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Abstract

Do different fields of knowledge require different research strategies? A numerical

model exploring different virtual knowledge landscapes, revealed two diverging

optimal search strategies. Trend following is maximized when the popularity of new

discoveries determine the number of individuals researching it. This strategy works

best when many researchers explore few large areas of knowledge. In contrast,

individuals or small groups of researchers are better in discovering small bits of

information in dispersed knowledge landscapes. Bibliometric data of scientific

publications showed a continuous bipolar distribution of these strategies, ranging

from natural sciences, with highly cited publications in journals containing a large

number of articles, to the social sciences, with rarely cited publications in many

journals containing a small number of articles. The natural sciences seem to adapt

their research strategies to landscapes with large concentrated knowledge clusters,

whereas social sciences seem to have adapted to search in landscapes with many

small isolated knowledge clusters. Similar bipolar distributions were obtained when

comparing levels of insularity estimated by indicators of international collaboration

and levels of country-self citations: researchers in academic areas with many

journals such as social sciences, arts and humanities, were the most isolated, and

that was true in different regions of the world. The work shows that quantitative

measures estimating differences between academic disciplines improve our

understanding of different research strategies, eventually helping interdisciplinary

research and may be also help improve science policies worldwide.
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Introduction

The maturation of empirical science, as catalyzed by Galileo Galilei, was

fundamental in triggering the industrial revolution, the most significant

transformation of human society in the last 10000 years. A large effort is now

invested in analyzing scientific productivity and its social dynamics. Entire

journals are dedicated to it, such as Scientometric and the Journal of Informetrics.

The dynamics of research in the natural and social sciences however diverges. This

has been recognized long ago [1, for example] but pinpointing precise

quantitative differences between both sciences has been an elusive endeavor.

Citations are the most common tool nowadays to estimate the scientific quality of

a researcher or paper, but this method that has had important limitations since its

beginnings ([2], for example). Few efforts analyze the mechanics through which

the scientific method works best. The scientific method relies on several key

elements for its smooth working [3]. Among them are: 1- Humility to recognize

that our mind is very limited in grasping the underlying dynamics of natural

phenomena and needs the experiment or an empirical feedback to keep if from

digressing into the absurd; 2- Science is not interested in absolute truth but in

incremental advancements in our understanding of nature; 3- Mathematics as the

best language to ask nature our questions.

How do we decide to use scarce financial resources to finance many different

small projects, or to concentrate resources in a few ‘‘strategically important’’

projects? How do we know if criteria we use to evaluate and finance projects in the

natural sciences also work adequately in the social sciences? We actually have no

clear answer to these questions at the moment. Different sciences and scientific

disciplines cultivate different values and attitudes and show differences in

quantifiable characteristics [4–7]. We also know that the development of different

scientific disciplines has different effects on economic growth. For example, the

subject areas with the largest relative number of publication in wealthy countries

today are neuroscience and psychology; investment in these areas however does

not produce economic growth in less developed countries. In contrast, middle

income countries that give more value to basic natural science in a given time

period show faster economic growth in the following years [8–9]. Additionally,

countries whose researchers are less provincial and cite more works from

countries different to theirs (have fewer country self-citations) are also those

whose scientists produce relatively lower numbers of author self-citations. These

countries are the ones producing scientific papers with higher overall citation

impact [10].

To understand the underlying dynamics of this phenomena I propose to use the

concept of knowledge landscapes. This concept has been developed in explaining

decision making mechanisms in foraging strategies in ants [11], in artificial

intelligence, swarm intelligence, and many other settings [12], suggesting that

optimal foraging strategies address fundamental aspects of complex dynamics

present in a large variety of situations. Here, the results of agent based computer

simulations build to analyze the efficiency of different foraging strategies for
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exploring various landscapes [11], were generalized and adapted to understand

aspects of different publication strategies in scientific research. The results could

be validated with empirical observations, opening a novel way to understand

differences among scientific disciplines that are relevant for future science policy.

Methods

The Model

The numerical model originally coded in Fortran, was developed for studying

optimal foraging strategies in ants in different resource landscapes. The results of

the model were published long ago [11, 13] and were validated experimentally by

different researchers (see review in [14]). A game written in Java-script, based on

this model, can be accessed on the web (http://atta.labb.usb.ve/SmartAnts.html).

