTD) may be explained by the inability

of the FIV CA-NTD to establish the specific intermolecular CA-NTD-CA-NTD

interactions required for the formation of the immature chimeric SIV Gag lattice.

Furthermore, our results suggest that the defect imposed by the FIV CA-NTD

cannot be compensated by the SIV Gag sequences present in the chimera which

provide a potentially functional CTD-CTD homodimer interface together with

the adjacent SP1 linker region. In short, our data indicate that the FIV CA-NTD

cannot functionally replace its SIV counterpart.

It should also be taken into account that the SIV and FIV Gag domains display

some differences with respect to their involvement in the protein-protein

interactions that drive Gag multimerization. Indeed, we have previously shown

that while the SIV MA-CA subdomain and the mature MA and NC proteins

interact with SIV Gag [9], their FIV counterparts are unable to associate with

wild-type FIV Gag [57]. In addition, it has been reported that, outside the CA

region, the different structures that the Gag polyprotein precursor adopts reflect

the diversity of the Retroviridae family [19].

The phenotypic differences that we found between the chimeric SIVFIV CA(NTD)

and SIVFIV CA(CTD) also appear to point to a functional plasticity of the CA-CTD

as opposed to the requirement for a quite invariant conformation for the CA-

NTD. Interestingly, and in support of this concept, the characterization of a

random library of HIV-1 CA mutants showed that the sequences corresponding to

the CA-NTD helices are particularly detrimental to virus viability [76].

Intriguingly, our results showing that the chimeric SIV carrying the heterologous

FIV CA-NTD is assembly-incompetent contrast with those of a previous study in

which it was concluded that the HIV-1 CA-NTD is nonessential for immature

particle assembly [77]. Nevertheless, it can be speculated that in that particular

HIV-1 Gag mutant other domains in Gag might compensate for the absence of the

CA-NTD region and that removal of the entire CA-NTD might be less detrimental

to Gag assembly than the presence of a non-functional CA-NTD.

Furthermore, we show here that the FIV CA protein self-assembles in vitro,

which is in line with the recent report by Serrière et al. [63] showing that this

protein forms spherical structures. Interestingly, we also demonstrate that the FIV

CA-CTD dimerizes in solution and forms high-molecular-weight oligomers. Our

data on the intrinsic oligomerization ability of the FIV CA-CTD together with our

finding that the chimeric SIVFIV CA(CTD) virus, which only contains the CTD of

the FIV CA domain, is assembly-competent provide biological and biochemical

evidences for the functional plasticity character of the CA-CTD. This concept is

further supported by recent structural studies on the HIV-1 CA protein which

have demonstrated the presence of several conformers for the CA-CTD dimer and

the dimeric CA protein [33, 78].
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In summary, the present work provides novel data about the functional

homology between the CA domains of primate and nonprimate lentiviral Gag

polyproteins and contribute to our understanding of how the requirements for

the assembly of infectious virions have evolved among retroviruses.

Materials and Methods

Chimeric proviral DNAs constructs

All the chimeras were generated by replacing different sequences within the CA-

SP1-NC-coding region of the SIVSMM-PBj proviral DNA [79] with the equivalent

sequences of the molecular clone FIV-14 of the Petaluma isolate [80]. The SIV and

