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Abstract

Statistical models are simple mathematical rules derived from empirical data

describing the association between an outcome and several explanatory variables.

In a typical modeling situation statistical analysis often involves a large number of

potential explanatory variables and frequently only partial subject-matter knowledge

is available. Therefore, selecting the most suitable variables for a model in an

objective and practical manner is usually a non-trivial task. We briefly revisit the

purposeful variable selection procedure suggested by Hosmer and Lemeshow

which combines significance and change-in-estimate criteria for variable selection

and critically discuss the change-in-estimate criterion. We show that using a

significance-based threshold for the change-in-estimate criterion reduces to a

simple significance-based selection of variables, as if the change-in-estimate

criterion is not considered at all. Various extensions to the purposeful variable

selection procedure are suggested. We propose to use backward elimination

augmented with a standardized change-in-estimate criterion on the quantity of

interest usually reported and interpreted in a model for variable selection.

Augmented backward elimination has been implemented in a SAS macro for linear,

logistic and Cox proportional hazards regression. The algorithm and its

implementation were evaluated by means of a simulation study. Augmented

backward elimination tends to select larger models than backward elimination and

approximates the unselected model up to negligible differences in point estimates

of the regression coefficients. On average, regression coefficients obtained after

applying augmented backward elimination were less biased relative to the

coefficients of correctly specified models than after backward elimination. In

summary, we propose augmented backward elimination as a reproducible variable
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selection algorithm that gives the analyst more flexibility in adopting model selection

to a specific statistical modeling situation.

Introduction

Statistical modeling is concerned with finding a simple general rule to describe the

dependency of an outcome on several explanatory variables. Such rules may be

simple linear combinations, or more complex formulas involving product and

non-linear terms. Generally, statistical models should fulfill two requirements.

First, they should be valid, i.e., provide predictions with acceptable accuracy.

Second, they should be practically useful, i.e., a model should allow to derive

conclusions such as ‘how large is the expected change in the outcome if one of the

explanatory variables changes by one unit’. In a typical modeling situation the

analyst is often confronted with a large number of potential explanatory variables,

and selecting the most suitable ones for a model is usually a non-trivial task.

Statistical models are used in predictive as well as in etiologic research [1]. In

the former, one is interested in a simple and well-interpretable rule in order to

accurately predict an outcome of interest, while in the latter, the strength of an

assumed relationship of a variable of interest, i.e., the exposure variable, with an

outcome is investigated. Control of confounding by multivariable adjustment (or

other techniques such as propensity scores) is crucial if such relationships are to

be estimated from observational rather than from randomized intervention

studies [2,3]. Thus, in both types of research valid and useful statistical models are

needed.

Backward, forward, and stepwise variable selection algorithms are implemented

in most regression software packages, and together with univariate screening they

are the algorithms that are used most often to select variables in practice (see e.g.

[4,5] Chapter 2). All these algorithms rely only on significance as a sufficient

condition to include variables into a model. For example, univariate screening

includes variables based on the significance of their associations with the outcome

in univariate models, or backward elimination removes insignificant variables

one-by-one from a model. An excellent, critical summary of standard variable

selection methods can be found in Royston and Sauerbrei ([5], Chapter 2).

Hosmer and Lemeshow proposed the ‘purposeful selection algorithm’ [6,7]

which combines significance and change-in-estimate criteria [8–12] for selecting

explanatory variables for a final model and is particularly attractive as it can be

realized with standard software. Here, we will readopt the idea of combining

significance and change-in-estimate criteria, and we will suggest a simple

approximation to quantify the change-in-estimate from which a hypothesis test

on the change-in-estimate can be directly derived.

The remainder of the manuscript is organized as follows: the Methods section

will first discuss the change-in-estimate criterion and selection by significance.
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Later, we will present a new proposal for an efficient algorithm, denoted as

augmented backward elimination (ABE), combining both criteria. A SAS macro

incorporating the ABE algorithm will be introduced [13,14]. The subsequent

section summarizes results of a simulation study to evaluate the algorithm.

Aspects of application of ABE are discussed by means of a study of progression of

chronic kidney disease, including the use of resampling methods for confidence

interval estimation and for assessing model stability.