The simulation consisted in foragers exploring different landscapes using random

walks. Once a resource was discovered, they returned to the nest recruiting

nestmates so as to collect the resources discovered. Two possible decision making

systems used for recruitment were tested: The Democratic system or trend

following, were all workers eventually perform all tasks, and were the first

discovery will draw the most recrutees; and the Technocratic system, where

workers specialize either in scouting or in retrieval and were the society collects

several smaller resources simultaneously. Here specialized workers signal the

palatability, quality, or quantity of a resource regulating the amount of recrutees

for each source using simple decision rules. The results of this model [11] were

generalized to study strategies exploring different knowledge landscapes.

Knowledge landscapes can have different forms and have also been called

‘‘knowscapes’’ [12]. The study of optimal foraging and recruitment strategies of

ants have helped in the past in developing heuristic programs such as ‘‘swarm

intelligence’’ [15] ‘‘active walks’’ [16–17], and adaptive landscapes, used to study

dynamic complex systems. The approach attempted here is an extension of these

efforts.

The generalization of the knowledge landscape as applied to academic research

is as follows: We assume a scientific community displaying central-place foraging

in a finite area with 200 researchers. In each simulation run, a fixed amount of

resources were randomly distributed in the landscape. Each researcher explored

independently the knowledge landscape, and was randomly assigned as an original

researcher or ‘‘leader’’ or a less audacious researcher or ‘‘follower’’, according to a

fixed proportion (Ro). Each researcher was randomly assigned two thresholds

which defined the decision making system for recruitment they were going to use:

one for responding to high impact publications, and another which regulated the

initiation of knowledge explorations according to the ‘‘quality’’ of the newly

discovered knowledge and the number of researchers engaged in exploring it.

Leaders were then left to roam the space and to recruit followers. The speed with

which the total amount of resources were discovered was computed. Different
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patterns of resource distribution in the landscape were tested with different

decision making mechanisms for recruiting.

A two-dimensional concentric space with 500 possible sites was modeled. The

community of scientists was located at the center of the space. Each researcher was

able to explore randomly in the knowledge space, one space at each time interval.

Each knowledge cluster was located at one single site. Any number of researchers

could share a single space. This simplification stress the fact that, relative to the

size of the knowledge horizon of the researchers, the knowledge landscape is

enormous, and that the space occupied by knowledge clusters is negligible

compared to the size of the knowledge landscape. Knowledge was randomly

distributed in the environment. Different densities of knowledge clusters (D) were

tested; the cluster size (CS) at each locality could vary.

Numerical variables used

N5 Number of researchers in the community

Ro 5 Percent of original researcher in a community: 100-Ro 5 Rt 5 Trend

Followers (%)

ORo 5 Optimum percentage of original researchers, i.e. percentage of Ro that

allowed the discovery of the maximum amount of knowledge during a fixed time

period.

D5 Cluster density: mean knowledge cluster density (sites occupied with

knowledge clusters (%))

K5 Absolute amount of knowledge discovered during a given period

Kc 5 Knowledge cluster size: (in equivalent of number of trend following

researchers required to explore it)

GS 5 Group Size for Group exploration

Searching behavior and recruitment

Researchers were programmed to have a sequence of five behaviors:

1: Random searching for knowledge

2: After finding knowledge, publishing the findings as fast as possible

3: Rt were recruiting depending on the recruitment technique simulated

4: More knowledge was discovered and the published, recruiting even more

researchers

Three different recruitment techniques were modeled

1. Group recruitment (GR): Ro always recruited a fixed number of Rt

2. Technocratic recruitment (TR): Ro recruited the exact number of Rt required

to research the new knowledge.

