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Abstract

Coronary artery disease (CAD) is the leading cause of death worldwide. Recent

genome-wide association studies (GWAS) identified .50 common variants

associated with CAD or its complication myocardial infarction (MI), but collectively

they account for ,20% of heritability, generating a phenomena of ‘‘missing

heritability’’. Rare variants with large effects may account for a large portion of

missing heritability. Genome-wide linkage studies of large families and follow-up

fine mapping and deep sequencing are particularly effective in identifying rare

variants with large effects. Here we show results from a genome-wide linkage scan

for CAD in multiplex GeneQuest families with early onset CAD and MI. Whole

genome genotyping was carried out with 408 markers that span the human genome

by every 10 cM and linkage analyses were performed using the affected relative

pair analysis implemented in GENEHUNTER. Affected only nonparametric linkage

(NPL) analysis identified two novel CAD loci with highly significant evidence of

linkage on chromosome 3p25.1 (peak NPL 55.49) and 3q29 (NPL 56.84). We also

identified four loci with suggestive linkage on 9q22.33, 9q34.11, 17p12, and
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21q22.3 (NPL 53.18–4.07). These results identify novel loci for CAD and provide a

framework for fine mapping and deep sequencing to identify new susceptibility

genes and novel variants associated with risk of CAD.

Introduction

Coronary artery disease (CAD) is the leading cause of death globally, and accounts

for .13% of all deaths (www.who.int) [1]. The number of people who die from

heart disease is expected to increase to 9.8 million by 2030 (www.who.int). Long-

term prospective clinical and epidemiological studies have identified several major

risk factors for development of CAD, including smoking history, older age, male

gender, high fat diet, personal history of angina pectoris, family history of

myocardial infarction (MI), obesity, diabetes mellitus, high blood pressure,

increased plasma total and low-density lipoprotein cholesterol, increased plasma

triglycerides, and decreased plasma high-density lipoprotein cholesterol [2–4].

Genetic-epidemiologic studies suggest that family history is the most significant

independent risk factor, which accounts for approximately 40% to 60% of the risk

for CAD (i.e. an estimated heritability of 0.40–0.60) [5–12]. Identification of the

genetic factors responsible for CAD might unravel novel biological pathways

involved in development of CAD.

There are two major genome-wide, systematic, comprehensive and unbiased

approaches to identify genes and genomic variants for a human disease, including

genome-wide linkage studies (GWLS) using family samples and genome-wide

association studies (GWAS) using population samples. There are advantages and

disadvantages for both. GWAS are more powerful than GWLS to detect common

alleles at a locus, but less powerful if the phenotypes of interest are due to the

segregation of low-frequency or rare alleles [13]. Furthermore, whereas

associations identified by GWAS can be due to spurious causes, especially

heterogeneity/population stratification, family-based GWLS are not subject to

such type 1 errors [13]. Recent GWAS by many large groups including our

GeneID/Cardio-X team have identified about 50 loci for CAD [14–26]. However,

it is estimated that the risk variants identified by GWAS may, in aggregate, capture

only a small fraction (,20%) of the overall heritability of CAD [8, 27]. Thus,

much of the heritability remains missing for CAD.

The major disadvantage of GWAS is that its discovering power is limited to

common variants with relatively low risk (odds ratio or OR of 1.2 on average)

[13]. In contrast, GWLS are potentially more powerful in detection of low

frequency or rare variants, but with large effects on risk of the disease [13].

Therefore, it is highly likely that some of the remaining heritability for CAD may

be associated with rare variants but with large effects. Because of the genetic

heterogeneity of CAD/MI, GWLS in families could be much more powerful in

identifying such rare variants. We consider a family study design to be more
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optimal for identification of rare genetic variants with large effects because the

same mutation can be observed in many family members and the cause-effect

relationship can be easily determined by co-segregation with the disease in the

families. Genome-wide linkage scan is a traditional and classical approach to

identify new regions of the genome that predispose to CAD. These genome-wide

linkage scans with hundreds of sibling pairs have identified several major genetic

susceptibility loci for CAD or MI, including loci on chromosome 1p34–36, 1q25,

2p13.1, 2q21.2–22, 2q36–q37.3, 3q13, 5q31, 7p14, 8p22, 13q12–13, 14q32.2,

15q26.2, 16q13, and Xq23–26 [3, 4, 28–30]. The loci identified by linkage analyses

were much fewer than GWAS, suggesting that many more linkage loci remain to

be identified with new CAD and MI families. Linkage analysis and GWAS have

totally different mechanisms in detecting susceptibility loci, and it is highly

possible that the linkage loci represent some of the missing heritability of CAD.

