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Abstract

Genotype 2a JFH1 virus has substantially contributed to the progress of HCV

biology by allowing entire viral life cycle of HCV in cell culture. Using this genotype

2a virus, casein kinase II (CKII) was previously identified as a crucial host factor in

virus assembly by phosphorylating NS5A. Since most of the prior studies employed

genotype 2a JFH1 or JFH1-based intragenotypic chimera, we used genotype 1a

H77S to study virus assembly. CKII inhibition by chemical inhibitors enhanced

H77S virus production in contrast to that of JFH1 virus, but genetic inhibition of CKII

by siRNA did not change H77S virus titer significantly. The different outcomes from

these two approaches of CKII inhibition suggested that nonspecific target kinase of

CKII inhibitors plays a role in increasing H77S virus production and both viral and

host factors were investigated in this study. Our results emphasize substantial

differences among the HCV genotypes that should be considered in both basic

research and clinical practices.

Introduction

Hepatitis C virus (HCV) is a causative pathogen of chronic hepatitis C, cirrhosis,

and hepatocellular carcinoma and approximately 170 million people are infected

worldwide with this virus (for a review, see [1]). Although there has been a

substantial progress in the development of interferon-free, all-oral antiviral

regimens, still many people are suffering from these deadly viral diseases.

Specifically, infection with genotype 1a HCV, previous null response to pegylated

interferon-a/ribavirin therapy, and cirrhosis are difficult cases to cure [2].
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HCV belongs to the Hepacivirus genus within the Flaviviridae family and has a

positive-sense, single-strand RNA (9.6 kb) as its genome. A single polyprotein

translated from this viral RNA is processed co- and post-translationally by host

and viral proteases to generate 10 viral proteins. Core, E1, and E2 proteins located

at the N-terminus of the polyprotein are structural proteins and components of

virus particles. The other proteins (p7, NS2, NS3, NS4A, NS4B, NS5A, and NS5B)

located at the C-terminus of the polyprotein are nonstructural proteins and

participate in diverse steps of viral life cycle including genome replication, particle

assembly, etc. Of these, the proteins from NS3 to NS5B are sufficient for viral

RNA replication as members of replication complex [3] and in this complex,

NS5B functions as RNA-dependent RNA polymerase (RdRp). Since JFH1 and

H77S were discovered as cell culture infectious HCV clones [4, 5], studying all

steps of HCV viral life cycle has become possible and novel functions of

nonstructural proteins in HCV life cycle other than viral RNA replication have

been intensively studied (for a recent review, see [6]).

Post-translational modification such as phosphorylation plays a crucial role in

many steps of viral life cycle including HCV. Specifically, phosphorylation of

NS5A has been considered as a molecular switch determining the role of NS5A

between viral RNA replication and particle assembly [7, 8], and the status of

phosphorylation is displayed as differentially phosphorylated NS5A species

(56kDa basal phosphorylation and 58kDa hyper-phosphorylation). Recently,

some specific serine and threonine residues of NS5A were identified as

phosphorylated amino acids by mass spectrometry [9, 10]. Also, Tellinghuisen et

al. [11] uncovered a novel role of casein kinase II (CKII) in HCV infectious

particle assembly, which phosphorylates a single serine residue located at the C-

terminus of NS5A domain III although direct biochemical evidence of such

phosphorylation has not been provided yet. In their study, treatment of HCV

RNA-transfected cells with 2-dimethylamino-4,5,6,7-tetrabromo-1H-benzimida-

zole (DMAT), a CKII inhibitor, reduced virus production without affecting viral

RNA replication and the similar result was reproduced with knockdown of CKII

by siRNA [11]. Thus, CKII inhibitor could be considered as another host-

targeting antiviral therapeutic option, specifically inhibiting infectious particle

assembly of HCV. In fact, CX-4945, a selective CKII inhibitor, has entered human

clinical trials although it was for its anti-tumor activity not for antiviral activity

[12].