3. Democratic recruitment (DR): Ro recruited Rt by promoting their findings.

The more Ro the more Rt recruited

Bibliometry

Publicly available quantitative scientometric variables were computed from 21135

journals, for 20 different subject areas, grouped by Scopus, and reported by
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SCImago [18]. The data extracted from SCimago was pooled and is available as

data in S1. Different statistical analysis revealed similar trends (see 8). Here we

present only graphs with data whose extremes are highly statistically significantly

different using non parametric analysis. The time period chosen to sample the

data was the year 2011, to guarantees a more or less uniform bibliometric

methodology and enough time for the data pools to have retrieved most of the

corresponding data (some journal issues appear years after their listed publication

year). Total Journals per subject and Total Document were obtained by totalizing

data of the respective column. The total Cites for the last 3 years was divided by

the total Citable Documents for the last 3 years to obtain Cites/Document. Other

variables analyzed are summarized in Table 1

Results

Simulations

Figure 1 shows a typical example of the relation between the amount of

knowledge K retrieved by a scientific community during a fixed period for a given

amount of researchers. We see that with small knowledge clusters (Kc 55),

simulating landscapes with many small knowledge clusters, the curves tended to

be broader and the total amount of knowledge retrieved (K) lower compared to

landscapes with a few large knowledge clusters (Kc 5125). In this last case, the

total amount of knowledge discovered was much larger then in situations with

many small knowledge clusters, for all proportion of leaders (Ro) simulated.

Figure 2 shows that the optimal number of original researchers in the

community decreases with increasing total number of researchers. That is, original

research has a larger effect on the amount of knowledge retrieved in small

scientific communities than in larger ones.

Figures 3 and 4 show the effect on knowledge retrieval (K) of different

recruitment techniques. For large knowledge clusters, TR and DR retrieve the

largest amounts of knowledge. Information dispersed in small knowledge clusters

are better explored using GR and TR. This shows that the best recruitment

technique to be used depends on the nature of knowledge to be explored: TR

produces the best outcome in any situation; DR is useful if knowledge is

concentrated in large clusters; and GR works nicely in dispersed knowledge

landscapes.

In summary, the results show that depending on the form of distribution of

knowledge in the landscape (size and number of knowledge clusters), different

recruitment techniques are optimal. Few large knowledge clusters are best

discovered with the Democratic decision system, where individuals discovering

new knowledge will recruit followers at their maximal capacity. In contrast, the

Technocratic system works best when knowledge is distributed in many small

knowledge clusters. Here leaders adjust their recruitment effort according to the

size of cluster discovered.
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Empirical bibliographic evidence

The two strategies described above have a mirror in academic disciplines. Certain

disciplines focus on a few general basic problems that are the same everywhere,

whereas other disciplines have many sub-disciplines, each focusing on a specific

problem that might vary locally. These strategies, if they exist in science, should

show different publication patterns.

The bibliometric data of scientific publications in different fields presented in

Figure 5 shows a continuous gradient between these two types of dynamics. The

two extremes of the gradient are the social sciences using journals with an average

of less than 60 articles per journal; and the natural sciences with journal

publishing over 80 articles per journal and up to 500 articles per journal. Social

sciences and arts and humanities had less than one citation per document,

whereas multidisciplinary sciences, neuroscience and chemistry, all subject areas

from the natural sciences, had more than 3 citations per document in average (See

Figure 6). The two extreme cases are Mutidisiplinary science, with high citation

rates from colleagues publishing in a few journals containing a large number of

articles; and Social Sciences publications with few citations from colleagues

publishing in many different journals containing each a low number of articles.

Disciplines such as Physics, Chemistry and Material sciences resemble more the

pattern of Mutidisiplinary science regarding the use of journals publishing many

articles, than that of the Social Sciences. The Arts and Humanities, Economics,

Psychology and Business, on the other hand, use journals with few articles each,

resembling the pattern of the Social Sciences. Applied sciences and Mathematics

have an intermediate ranking regarding the number of documents per journal and

number of citations per article. Very closely defined areas such as Dentistry and

Veterinary sciences, for example, report fewer journals than broadly defined

disciplines such as Medicine which had the largest number of journal reported by

Scopus in 2011. If all sub-areas of Medicine were as closely defined as Dentistry

and Veterinary sciences by Scopus, it is likely that most of them would aggregate

close to Dentistry and Veterinary Science in the graph.

Table 1: Quantitative variables used.