In this study, we report results from a genome-wide linkage scan from a well-

characterized U.S. population with 428 nuclear families with early onset CAD and

myocardial infarction (MI) (each family has at least two affected sibs and one

unaffected sib, GeneQuest, mean pedigree size 55). Multiple new susceptibility

genetic loci were identified for CAD, which provide new genetic bases of CAD and

a framework to identify underlying susceptibility genes at each locus.

Subjects and Methods

GeneQuest Cohort of Families with Early-Onset CAD

The study subjects have been recruited in the United States through the Center for

Cardiovascular Genetics and Department of Cardiovascular Medicine at the

Cleveland Clinic [31–33]. Important demographic and epidemiological features

are shown in Table 1 and as in previously published reports [31–33]. The present

study has been approved by the Cleveland Clinic Institutional Review Board on

Human Subject Research, and written informed consent was acquired from all

participants.

The GeneQuest study was the first large-scale prospective collection of families

with early-onset CAD and MI for identifying the underlying genes. The

GeneQuest cohort consists of 1,613 subjects from 428 multiplex families with

early-onset CAD and MI. Each family has at least two affected sibs, and the

majority of families also have one unaffected sibling. The details, including

diagnostic criteria and ascertainment of the patients and their families have been

described elsewhere [31–33]. In brief, the presence or absence of CAD was

assessed according to a previous diagnosis of MI (based on the existence of at least

two of the following: chest pain of $30 minutes duration, ECG patterns

consistent with acute MI, or significant elevation of cardiac enzymes), history of

revascularization procedures such as angioplasty or coronary artery bypass surgery

(CABG), or patients undergoing treatment for angina pectoris. For patients in this

cohort, the distribution of patients classified by the diagnostic criteria was 54.9%

MI, 15.4% CABG, 14.9% angiography with .70% of stenosis, 12.2% PTCA
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(coronary artery bypass graft), and 2.6% other causes. The GeneQuest cohort had

a total of 974 affected individuals recruited, and the average age at onset was

44.4¡9.7 years. The epidemiological and demographic features were similar for

both affected individuals and unaffected individuals. GeneQuest was characterized

by predominantly males (n51,152) and white (91.7% for all the participants and

93.6% for those affected).

Patients with hypercholesterolemia, insulin-dependent diabetes, childhood

hypertension, and congenital heart disease were excluded from this study.

Isolation of Human Genomic DNA and Genotyping

Whole blood samples were drawn from each participant, and genomic DNA was

isolated from the blood by use of the commercial Puregene Kits (Gentra).

Genotyping of microsatellite STR markers was performed by the National

Heart, Lung, and Blood Institute (NHLBI) Mammalian Genotyping Service

(directed by Dr. James L. Weber), Center for Medical Genetics at Marshfield

Clinic by use of the Screening Set 11 consisting of 408 markers that span the entire

human genome at every 10 cM [34]. DNA samples were genotyped for 1,163 well-

characterized participants from 428 families of the GeneQuest cohort.

Table 1. Clinical and Demographic Features of the Study Populations (GeneQuest)*.

Feature GeneQuest

No. male/no. female 1152/878

Age at onset (mean ¡ SD) 44.4¡9.7 years

No. affected with CAD/MI 974

Ethnicity:

Caucasian 91.7%

African American 2.3%

Native American or Alaskan 1.7%

Hispanic 1.4%

Asian or Pacific Islander 0.8%

Mixed ethnicity 0.8%

Unknown ethnicity 1.3%

Pedigree structure:

No. of pedigrees 428

Pedigree size (mean ¡ SD) 4.7¡1.3

No. of relative pairs:

Sibling/sibling 1,303

Sister/sister 258

Brother/brother 476

Brother/sister 569

Half sibling/half sibling 25

*From Wang et al and Shen et al [31, 33].

doi:10.1371/journal.pone.0113935.t001
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Statistical Analysis

Before statistical analysis of genome-wide genotyping data, obvious pedigree

errors, data errors, genotyping errors, and locus-order errors that commonly

occur with a large-scale linkage analysis were corrected as described previously

[13, 33, 35]. Allele frequencies for all markers used in the analysis were estimated

in the GeneQuest population by a maximum likelihood method using the SAGE

program FREQ [36]. We used RELTEST to analyze pedigree relationships and

excluded 27 of 428 pedigrees with uncorrectable errors from further linkage

analysis. RELTEST uses a Markov process model of allele sharing along the

chromosome and classifies pairs of pedigree members according to their true

relationship by use of genome-scan data [37]. We then used the S.A.G.E. program

MARKERINFO to detect any Mendelian inheritance inconsistencies and excluded

three families with inconsistent Mendelian inheritance from further analysis.