There are 7 major genotypes of HCV [13] and the pairwise differences of

nucleotide sequences between the genotypes are on the order of 31 to 33% due to

the error-prone NS5B RNA-dependent RNA polymerase. Differences of sequences

among the genotypes are also reflected in the response to interferon-a-based

antiviral treatment. For example, the treatment with pegylated interferon-a and

ribavirin achieved 76–82% of sustained virologic response (SVR) in genotype 2

and 3 patients while it achieved only 42–46% of SVR in genotype 1 patients

[14, 15]. Even with several direct-acting antivirals (DAAs), the treatment response

is dependent on the genotypes of HCV [2], thus the identification of genotype is
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still very important in selecting treatment options and predicting treatment

outcomes of HCV patients.

In this study, we tested whether treatment of CKII inhibitor could reduce virus

production of genotype 1a HCV as efficiently as genotype 2a virus. Although

many significant findings were made possible due to the development of genotype

2a JFH1 infectious clone [4], direct application of such findings in clinical trials

should await further validation especially in genotype 1a cell culture system

considering the aforementioned significant differences among the HCV

genotypes.

Materials and Methods

Plasmids

Most of the plasmids in this study have already been described [16, 17] except for

JFH1/H3 (1a/2a intergenotypic chimera containing NS3 of H77S.3 in JFH1

background), JFH1/H4AB (1a/2a intergenotypic chimera containing NS4AB of

H77S.3 in JFH1 background), H77S.3/J5B (1a/2a intergenotypic chimera

containing NS5B of JFH1 in H77S.3 background), and JFH1/H5B (1a/2a

intergenotypic chimera containing NS5B of H77S.3 in JFH1 background). JFH1/

H3 and JFH1/H4AB were constructed by ligating DNA fragments generated from

EcoRI/NotI digestion of pJFH1/H3/GLuc2A and pJFH1/H4AB/GLuc2A [18] in

the vector plasmid pJFH1. NS5B swap mutants, H77S.3/J5B and JFH1/H5B were

constructed by ligating DNA fragments generated from NsiI/XbaI digestion of

pH77S.3/J5B/GLuc2A and pHJ3-5/H5B/GLuc2A [18] in the vector plasmids

pH77S.3 and pJFH1, respectively. Mutated sequences were verified by restriction

analysis and DNA sequencing analysis.

Cells

Huh7.5 cells [19] were used for all the experiments in this study. The cells were

maintained in DMEM high glucose medium containing 10% fetal bovine serum

and 1X penicillin/streptomycin at 37 C̊ in a 5% CO2 environment.

RNA transcription and transfection

Plasmid DNAs were linearized by XbaI restriction digestion before in-vitro

transcription reaction. RNAs were then synthesized from the linearized DNAs

using MEGAscript kit (Ambion). The transcribed RNAs were confirmed by

spectrophotometer and electrophoresis. One day before transfection, Huh7.5 cells

were seeded in 6-well culture dishes (66105 cells/well). In-vitro transcribed RNAs

were transfected by TransIT-mRNA transfection kit (Mirus Bio), and 6 hours

after transfection, the transfected cells were split by a 1:2 ratio.

Regulation of Genotype 1a HCV Production by CKII Inhibitor

PLOS ONE | DOI:10.1371/journal.pone.0113938 December 2, 2014 3 / 16



DNA transfection

Plasmid DNAs were transfected by TransIT-2020 reagent (Mirus Bio) as

recommended by the manufacturer’s instruction.

siRNA transfection

siRNAs for CKIIa (#1337) and CKIIa9 (#183) were purchased from Ambion.

These siRNAs were transfected by TransIT-TKO transfection reagent (Mirus Bio)

as recommended by the manufacturer’s instruction. The final concentration of

siRNA was 50nM. For transfection of both HCV RNA and siRNA in the same

cells, HCV RNA was transfected first, and 6 hours later, the cells were washed by

PBS and transfected with siRNA.