IC
International Collaboration: Proportion of document with affiliations from more
than one country

Journals Number of Journals tracked by Scopus in a given subject category

Doc/Jour Number of citable documents per journal in a given subject category

Countries Number of countries reported in the addresses of the authors of the papers in that
subject category

Ref/Doc Number of references in the papers published in that subject category

Cit/Doc Number of citations received during the following 3 years after publication by papers in
that subject category

CSC Level of provinciality, isolation or degree of country-self citation measured as the
proportion of citations from the same country as the source paper. Country self-
citations include author-self citations.

doi:10.1371/journal.pone.0113901.t001
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Other characteristics assessing the degree of isolation of researchers or research

groups in different disciplines confirmed the gradients revealed in Figure 5. The

citation impact (size of the bubbles) was directly proportional to the number of

documents published per journal (Spearman Rank Correlation between Cit/Doc

vs Doc/Jour: 0.66, p50.002)), and inversely proportional to the number of

journals in each subject area (Spearman Correlation between Cit/Doc vs Journals:

20.54, p50.02), if the data for the outlier data point Medicine was excluded. In

addition, as shown in Figure 6, subject areas with journals with high number of

publications, published papers with relatively lower country-self-citation rates

(Spearman Correlation between (Pub/Jour vs CSC: 0.70, p50.001). That is,

subject areas with high average citation rates published more papers per journal,

and those papers had relatively lower country-self-citations. Figure 6 shows a

positive correlation between country self citation and citation impact (Spearman

Correlation between CSC vs Cit/Doc: 0.51, p50.03), with a similar gradient of

academic areas as that revealed in Figure 5.

The same happened when we focus on International Collaboration (IC). Even if

IC was heterogeneous between the geographical regions studied, the gradient of

academic disciplines remained visible when comparing IC in the different regions

(Figure 7). Humanities had the lowest IC everywhere, whereas Multidisciplinary

Sciences and Physics in Western Europe, and Economics and Psychology in Asia,

were the subject areas with the highest IC. International cooperation in Asia was

lower compared to Western Europe for most areas except Arts & Humanities,

Social Sciences, Psychology and Economics. Figure 7 shows only the 3 most

prolific regions regarding scientific publications, but similar trends could be

detected in the other regions. In 2011, the Pacific region, although among the

Figure 1. Amount of knowledge retrieved (K) with different proportions of original researchers (Ro)
given as percentage of total researchers. Conditions were: TR system, D50.7 (points indicate the actual
means from the 5 "runs" of the model; standard deviations were a maximum of 20% of the means; curves
were fitted by eye)

doi:10.1371/journal.pone.0113901.g001
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lowest producers of scientific papers, had the highest IC and the Asian Region had

the worst IC record.

Discussion

Journals for multidisciplinary science, as computed by Scopus, publish selected

research from mainly the natural sciences, such as Chemistry, Physics and Biology,

that are deemed to be of interest to a broad range of scientists. Thus,

multidisciplinary science, as defined here, is part of the natural sciences. On the

other hand, psychology, business and economics are handled in most universities

as part of the social sciences. The bibliographic data presented shows a bipolar

gradient between these two groups of disciplines, where one extreme is

represented by a cluster of areas in the natural sciences, and another extreme by a

Figure 2. Relationship between the optimal number of Ro (ORo) as calculated with plots as shown in
Figure 1, and the total amount of researchers available (N).

doi:10.1371/journal.pone.0113901.g002

Figure 3. Relationship between the amount of knowledge retrieved (K) during 50 interactions of the
simulation and the size of the knowledge clusters Kc for different recruitment techniques at D51.

doi:10.1371/journal.pone.0113901.g003
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cluster of areas in the social sciences. The cluster that included natural sciences

was constituted by publications that had high citation rates from colleagues

publishing in relatively few journals containing a large number of articles. These

publications cited relatively more research from countries other than the one from

the author and had a higher proportion of international collaboration. In

contrast, the cluster that included publications from the social sciences, had

publications with relatively few citations and were published in many different

journals that had a relatively low number of articles. These publications had

relatively high country self citations and showed low levels of international

collaboration.