FIV CA-coding regions were joined maintaining the distance between residues

Pro1 and Asp50 (Asp51 in HIV-1 CA) which have been shown to form a salt

bridge in the mature HIV-1 CA protein [67]. Chimeric proviral DNAs were

generated by a PCR-based strategy using the Elongase enzyme high-fidelity PCR

mix (Life Technologies-Invitrogen). To generate the SIVFIV CA chimera, the

amplified DNA fragment corresponding to SIV nucleotides (nt) 601–1272 was

ligated to the DNA coding for the FIV CA residues 14 to 222 (nt 1072–1698 of the

FIV-14 genome). The resulting fragment was then joined to the SIV region

comprising the last six amino acids of the SIV CA, SP1, NC, SP2 and part of the

p6 domain in Gag (nt 1905–2190 of SIVSMM-PBj). In the case of the SIVFIV CA-p1

chimeric fragment, the FIV sequences coding for the FIV CA residues 14–222 and

the spacer peptide p1 (nt 1072–1725) were joined to Gly11 of the SP1 sequence in

gag (nt 1954 of SIVSMM-PBj). For the construction of the chimeric proviral DNA

SIVFIV CA(NTD), the SIV region corresponding to the long terminal repeat (LTR)

and MA (nt 601–1233) was linked to the sequences encoding the FIV CA residues

Pro1-Ala142 (FIV-14 nt 1033–1458). The ligation product was reamplified by

PCR and then joined to the SIV sequences coding for the SIV CA-CTD (Leu150 to

Met230) together with the downstream gag region (nt 1681–2190 of SIVSMM-PBj).

The SIVFIV CA-p1-NC(1–9) chimera was constructed by sequentially ligating the

following PCR-amplified DNA fragments: the 633-bp DNA containing the LTR

and MA-coding region of SIVSMM-PBj mentioned above, a fragment coding for the

entire FIV CA, the spacer peptide p1 and the first 9 amino acids of NC (FIV-14 nt

1033–1752), and an SIV-derived DNA fragment encoding residues 11 to 52 of the

NC domain and the downstream gag sequences (nt 2005–2190). The SIVFIV

CA(CTD) chimera, in which the FIV CA-CTD was substituted for that of SIV in the

context of the SIVSMM-PBj genome, was generated by first ligating the SIV

sequences corresponding to the LTR, the MA, and the first 151 residues of CA (nt

601–1686) to the FIV region coding for amino acids 145–222 of CA (FIV-14 nt

1465–1698). The resulting DNA fragment was reamplified by PCR and then

linked to the DNA fragment comprising the last 6 residues of the SIV CA and the

downstream gag sequences (nt 1906–2190). All the chimeric fragments were

digested with DraIII-Bsu36I and substituted for the corresponding wild-type

region in the SIVSMM-PBj proviral DNA genome. The chimeric proviral constructs
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were first screened by restriction mapping and then by DNA sequencing to

confirm that the DNA fragments were joined in the correct reading frame.

Cell cultures and transfections

Human 293T and TZM-bl cells [81] (obtained from the NIH AIDS Research and

Reference Reagent Program) were grown in Dulbecco’s modified Eagle’s medium

supplemented with 10% fetal bovine serum (GIBCO) following standard

protocols. Transfection of 293T cells was performed using Lipofectamine 2000

(Life Technologies-Invitrogen) essentially as previously described [79] and

harvested 48 h post-transfection. Stocks of VSV-G-pseudotyped viruses were

prepared by cotransfecting 293T cells with each of the proviral DNAs and the

pcDNA plasmid coding for the VSV-G protein at a 1:1 mass ratio as we have

previously reported [82]. At 48 h post-transfection, the culture supernatants were

filtered (0.45-mm-pore-size membranes), the viral stocks were normalized for RT

activity, and used in the infectivity assays as explained below.

Viral protein analysis by Western blot

Transfected 293T cells were washed twice with ice-cold phosphate-buffered saline

(PBS) and lysed at 4 C̊ in lysis buffer (50 mM Tris-HCl [pH 8.0], 150 mM NaCl,

1% Nonidet P-40, 0.1% SDS, 0.5% sodium deoxycholate, 1 mM phenylmethyl-

sulfonyl fluoride, and 10 mg/ml aprotinin). The culture supernatants from the

transfected cells were filtered through 0.45-mm-pore-size syringe filters and virions

were pelleted from the clarified supernatants by ultracentrifugation (100,000 xg,