Virus titration

Huh7.5 cells were seeded a day before infection in 48-well culture dishes (16105

cells/well). Culture supernatant collected from the RNA-transfected cells at day 3

after transfection was added to the naïve cells for infection. Three days after

infection, the cells were fixed and HCV core protein was labeled as described [20].

The number of infected foci was counted manually under the fluorescence

microscope.

GLuc reporter assay

Culture supernatant from the Gaussia lucifease sequence-containing RNA-

transfected cells was collected daily to measure secreted GLuc activity using

BioLux Gaussia Luciferase Assay Kit (New England BioLabs) as was described

[21].

CKII inhibitor treatment

Six hours after HCV RNA transfection, the transfected cells were split by a 1:2

ratio, and refed with fresh medium containing 2-dimethylamino-4,5,6,7-

tetrabromo-1H-benzimidazole (DMAT) or (E)-3-(2,3,4,5-tetrabromopheny-

l)acrylic acid (TBCA), specific CKII inhibitors (Calbiochem). The cells were

incubated for 48 hours prior to being refed with fresh medium (without

inhibitors). Culture supernatant fluids were collected one day later and used for

the titration of infectious viruses. Cytotoxic effects of DMAT were assessed using

the WST-1 Cellular Proliferation Assay (Roche Applied Sciences) as recom-

mended by the manufacturer.

Immunoblot

A standard immunoblot procedure was employed [22]. Protein samples

transferred to PVDF membranes were probed with the following primary

antibodies: anti-core (1:2,000, Affinity BioReagents, MA1-080), 9E10 (kindly
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provided by Dr. Charles Rice and Dr. Tim Tellinghuisen), anti-NS3 (1:1,000,

Virogen, 217-A), anti-CKIIa (1:2,500, Bethyl Laboratories, A300-197A), anti-

CKIIa9 (1:2,500, Bethyl Laboratories, A300-199A), and anti-GAPDH (1:500,000,

Ambion, AM4300) antibodies. Proteins were visualized with IRDye 800CW Goat

anti-Mouse IgG or IRDye 680 Goat anti-Rabbit IgG, and images collected on an

Odyssey infrared imaging system (LI-COR Biosciences).

Results

DMAT increases virus production of genotype 1a HCV

DMAT, a CKII inhibitor, is known to decrease J6/JFH1 virus production in a

dose-responsive manner [11]. We confirmed the similar result with JFH1 virus (

Fig. 1A) and its NS5A domain III chimera (JFH1/H5Ad3) in our prior study [17].

Since these results were obtained only from genotype 2a viruses, we further tested

DMAT in other HCV viruses to see whether this decrease of virus production is

common to other genotypes and chimeras. Huh7.5 cells were transfected by HCV

RNA and 6 hours after transfection, DMAT was added to the culture medium and

maintained for 48 hours. Three days after transfection, cell lysates and culture

supernatants were collected for immunoblot and virus titration, respectively.

Surprisingly, the same DMAT treatment rather increased virus production of

genotype 1a H77S virus in a dose-responsive manner (Fig. 1B) and a similar result

was also observed for its NS5A domain III chimera (H77S/J5Ad3) (see Fig. 1C for

the structure of the chimera). Identity of NS5A domain III does not appear to be a

critical factor for this outcome (compare H77S and H77S/J5Ad3), as this has

already been demonstrated when JFH1 and JFH1/H5Ad3 were compared [17].

Rather, sequence(s) outside of NS5A domain III seems to be a main factor

affecting this DMAT treatment.