Moreover, three pairs of monozygotic twins were identified and excluded from

further statistical analysis. Only 388 Caucasian families were analyzed for linkage.

To map new susceptibility loci for CAD, genome-wide nonparametric linkage

(NPL) analysis was performed by use of the affected relative pair (ARP) analysis

implemented in GENEHUNTER [38]. Like other ARP methods, the NPL statistic

measures allele sharing among the affected individuals within a pedigree [38]. The

scoring function statistic was used to evaluate, simultaneously, allele sharing

among all those affected in a nuclear family, in contrast to pairwise comparison.

Both two-point and multipoint NPL analyses were performed. This scoring

function was asymptotically distributed as the Z statistic. The significance for

linkage inference was determined by use of the criteria proposed previously

[39, 40]. Specifically for the sib pair design, the NPL scores for suggestive,

significant and highly significant linkage are 3.18 (corresponding to P value of

7.461024 or LOD score of 2.2), 4.08 (P value of 2.261025 or LOD score of 3.6)

and 4.99 (P value of 361027 or LOD score of 5.4), respectively.

Results

Genome-wide NPL analysis of affected sibling pairs in the GeneQuest families was

conducted using GENEHUNTER (http://www-genome.wi.mit.edu/ftp/

distribution/software/genehunter/). The genomic regions with a peak two-point

or multiple point NPL score that meets the suggestive linkage threshold (i.e. NPL

$3.18) are listed in Table 2 and shown in Figs. 1–3. Six markers on four different

chromosomes (chromosomes 3, 9, 17 and 21) produced an either two-point or

multi-point NPL score of .3.18. The most significant linkage was identified for

marker MFD427-AAA on chromosome 3q29 with a two-point NPL score of 6.54

and a multipoint NPL score of 6.84, which reached the genome-wide highly

significant level (Figs. 1–3, Table 2). The second highly significant genome-wide

linkage peak was also obtained on chromosome 3 (3p25.2), and had a two-point

NPL score of 5.49 and a multipoint NPL score of 5.14 (Figs. 1–3, Table 2).
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Table 2. Novel Genetic Loci for CAD Identified by GWLS in the GeneQuest Families.

Marker Chromosomal Location Map Position (cM)a Physical Position (Mb)b Two Point NPL Multipoint NPL

D3S2403 3p25.1 37.2 13.17 5.49 5.14

MFD427-AAA 3q29 224.0 197.65 6.54 6.84

D9S910 9q22.33 104.0 101.62 3.72 3.61

AGAT125 9q34.11 141.8 131.95 3.69 2.99

ATA78D02 17p12 32.0 13.12 3.34 2.50

D21S1446 21q22.3 57.8 48.04 3.73 3.26

aBased on Marshfield Medical Genetics marker set 11.
bBased on either UCSC Genome Browser database or Marshfield Medical Genetics marker set 11.
Note that a marker with a two-point or multipoint NPL score of .4.99 (P,361027) was considered to be linked to CAD highly significantly; A two-point or
multipoint NPL score between 3.18 and 4.08 indicates suggestive linkage [38, 53].

doi:10.1371/journal.pone.0113935.t002

Figure 1. Genome-wide NPL scan for CAD-susceptibility loci on chromosomes 1–9 in the GeneQuest families. The vertical axis of each plot denotes
NPL scores, and the horizontal axis represents map positions in cM from the telomere of the p arm to the telomere of the long arm of each chromosome. The
horizontal solid line in each plot corresponds to an NPL score of 3.18 (P57.4610 ), the criterion for suggestive linkage.24

doi:10.1371/journal.pone.0113935.g001
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The remaining four chromosomal regions on 9q22.33, 9q34.11, 17p12, and

21q22.3 generated evidence of suggestive linkage for CAD with either a two-point

or multipoint NPL score of $3.18 (Table 2, Figs. 1–3).

Discussion

In this study, we identified a list of new genetic loci linked to CAD using the

whole-genome genotyping data from the GeneQuest nuclear families. The new

CAD loci include two loci showing a high level of significance on the genome-

wide level (3p25.2 and 3q29; NPL score of 4.99 or above) and four loci with

suggestive linkage (9q22.33, 9q34.11, 17p12, and 21q22.3; NPL score of 3.18 to

4.07) (Tables 2, Figs. 1–3). These ‘‘potentially interesting’’ CAD linkages are

novel. These results provide a framework for future fine mapping and deep

sequencing for identifying new genomic variants and new susceptibility genes

associated with risk of CAD. For example, future analysis of next generation

Figure 2. Genome-wide NPL scan for CAD-susceptibility loci on chromosomes 10–18 in the GeneQuest families.

doi:10.1371/journal.pone.0113935.g002
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sequencing data from CAD families may focus on the linkage regions first to

identify genomic variants with potentially large effects on risk of familial CAD.