90 min, 4 C̊) through a 20% (w/v in PBS) sucrose cushion as we have previously

reported [83]. Cell- and virion-associated proteins were resolved on SDS–12.5%

or 215% polyacrylamide gels, blotted onto nitrocellulose membranes, and

analyzed by Western blotting coupled with an enhanced chemiluminescence assay

(SuperSignal West Pico Chemiluminescent Substrate, Thermo Scientific) as

previously described [9]. FIV Gag-related proteins were detected by using the

anti-FIV CA MAb PAK3-2C1 obtained through the NIH AIDS Research and

Reference Reagent Program. The MAb KK60 used to detect the SIV Gag and CA

proteins as well as the anti-SIV gp41 MAb KK41 were obtained from J. Stott and

K. Kent through the MRC AIDS Directed Program. For the detection of the SIV

MA protein, blots were probed with a mouse anti-SIV MA polyclonal serum

obtained in our laboratory [11]. Horseradish peroxidase (HRP)-conjugated anti-

mouse immunoglobulin (Promega) was used as secondary antibody.

RT activity assay

Quantitation of virion-associated RT in cell-free culture supernatants from

transfected cells was performed by using a commercial colorimetric RT assay

(Roche Applied Science) as we have previously described [82, 83]. Briefly, Triton

X-100-lysed virus samples were mixed with incubation buffer containing

digoxigenin-labeled nucleotides and a poly(rA).oligo(dT)15 template-primer
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hybrid and incubated for 2 h at 37 C̊. Newly synthesized DNA was detected by a

HRP-conjugated sheep immunoglobulin G fraction specific for digoxigenin and

2,29-Azino-bis(3-ethylbenzthiazoline-6-sulfonic acid) substrate. The resulting

colored reaction signal was measured on a microtiter plate (ELISA) reader at

405 nm (reference wavelength 490 nm). The absorbance of the samples was then

correlated to the calibration curve obtained with the recombinant HIV-1 RT

enzyme provided in the kit. All assays were performed in duplicate from at least

three independent experiments.

Infectivity assays using the TZM-bl indicator cells

Virus stocks obtained by transfection of 293T cells were normalized for RT

activity, and used to infect in duplicate 46104 TZM-bl cells in 24-well dishes as

previously described [79, 84]. Two days postinfection, cells were fixed with PBS

buffer containing 1% formaldehyde and 0.2% glutaraldehyde at room

temperature for 5 min and then scored for blue foci formation after staining with

5-bromo-4-chloro-3-indolyl-ß-D-galactopyranoside (X-Gal). Virus entry was

quantitated as the total number of blue cells per well by first counting the number

of blue cells in at least 20 nonoverlapping fields in each of the two wells. The

average number of blue cells per field was multiplied by the total number of fields

per well, and the result was referred to the number of blue cells obtained with

wild-type SIVSMM-PBj.

Viral genomic RNA packaging into virions

Viral genomic RNA was isolated from virions purified by ultracentrifugation of

the culture supernatants of transfected 293T cells as described above. Briefly, equal

amounts of virions (normalized to MA protein levels) were incubated with 5 U

RNase-free DNase I RQ1 (Promega) in a buffer solution containing 50 mM Tris-

HCl (pH 8.0), 10 mM MgCl2 and 1 mM CaCl2 for 1 h at 37 C̊ followed by

treatment with proteinase K (50 mg/ml; 1 h at 37 C̊) in the presence of 0.5% SDS.