Increase of virus production was accompanied by increase in abundance of viral

proteins. Since NS2 and NS5A are the known substrates of CKII phosphorylation

[23, 24], we probed these proteins by immunoblot (Fig. 1D). We found that

abundance of both NS2 and NS5A increased when the concentration of DMAT

increased. For NS2 of genotype 1a virus, it is already known that NS2 protein

becomes unstable upon phosphorylation by CKII [23], however NS2 of genotype

2a virus is relatively stable upon DMAT treatment [17]. Thus, increase of NS2

protein abundance was expected by inhibition of CKII in our experiment. The

result from NS5A was contrary to our expectation. Our prior study [17] with Ser-

to-Ala and Ser-to-Asp substitution mutants of NS5A domain III of H77S.3 virus

(i.e., H77S.3/4SA and H77S.3/4SD) suggested that dephosphorylated form of

NS5A could be unstable and do not produce infectious viruses as efficiently as

phosphorylated form of NS5A. Thus, our expectation was a reduced abundance of

NS5A protein by DMAT treatment. However, we observed an increased

abundance of NS5A protein. We also probed the lysates with anti-NS3 antibody as

a control since this protein would not be affected by CKII inhibition. Interestingly,
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Figure 1. Enhanced H77S virus production by DMAT, a CKII inhibitor. (A) Following transfection of the JFH1 RNA, cells were treated with the indicated
concentration of DMAT for 48 hours. The media was then replaced with fresh medium (no drug), followed 24 hours later by harvesting of supernatant fluids
for virus titration. Means ¡ S.E. were calculated from duplicate experiments. (B) The effect of DMAT treatment on the production of H77S and H77S/J5Ad3
infectious particles. (C) Schematic diagram of the virus for this study. (D) Immunoblots for NS5A, NS2, NS3, and GAPDH from the cell lysates prepared
72 hours after transfection. (E) Cytotoxicity was tested by WST-1 assay. Means ¡ S.E. were calculated from triplicate experiments.

doi:10.1371/journal.pone.0113938.g001
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abundance of NS3 also slightly increased compared to the GAPDH loading

control (Fig. 1D).

The effect of DMAT on cytotoxicity and cell proliferation in Huh7.5 cells was

also assessed by WST-1 assay (Fig. 1E). Despite some toxicity in higher

concentrations of DMAT (.1 mM) in Huh7.5 cells, we did not observe any

apparent difference in cell proliferation between H77S and JFH1 RNA-transfected

cells in the presence of CKII inhibitor. Importantly, although the toxicity of

DMAT slightly increased when the cells were treated with the inhibitor, H77S

virus production rather increased, which is opposite to the well-known negative

effect of DMAT on genotype 2a JFH1 virus production.

Since H77S.3 has a better dynamic range of viral titers, which produces

approximately 10-fold more infectious particles compared to H77S [21], we

repeated the same experiment with this construct and the result was similar to

that of H77S virus both in virus production and protein abundances (Fig. 2AB).

We also assessed viral RNA replication by measuring Gaussia luciferase activity

secreted by H77S.3 RNA-transfected cells, which contains Gaussia luciferase

sequence between p7 and NS2 (Fig. 2C). Over the 72 hour time-course

experiment, no significant difference in GLuc reporter expression was observed

among the differentially treated cells. Thus, the enhanced H77S virus production

by DMAT treatment appears to be dependent on post-RNA replication step as was

the case for J6/JFH1 virus [11] although the effect on virus production was the

opposite.

NS2 and NS5A domain III of genotype 1a HCV

We further tested 1a/2a intergenotypic chimera HJ3-5 [16] virus in the presence

of DMAT since this virus contains NS2 from H77S and NS5A from JFH1 virus (

Fig. 3A, upper panel). The virus titers decreased when the concentration of

DMAT increased (Fig. 3A, lower panel). Immunoblot of the lysates from the

transfected cells showed reduced abundance of HCV proteins including NS2,

NS5A, and NS3 (Fig. 3B). Overall, the results from HJ3-5 virus were similar to

those from JFH1 virus. This outcome is rather surprising because the result is very

opposite to that for H77S/J5Ad3 (see Fig. 1B, right panel). Both HJ3-5 and H77S/

J5Ad3 contain NS2 from H77S and NS5A domain III from JFH1 (see Fig. 1C and

Fig. 3A, upper panel). If there are only two viral factors affected by CKII

phosphorylation (i.e., NS2 and NS5A domain III), these two viruses should have

the same phenotype upon DMAT treatment, however they did not. Thus, this

result suggests that there could be other factor(s) in HCV that is affected by

DMAT.