Using genotyping data from the same GeneQuest families, we previously

identified a novel linkage for HDL-cholesterol, which spanned a 65 cM region,

showed a bi-phasic pattern, and peaked at markers MFD433 and GATA131D09

on chromosome 3p25–26 [13]. The CAD locus represented by D3S2403 is on

3p25.2 and partially overlaps with the second, smaller peak of the HDL-C locus.

Because a lower HDL-cholesterol level is a significant risk factor for CAD, it is

possible that the same susceptibility gene may be responsible for HDL-cholesterol

and CAD at the partially overlapping locus. The PPARG gene encoding

peroxisome proliferator-activated receptor gamma is located within the CAD

locus, and is a short distance of 697 kb from D3S2403. A variant in PPARG

(rs1801282, P12A) was found to be associated with type 2 diabetes [41–43], which

is a risk factor for CAD. A large-scale gene-centric meta-analysis showed that SNP

rs12631819 in PPARG was associated with HDL-cholesterol levels [44]. The

association between variants in PPARG and CAD was controversial because many

studies reported inconsistent results. Meta-analysis showed that the H161T

Figure 3. Genome-wide NPL scan for CAD-susceptibility loci on chromosomes 19–22 in the GeneQuest families.

doi:10.1371/journal.pone.0113935.g003
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variant in PPARG was associated with risk of CAD under a fixed-effect model, but

the association became non-significant under a random-effect model; the P12A

variant was not associated with CAD [45]. Future studies are needed to assess

whether PPARG is the gene responsible for CAD at the 3p25.2 locus. Moreover,

the nearest gene from the CAD marker D3S2403 is IQSEC1, which encodes a

protein with an IQ motif and a Sec domain. Interestingly, marker MFD427-AAA

with the peak NPL score for the 3q29 CAD locus is located within the IQCG gene

encoding another protein with an IQ motif. Therefore, IQSEC1 and IQCG became

candidate genes for CAD for the 3p25.2 and 3q29 loci for CAD, respectively.

The 3q29 locus for CAD was supported by several other studies showing

positive but not significant linkage. For instance, meta-analysis of four genome-

wide linkage studies for CAD indicated that the genetic region of 3q26-27 might

contain susceptibility genes for CAD (P50.0001) [46]. Chromosome 3q27 was

also suggested to be a CAD susceptible locus in Indo-Mauritians (LOD 52.13,

p50.0009) [47]. The 3q29 CAD locus identified in this study may not be the same

locus as the 3q26-27 locus because the two linkage peaks for the two loci are

separated by 14 Mb and do not appear to overlap (Fig. 1 and Francke et al [47]).

Chromosome 3q29 was found to be linked to atherogenic dyslipidemia [48].

Using the same genotyping data as in the present study, we previously identified a

locus at 3q28-29 for HDL-cholesterol with LOD scores passed the threshold for

suggestive significance [13]. Together, the tip of the long arm of chromosome 3

may harbor one or more novel susceptibility genes for CAD and its risk factors. In

addition to the IQCG gene, the 3q29 CAD locus harbors several other possible

candidate genes for CAD. The LMLN gene encodes an M8 family of

metallopeptidase associated with lipid droplets and playing a role in lipid storage,

generation of ROS, cell migration and invasion [49]. The CEP19 gene encodes a

19 kDa centrosomal protein involved in obesity, glucose intolerance and insulin

resistance [50]. The second interesting locus is the 9q22.33 CAD locus represented

by marker D9S910. The finding of this locus was supported by careful comparison

to linkage analysis in 42 families in a French Canadian population, which showed

that our 9q22.33 CAD locus had a positive, but not significant, NPL score of 2.35

in the French Canadian population (Fig. 1 in [30]).

The linkages on chromosome 17 are of particular interest. A suggestive linkage

for MI was previously reported on chromosome 17 at a position of 50.7 cM in a

cohort with 739 affected sibpairs (LOD 52.85). The entire putative MI linkage

spanned from marker D17S921 at 17q11.2 (40 cM) to D17S787 at 17q21 (79 cM)

[28], and overlaps with the 17p12 locus identified in our study (Fig. 2).