After heat inactivation, the mixtures were deproteinized by two phenol:

chloroform extractions, and the RNA was then concentrated by ethanol

precipitation after adding 10 mg yeast tRNA as carrier. Duplicate samples of the

extracted viral genomic RNAs were used as template for RT-sqPCR based on the

protocol that we have previously described [8]. The RT reaction was performed

using the SuperScript II RT (Life Technologies-Invitrogen) and an antisense

oligonucleotide that hybridizes to SIVSMM-PBj nt 967–987, whereas the subsequent

PCR step (20, 25, and 30 amplification cycles of 94 C̊ for 30 sec, 56 C̊ for 30 sec,

and 72 C̊ for 60 sec) was carried out using a 59 primer that corresponds to nt 589–

611 in the SIVSMM-PBj viral genome and the 39 oligonucleotide used for the first

RT reaction step. Initial RT-PCR pilot experiments were carried out so as to

determine the number of cycles necessary to attain the exponential phase. Control

reactions without RT were systematically performed with a similar amount of the

extracted RNAs to rule out DNA contamination. The RT-PCR products were
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analyzed by electrophoresis on 2% agarose gels and quantitated by densitometry

of the ethidium bromide-stained gels [8].

Viral replication assay in 293T cells

For the analysis of virus replication in non-restrictive cells, 293T cells were

infected with volume-adjusted supernatants containing equivalent RT activity and

SIV MA protein levels of VSV-G-pseudotyped viruses (previously treated with

DNase I at 25 C̊ for 20 min to remove potentially contaminating plasmid DNA).

After an incubation period of 2–3 h at 37 C̊ in 5% CO2 in the presence of 20 mg/

ml DEAE-dextran, infected 293T cells were pelleted, washed twice with PBS to

remove residual virus and resuspended in fresh medium. As control, 293T cells

were incubated in parallel with an env-minus SIVSMM-PBj virus stock. Forty-eight

hours post-infection, cells were split into 2–36106- aliquots, and the cell pellets

were kept frozen at 280 C̊ until used for the isolation of either total cellular DNA

or low-molecular-weight DNA as explained in the following section.

DNA isolation and detection of viral replication intermediates (1-

LTR circular form)

Total cellular DNA was purified using the illustra blood genomicPrep Mini Spin

Kit (GE Life Sciences) as recommended by the manufacturer. The amplification

reactions specific for the b-actin gene, included as an internal control for DNA

quantitation and PCR efficiency, were carried out using 300 ng genomic DNA in

50-ml reactions containing 16Q5 Reaction Buffer (New England Biolabs),

200 mM dNTPs, 0.5 mM each primer (59-b-actin, 59-CATGTGCAAGGC-

CGGCTTCGC-39 and 39-b-actin, 59-CCTTAATGTCACGCACGATTTCC-39 that

target the first and third exon of the human b-actin gene, respectively), and 1 U

Q5 High-Fidelity DNA Polymerase (New England Biolabs). After an initial

incubation step at 95 C̊ for 5 min, 25 amplification cycles were performed

consisting of 20 s at 95 C̊, 30 s at 55 C̊ and 25 s at 72 C̊ followed by a final

elongation step at 72 C̊ for 2 min. The procedure for the detection of circular

forms of unintegrated viral DNA was based on the strategy described by Cara et al.

[61]. Low-molecular-weight DNA was isolated from the cell pellets employing the

QIAprep Spin miniprep Kit (QIAGEN) and then used as template in

amplification reactions. One-LTR circles were detected using the gag-reverse

primer (59-CTCCCACTCTCCTACTCTTTTCTC-39; nt 828-805 of SIVSMM-PBj)

and the env-forward primer (59-TGGCTATTGAGGAACTGCC-39; nt 8763–8781

of SIVSMM-PBj). PCR was carried out with the Q5 DNA Polymerase as described

above using 5 ml of the isolated low-molecular-weight DNA as template and the

following PCR parameters: 35 cycles of 95 C̊ for 20 s, 55 C̊ for 30 s, 72 C̊ for 60 s

with a final elongation step of 2 min at 72 C̊. The PCR products were then

analyzed by agarose gel electrophoresis and visualized by ethidium bromide

staining. In the case of the amplification reactions for the 1-LTR circular forms,
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the PCR products were first mapped by restriction endonuclease digestion, then

cloned into the EcoRV site of pcDNA3.1, and sequenced.