Effect of DMAT on Ser-to-Ala and Ser-to-Asp substitution mutants

of NS5A domain III

We also tested our Ser-to-Ala (H77S.3/4SA) and Ser-to-Asp (H77S.3/4SD)

substitution mutants of NS5A domain III (Fig. 4A) in the presence of DMAT
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since these mutated sequences would not be sensitive to the compound. In our

prior investigation, we found that 4SA mutant does not produce infectious

particles despite comparable RNA replication [17]. However, 4SD mutant

partially restored production of infectious viruses. Surprisingly, H77S.3/4SA

mutant restored production of infectious particles when the concentration of

DMAT increased (Fig.4B, left panel) and it was accompanied by increase in the

abundance of NS2 and NS3 proteins. However, NS5A protein could not be still

detected by immunoblot (Fig. 4C, left panel). H77S.3/4SD mutant also produced

more infectious particles when the concentration of DMAT increased (Fig. 4B,

right panel) and the abundance of NS2, NS5A, and NS3 proteins increased

concomitantly (Fig. 4C, right panel). The results from these two mutant HCV

RNAs suggest that increased virus production of genotype 1a HCV by DMAT is

mediated by sequence(s) outside of NS5A domain III sequence. Since the same

NS2 of H77S.3 was used for both H77S.3/4SA and H77S.3/4SD viruses, again

Figure 2. Effect of DMAT on the production of H77S.3 virus. (A) Following transfection of the HCV RNA, cells were treated with the indicated
concentration of DMAT for 48 hours. The media was then replaced with fresh medium (no drug), followed 24 hours later by harvesting of supernatant fluids
for virus titration. Means ¡ S.E. were calculated from duplicate experiments. (B) Immunoblots for NS5A, NS2, NS3, and GAPDH from the cell lysates
prepared 72 hours after transfection. (C) Effect of different DMATconcentrations on RNA replication measured by GLuc activity secreted from H77S.3 RNA-
transfected cells, which contains Gaussia luciferase-encoding sequence between p7 and NS2. Means ¡ S.D. were normalized to the GLuc activity at
8 hours after transfection and calculated from quadruplicate GLuc assays.

doi:10.1371/journal.pone.0113938.g002
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there seems to be other target(s) of DMAT in HCV in addition to NS2 and NS5A

domain III.

The effect of DMAT on the abundance of NS3 of H77S.3/4SA mutant was

specifically surprising (Fig. 4C, left panel) since such a substantial increase has

never been found in any other mutant constructs. We tested ectopic expression of

NS3 in the presence of DMAT by transfecting NS3 and NS3/4A expression

plasmids. However, the abundance of NS3 protein decreased when the

concentration of DMAT increased (data not shown), thus excluding any

stabilizing effect of NS3 protein in the presence of DMAT.

Knockdown of CKII slightly reduces genotype 1a HCV production

All of our experimental data regarding CKII inhibition was so far dependent on

chemical inhibitor, DMAT. Since there are numerous examples of nonspecific

target effects of chemical inhibitors [25, 26], we tried a genetic inhibition of CKII

by siRNA knockdown. Following the method of Tellinghuisen et al. [11], we

silenced two catalytic subunits of CKII (a and a9) both individually and

simultaneously by siRNAs. In order to test this silencing effect on HCV

production, Huh7.5 cells were transfected first with HCV RNA and 6 hours later,

the same cells were transfected by siRNA for CKII a and a9. Three days after

transfection of both HCV RNA and siRNA, cell lysates and culture supernatants

were collected for immunoblot and virus titration, respectively. Fig. 5A shows

immunoblot results for CKIIa and CKIIa9. Knockdown of CKIIa9 was better

accomplished than that of CKIIa although CKIIa was also reduced approximately

by 20,30% (Odyssey quantitation, data not shown). Accordingly, the effect on

virus titration was more substantial with CKIIa9 knockdown in both H77S.3 and

JFH1 viruses (Fig. 5B). Interestingly, knockdown of CKII reduced H77S.3 virus

Figure 3. Effect of DMAT on the production of 1a/2a intergenotypic HJ3-5 virus. (A) Following transfection of the HCV RNA, cells were treated with the
indicated concentration of DMAT for 48 hours. The media was then replaced with fresh medium (no drug), followed 24 hours later by harvesting of
supernatant fluids for virus titration. Means ¡ S.E. were calculated from duplicate experiments. (B) Immunoblots for NS5A, NS2, NS3, and GAPDH from the
cell lysates prepared 72 hours after transfection.