These results can be explained in the light of the optimal strategies for swarm

intelligence as revealed by the simulations. That is, the natural sciences conform

more to exploratory strategies focusing on a few large knowledge clusters where

‘‘following’’ is more important than original new explorations. This leads to the

existence few journals publishing many articles each. On the other hand, the social

sciences conform more to an exploratory strategy optimizing search in many small

isolated knowledge clusters, were ‘‘following’’ is less important than novel

explorations in retrieving knowledge. This strategy seems to have promoted the

existence of many different journals in the social sciences, each with a relative

small number of articles. In the natural sciences, trend following seems to be more

rewarding than in the social sciences.

The simulation results suggest that a strategy that allocates research leaders

rationally in accordance to the size of the knowledge clusters is optimal in all

cases. Predicting the potential size of a knowledge cluster, however, is not easy and

might be impossible in most cases. We do not know what remains to be

Figure 4. Amount of knowledge retrieved (K) by scientific communities using different recruitment
techniques for Rt, for different values of Kc and D, so that the total knowledge in the system was
constant: Kc x D550 (Kc was 1, 5, 15 and 500 respectively when D was 50, 10, 2 and 0.1).

doi:10.1371/journal.pone.0113901.g004
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discovered. Thus, in practice, we have to stick to less rational strategies. Policies

favoring trend following over original researchers in the natural sciences and

original independent researchers over trend followers in the social science would

seem rational. The unconscious implementation of such policies seem to have

occurred, possibly promoted by peer review, leading to different developments in

different disciplines, explaining the actual bibliometric trends reported here.

It is curious to note that the 3 strategies explored in the simulations have been

implemented by insect societies in their search for food [14]. Human scientists

seem to have achieved the implementation of at least two of these strategies so far.

Science policies, for example giving primary importance to citations [19] rather

than to originality, might benefit certain areas or scientific communities more

than others. More studies are needed to assess when and where this is desirable.

But clearly, ways to quantify differences between the social and natural sciences

are possible and should be developed further in order to gain a better

understanding of their working dynamics.

The present study allowed us to get a glimpse of the knowledge landscape of

different fields of knowledge. Analogous to explorations of fitness landscapes by

genetic algorithms, different scientific disciplines explore different parts of our

knowledge landscape and the adapted search strategy should reflect the structure

of the landscape. Under this view, disciplines that have been qualified as more

complex are also the ones with knowledge landscapes constituted by many small

knowledge clusters. Humanities and social science, in this respect, seem to be

Figure 5. Average number of papers per journal (Doc/Jour) plotted against the total number of journals
registered by Scopus (Journals) for each of the subject area for the year 2011. The size of bubbles is
proportional to the total number of citations for papers published 3 years earlier divided by the total number of
papers published in that area as computed by SCImago for the year 2011.

doi:10.1371/journal.pone.0113901.g005
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Figure 6. Self-citation rates (CSC) for the year 2011 plotted against changes in citation impact of Cit/
Doc during the same time period. The size of bubbles is proportional to Cit/Doc in 1999. The line shows the
linear regression.

doi:10.1371/journal.pone.0113901.g006

Figure 7. Level of international collaboration, measured as the proportion of document with affiliations
from more than one country for Western Europe (WE), Asia and North America (proportional to the
size of the bubble) during 2011.

doi:10.1371/journal.pone.0113901.g007
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more complex than chemistry and physics. Again, the index developed here could

serve as a crude approximation to measuring these differences.

The main lesson from this exploration is that important differences in pursuing

research exist and that interdisciplinary research has to understand these

differences if it wants to expand successfully. The role of policymakers so far

seems to be questionable. If scientific discovery is increasingly directed by policy

makers (reducing our academic freedom to near zero), then we would not expect

to find these differences between disciplines, or they should be converging, which

they are not [20]. On the contrary, countries where policymakers avoid nudging

the scientific activity in a specific direction seem to produce much better long

term sustainable economic development than those favoring ‘‘strategic’’ areas [8].

Trail and error seem to have guided our scientific community relatively successful

so far, differentiating the working of academic disciplines according to their tasks.

Supporting Information

Data S1. http://atta.labb.usb.ve/Klaus/SupportingInformationPLOS2014.xls.

doi:10.1371/journal.pone.0113901.S001 (XLS)
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