We compared our linkage results to GWAS data reported to date. Interestingly,

we found that SNP rs579459 in the ABO gene identified as a risk variant for CAD

by GWAS is located 4.20 Mb from marker AGAT125 at the 9q34.11 region

showing peak linkage to CAD in this study. It is important to note that in other

CAD loci identified by GWLS in this study, GWAS did not identify any risk

variants for CAD. There are several potential explanations. First, GWLS signals

may represent variants or susceptibility genes for familial CAD, but not for

sporadic CAD as used in GWAS. Second, GWLS signals may represent low
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frequency or rare variants with large effects on risk of CAD, which were generally

ignored by GWAS. Considering the fact that larger meta-GWAS may not be easily

practical for CAD now, re-focus on family-based studies may be the priority in the

short future to identify new risk variants for CAD in our opinion.

The identification of new CAD linkage loci might have been facilitated by our

strict criteria for pedigree recruitment, which focused on white families enriched

with well-diagnosed early-onset CAD, and pre-empted common risk factors, such

as hypercholesterolemia and insulin-dependent diabetes. Furthermore, compared

with other reported genome-wide linkage scans for CAD and MI, our patient

population has the youngest age at onset, ,45 years in males and ,50 years in

females, which is expected to significantly increase the genetic component

involved in CAD. Family history was another factor for us to recruit families, with

aim to identify inheritable CAD cases and to exclude environmental ones. Seeking

for families with strong and multi-generational CAD history remains the most

accessible way of increasing the inherited component for the recruited familiar

cohort [51]. Clinical studies suggest that individuals with a family history of CAD

form a potential target groups for early aggressive primary prevention strategies

[52].

Despite a great success in identifying new genetic loci for CAD in this study,

several technical limitations associated with non-parametric linkage analysis

should be well-recognized. First, the families were ascertained through probands

with a strong family history of CAD, and by the unique selection strategy, which

focused on white families enriched with well-diagnosed early-onset CAD. Such

family recruitment may be subjected to some selection biases and some parameter

estimates for CAD risk may not straightforwardly be extended to the general

population. Therefore, a precaution is clearly needed for interpreting the risk

estimate when translated into clinical practice. Second, due to very nature of non-

parametric linkage analysis, our analysis did not model person-specific covariates

to remove the effects of potentially confounding factors. Although some measures

such as pre-empting common risk factors like hypercholesterolemia and insulin-

dependent diabetes were taken during the family recruitment, some sporadic or

environmental cases might be included in the analysis, causing identity-by-decent

values between affected sib pairs downward-estimated, particular when gene-

environment interactions are present. Third, due to limited sample sizes, we did

not perform a stratified analysis by different subtypes of CAD and hence only

genomic regions linked to general definition of CAD were identified. Fourth, this

study is limited by inadequate marker density provided by microsatellite markers,

fine mapping and analyses of genetic variants by use of high-density SNP markers

or new-generation DNA sequencing technologies might be a better design in our

future studies. Finally, there is discrepancy between our previous report of linkage

to chromosome 1p34-36 [31–33] and novel linkages identified in this study,

although both utilized the original 438 GeneQuest nuclear families. The

discrepancy may be related to the different statistics involved in the SAGE

program used in the previous report. The SAGE program in our previous study

[33] analyzes all available information from the GeneQuest pedigrees, including

Novel Genetic Loci for CAD

PLOS ONE | DOI:10.1371/journal.pone.0113935 December 8, 2014 10 / 14



both affected and unaffected family members, but the Genehunter program used

in the present study analyzes only affected members in GeneQuest families.

Furthermore, methodological differences might explain the discrepancies. In the

previous report [33], we used a Haseman-Elston regression-based method

implemented in the SAGE program, which models the squared phenotypic

difference of a sib pair as function of genetic variance and linkage parameter. In

the present study, the Genehunter program computes the averaged identical-by-

decent sharing at a marker locus between affected sibs, and then the linkage

inference is made by comparing this nonparametric statistic with its expectation.

Therefore, it is not surprising that the statistical power for the two methods might

be different under different scenarios. Moreover, the Haseman-Elston regression-

based method can take into account of epidemiological covariates, as we did in

the previous report [33], while the nonparametric method suffers from this

limitation. Nevertheless, affected only analysis has a merit of more accurate

phenotyping as these affected individuals are often subject to a strict diagnosis. In

contrast, phenotyping for normal individuals for a late onset disease like CAD can

be a difficult task as the presently unaffected individuals can become affected later

in their life.

In conclusion, the present study has identified two novel genetic loci for CAD

that passed the threshold of highly significant and four genetic loci with suggestive

evidence of linkage. Future fine mapping and deep sequencing should facilitate

the identification of an underlying major (or minor) gene for this complex

disorder at each locus. Identification of the CAD gene(s) should uncover the

biological pathways and molecular mechanisms for the pathogenesis of CAD.
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