doi:10.1371/journal.pone.0113938.g003
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production although its negative impact was much smaller than that for JFH1

virus. This result is very opposite to our previous data obtained with DMAT

chemical inhibitor (see Fig. 2A). However, the titer of JFH1 virus decreased

whether the cells are either treated with DMAT or transfected by siRNA for CKII.

The discrepancy between genetic inhibition and chemical inhibition data with

H77S.3 virus suggests that the enhancement of H77S virus production in the

presence of DMAT could be due to nonspecific target effect(s) of this inhibitor

and that this nonspecific effect is exclusive with this genotype 1a virus. We do not

know which viral factor(s) was affected nonspecifically by DMAT. Certainly, NS2

and NS5A domain III are not the targets of this effect since the two viruses (H77S/

J5Ad3 and HJ3-5) which contain the same NS2 and NS5A domain III showed the

Figure 4. Effect of DMATon the production of Ser-to-Ala and Ser-to-Asp substitution mutants of NS5A domain III of H77S.3 virus. (A) Possible Ser/
Thr phospho-acceptor sites in the C-terminal region of domain III of the NS5A proteins of JFH1 and H77S virus. At the top of the panel, the H77S and JFH1
sequences are aligned: Ser residues found to be important for the NS5A-core interaction and assembly and release of infectious JFH1 virus by Masaki et al.
[35] (red box), and Ser-457, identified by Tellinghuisen et al. [11] as a site of CKII phosphorylation (red arrow), are highlighted. Within the related H77S
sequence, Ser-438 and Thr-442 are possible sites of CKII phosphorylation predicted by the NetPhos 1.0 server. Below are shown the C-terminal NS5A
sequences of 4SA and 4SD substitution mutants. Potential Ser/Thr phospho-acceptor sites are shown in red, while Ala and Asp substitutions in the mutants
are shown in bold-face type. (B) Following transfection of the RNA, cells were treated with the indicated concentration of DMAT for 48 hours. The media was
then replaced with fresh medium (no drug), followed 24 hours later by harvesting of supernatant fluids for virus titration. Means ¡ S.E. were calculated from
duplicate experiments. (C) Immunoblots for NS5A, NS2, NS3, and GAPDH from the cell lysates prepared 72 hours after transfection.

doi:10.1371/journal.pone.0113938.g004
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opposite outcome upon DMAT treatment (Fig. 1B and Fig. 3A). Whatever is

responsible for such nonspecific target effect, it seems to be strong enough to

negate a small negative effect on H77S virus production by specific CKII

inhibition.

TBCA increases virus production of genotype 1a HCV

Since the nonspecific target effect of DMAT that we observed might be unique

with this compound, we tried another CKII inhibitor, (E)-3-(2,3,4,5-tetrabro-

mophenyl)acrylic acid (TBCA) (Fig. 6A). Both DMAT and TBCA are compounds

derived from TBB (4,5,6,7-tetrabromo-1H-benzotriazole), but TBCA has a better

selectivity for CKII [27]. Huh7.5 cells were transfected by HCV RNA and 6 hours

after transfection, TBCA was added to the culture medium and maintained for

48 hours. Three days after transfection, culture supernatants were collected for

virus titration (Fig. 6B). Although even higher concentration of TBCA was

required to observe the effect on virus production, very similar results were

obtained compared to those of DMAT. H77S.3 virus titer increased but JFH1

virus titer decreased when the concentration of TBCA increased.