Cloning, expression and purification of recombinant FIV CA-

derived proteins

The regions coding for the FIV CA (nt 1033–1698 of FIV-14) and the FIV CA-

CTD (amino acids Ala137 to Leu222; nt 1441–1698 of FIV-14) were PCR

amplified and cloned into the SalI-NotI or NcoI-NotI sites of pET-30b(+),

respectively, so as to express the corresponding polypeptides with an N-terminal

six-histidine tag. Both polypeptides were produced in Escherichia coli strain

BL21(DE3) by induction with 1 mM isopropyl b-D-1-thiogalactopyranoside.

After 4 h-incubation at 37 C̊, the bacteria were pelleted, lysed in ice-cold

phosphate buffer (100 mM sodium phosphate [pH 8.0], 300 mM NaCl, 1 mM

imidazole and protease inhibitor cocktail [Roche Applied Science]), and

incubated with 1 mg/ml lysozyme for 30 min on ice. After treatment with DNase I

(5 mg/ml), the bacterial lysates were sonicated, and the His-tagged polypeptides

were purified from the clarified protein extracts by affinity chromatography using

a nickel-nitrilotriacetic acid resin (Ni-NTA kit; QIAGEN) as we have previously

described [8, 9, 11]. Removal of the affinity tag from the His-tagged FIV CA-CTD

was performed by incubating the recombinant protein at 23 C̊ for 16 h with

0.006% (w/w) enterokinase (New England Biolabs), followed by removal of the

protease by immunoaffinity (Enterokinase removal kit, SIGMA-ALDRICH) and a

second round of nickel chelate chromatography. The protein preparations were

finally dialyzed against 50 mM sodium phosphate (pH 7.2). A purity of more

than 90% of all protein preparations was confirmed by Coomassie Blue staining of

polyacrylamide gels. Protein concentrations were estimated by comparison to

known amounts of standard bovine serum albumin on SDS-polyacrylamide gels

stained with Coomassie G-250 SimplyBlue Safe Stain (Invitrogen-Life

Technologies). Quantitation of the amount of protein on gels was performed by

densitometry as we have previously described [8, 9, 11].

In vitro assembly reactions

In vitro assembly reactions were performed essentially as we have described

previously [8, 9]. The purified FIV CA and FIV CA-CTD proteins (1 mg/ml) were

incubated in a buffer solution containing 50 mM Tris-HCl (pH 8.0), 1 M NaCl,

5 mM dithiothreitol during 16 h at 8 C̊. The assembly reactions were either

directly loaded on nondenaturing polyacrylamide gels as described below or

analyzed by sedimentation assays [7–9]. In the latter case, the assembly reactions

were centrifuged for 1 h in an Eppendorf microcentrifuge at 16,000 xg at 4 C̊ to

separate the particulate assembled structures from the unassembled molecules.

Supernatant and pellet fractions were resolved by SDS-polyacrylamide gel

electrophoresis (SDS-PAGE) and proteins were visualized by immunoblotting

with the anti-FIV CA MAb, or by Coomassie blue staining.
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Native electrophoresis analyses of recombinant FIV CA-derived

proteins

The oligomeric state of the FIV CA and FIV CA-CTD polypeptides was examined

by electrophoresis on 5% nondenaturing Laemmli polyacrylamide gels as we have

recently described [9] followed by Coomassie blue staining or Western blotting

using the MAb specific for the FIV CA. The molecular masses of the multimeric

complexes formed by the FIV CA and FIV CA-CTD were estimated based on the

relative mobilities of the molecular weight standards for native electrophoresis

(High Molecular Weight Calibration Kit for Native Electrophoresis, GE Life

Sciences).
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20. Briggs JAG, Kräusslich HG (2011) The molecular architecture of HIV. J Mol Biol 410: 491–500.

21. Bharat TA, Davey NE, Ulbrich P, Riches JD, de Marco A, et al. (2012) Structure of the immature
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