Figure 5. Knockdown of CKII by siRNA trasnfection and its effect on the virus production. Six hours after HCV RNA transfection, cells were
transfected with siRNAs for CKII. Three days after transfection, cell lysates and culture supernatants were obtained for immunoblot (A) and virus titration (B),
respectively. Means ¡ S.E. were calculated from triplicate experiments.

doi:10.1371/journal.pone.0113938.g005
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Since DMAT inhibits both CKII (IC5050.14 mM) and DYRK1A (dual

specificity tyrosine-phosphorylation-regulated kinase 1A) (IC5050.12 mM) simi-

larly [28], we tested whether DYRK1A is involved in production of HCV as a

nonspecific target by siRNA knockdown. However, we found that DYRK1A is not

detectably expressed in Huh7 and Huh7.5 cells by immunoblot (data not shown).

Lack of expression of DYRK1A in Huh7 cells is also noted in the GeneCards

database [29].

Other 1a/2a intergenotypic chimeras do not support production of

infectious particles

Since viral factors other than NS2 and NS5A domain III may be responsible for

the nonspecific effect of CKII inhibitors on H77S virus production, we generated

other 1a/2a intergenotypic chimeras between H77S.3 and JFH1 virus. We

generated H77S.3/J5B (1a/2a intergenotypic chimera containing NS5B of JFH1 in

H77S.3 background), JFH1/H5B (1a/2a intergenotypic chimera containing NS5B

of H77S.3 in JFH1 background), JFH1/H3 (1a/2a intergenotypic chimera

containing NS3 of H77S.3 in JFH1 background), and JFH1/H4AB (1a/2a

Figure 6. Effect of TBCA, another CKII inhibitor, on the production of H77S.3 and JFH1 virus. (A) Chemical structure of DMATand TBCA. (B) Following
transfection of the HCV RNA, cells were treated with the indicated concentration of TBCA for 48 hours. The media was then replaced with fresh medium (no
drug), followed 24 hours later by harvesting of supernatant fluids for virus titration. Means ¡ S.E. were calculated from duplicate experiments. P values were
determined from unpaired t tests.

doi:10.1371/journal.pone.0113938.g006
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intergenotypic chimera containing NS4AB of H77S.3 in JFH1 background) since

only these chimeras supported HCV RNA replication when they were assessed by

GLuc reporter assay among all the possible 1a/2a intergenotypic combinations

between H77S.3 and JFH1 proteins [18]. These 4 chimeras were tested by

transfecting RNAs in the presence of DMAT, but none could support production

of infectious particle although H77S.3/J5B and JFH1/H4AB could produce

detectable amount of intracellular core protein (data not shown).

Discussion

Most of the currently tested antivirals against HCV infection are targeted to viral

proteins, specifically NS3 protease (e.g., boceprevir, telaprevir), NS5A (e.g.,

daclatasvir), and NS5B (e.g., sofosbuvir). However, there are other candidate

inhibitors targeting host factors such as cyclophilin (e.g., alisporivir), miR-122

(e.g., miravirsen), and SR-BI (e.g., ITX-5061) [30]. DMAT was shown previously

to inhibit specifically infectious genotype 2a HCV production without affecting

viral RNA replication [11], and this suggested that CKII inhibitor could be

considered as another therapeutic option for HCV antiviral treatment. In fact,

CX-4945, a selective CKII inhibitor, has entered human clinical trials although it

was for its anti-tumor activity not for antiviral activity [12].

In this study, we tested the same CKII inhibitor (DMAT) to see whether it

affects genotype 1a HCV production in the same manner as genotype 2a virus.

Surprisingly, it rather increased genotype 1a virus production without affecting

viral RNA replication (Figs. 1 and 2). Further analysis of chimeras constructed

between H77S.3 and JFH1 viruses did not identify any single viral protein that

may be responsible for such genotypic differences. So far, only NS2 and NS5A are

known as HCV proteins phosphorylated by CKII [23, 24]. However, the response

to DMAT treatment on the chimeras that were tested in this study suggests that

there could be other viral protein(s) affected by CKII inhibitors. Perhaps, this

genotypic difference comes from combinations of more than 2 viral proteins

rather than from any single viral protein. Interestingly, when the HCV proteins

expressed in the HCV RNA-transfected Huh7.5 cells were assessed by

immunoblot, the abundance of NS3 protein changed in the same manner as those

of NS2 and NS5A proteins, which suggests possible combinatorial effect of DMAT

on HCV proteins either directly or indirectly. Lack of any single viral protein that

is differentially affected by host kinase depending on the HCV genotypes was also

observed in another study [18].

Although genotype 1a HCV production was enhanced by nonspecific target

effect of CKII inhibitors, genetic inhibition of CKII by siRNA also displayed

differences between H77S.3 and JFH1 virus production (Fig. 5). Compared to the

effect of CKII knockdown on JFH1 virus production, H77S.3 virus production

was affected very slightly, which argues against the idea of pan-genotypic effect of

CKII on HCV assembly [11]. Given that the amino acid sequence identity between

H77S.3 and JFH1 is only 58% for the entire NS5A and 46% for the NS5A domain
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III [17], the differences between the two viruses upon CKII inhibition may not be

surprising, but the result from this investigation emphasizes the importance of

HCV genotype identification in both basic and clinical studies.

The effect of DMAT on H77S.3/4SA (Fig. 4) was specifically surprising because

this mutant was defective in virus production before DMAT treatment although

its RNA replication was comparable to that of H77S virus [17]. This result

suggests that the serine residues that were substituted by alanine are involved in

virus assembly rather than in RNA replication and that the block in virus

production of 4SA mutant was alleviated by treatment with DMAT. Although the

nonspecific target kinase of DMAT was not identified in this study, this 4SA

mutant is another good example illustrating a molecular switch model that

determines the function of NS5A between viral RNA replication and virus

assembly [7, 8]. Since alanine is not a phosphorylatable amino acid, DMAT seems

to inhibit phosphorylation of other serine/threonine residue(s) of either viral or

host target substrate, which can restore virus assembly of H77S.3/4SA. Whatever

the nonspecific target of CKII inhibitors is, this result indicates that

phosphorylation plays an important role in regulating HCV viral life cycle.

CKII is a ubiquitously expressed, constitutively active serine/threonine protein

kinase, and more than 300 substrates are already known [31]. It has a and a9

catalytic subunits and b regulatory subunits, thus forming a heterotetrameric

holoenzyme. Since CKII has been implicated in many diseases and viral infection

[32], numerous inhibitors targeting this kinase have been developed [33] and both

DMAT and TBCA that were used in this study are TBB-derived, ATP-competitive

CKII inhibitors (Fig. 6A). With regard to CKII inhibition, TBCA (IC5050.11 mM)

is the best among the 3 inhibitors compared to TBB (IC5050.50 mM) and DMAT

(IC5050.14 mM) [27, 28, 34]. TBCA also has the best selectivity for CKII against

DYRK1A, which is a potent nonspecific target of CKII inhibitors. For example,

IC50 of TBCA for DYRK1A is 24.50 mM while those of TBB and DMAT are

0.91 mM and 0.12 mM, respectively [27, 28, 34]. Despite such high selectivity,

TBCA treatment of HCV RNA-transfected cells also resulted in differential virus

production between H77S.3 and JFH1 (Fig. 6) as was observed in the DMAT

treatment (Fig. 1). Lack of expression of DYRK1A in Huh7.5 cells (data not

shown) and the result of CKII knockdown experiment (Fig. 5) suggest that

kinase(s) other than CKII and DYRK1A is involved in the enhanced genotype 1a

HCV production upon chemical inhibition of CKII. Identification of the target

that nonspecifically enhanced genotype 1a HCV production in this study awaits

further screening of target kinases and may provide a unique mechanistic insight

into the pathogenesis of this clinically more important genotype 1a HCV.
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