Methods

The Change-In-Estimate Criterion Revisited

We denote by d{a
p the change-in-estimate, i.e., the change in a regression

coefficient bp by removal of a variable Xa from an arbitrary linear statistical model

with k explanatory variables X1, . . . ,Xk; p,a[f1, . . . ,kg; p=a. (The indices p and a
refer to the roles of Xp and Xa in d{a

p as the ‘passive’ and ‘active’ variables,

respectively.) Instead of refitting the model with Xa omitted, we propose to

approximate the change-in-estimate, using the estimates b̂p and b̂a, their

covariance ŝpa, and the variance of b̂a, ŝ2
a, as

d̂{a
p ~{

b̂aŝpa

ŝ2
a
:

This approximation is motivated by considering b̂p and b̂a as random variables

with variances ŝ2
p and ŝ2

a and covariance ŝpa. The slope of a regression of b̂p on b̂a,

which denotes the expected change in b̂p if b̂a is augmented by 1, is then given by

ŝpa=ŝ2
a. Since we would like to approximate what happens if b̂a~0, i.e., if b̂a is

subtracted from b̂a, we multiply the slope by {b̂a. The approximation does not

only speed up the evaluation of the change-in-estimate considerably, but it also

allows to directly assess the ‘significance’ of the change-in-estimate, i.e., to test for

collapsibility of the models including and excluding Xa. The variance of d{a
p is

given by

Var d̂{a
p

� �
~

ŝpa

ŝ2
a

� �2

Var b̂a

� �
~

ŝpa

ŝ2
a

� �2

ŝ2
a~

ŝ2
pa

ŝ2
a

,

and its standard error follows as SE d̂{a
p

� �
~ŝpa=ŝa. If the covariance ŝpa is not

exactly zero, a z-statistic for testing d{a
p ~0 could thus be constructed by
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zd~
d̂{a

p

SE d̂{a
p

� �~{
b̂a

ŝa
,

which equals the z-statistic for testing ba~0. Thus, removal of ‘significant’ active

variables causes ‘significant’ changes in the estimates of passive variables, and

removal of ‘non-significant’ active variables causes ‘non-significant’ changes in the

estimates of passive variables. Consequently, attempting to use a significance-

based threshold for the change-in-estimate criterion reduces to a simple

significance-based selection of variables, as if the change-in-estimate criterion is

not considered at all. (If the covariance ŝpa is exactly zero, then d̂{a
p ~0

irrespective of b̂a, and elimination of Xa will not cause a change in b̂p. This case

can only be expected in analyses of experiments with factorial designs by linear

models, a situation where variable selection is not considered.)

Under the null hypothesis of ba~0, equivalent to d{a
p ~0, variable selection

based on significance-testing will control the probability of falsely selecting Xa

approximately at the nominal type I error rate. However, the change-in-estimate

criterion is usually evaluated using a pre-specified minimum value of d{a
p or

d{a
p =b̂p as a threshold for leaving Xa in a model [10,12,15], and thus the

probability of a false selection of Xa is not controlled. This probability is rather

associated with the standard error of d{a
p , which is higher in smaller samples

compared to larger ones.

Despite this unfavorable property, the change-in-estimate criterion may still be

useful to obtain a model which approximates the unselected model up to

negligible differences in point estimates of the regression coefficients, but contains

fewer variables. Another justification for incorporating the change-in-estimate

criterion in variable selection is to avoid the tendency of purely significance-based

selection to select only one out of several correlated variables.

Some authors used a relative criterion jd̂{a
p =b̂pj with, e.g., 0:1 as the threshold

value [6,10,12,15]. This definition may not be suitable if b̂p is close to zero. We

propose the following criteria, which do not share this property, are suitably

standardized and focus on the quantities of interest in a regression analysis:

1. In linear regression, regression coefficients depend on the scaling of the

explanatory variable and on that of the outcome variable. Scale-independence

is attained by evaluating

jd{a
p jSD(Xp)

SD(Y)
§t,

where SD(Xp) and SD(Y) are the standard deviations of the passive explanatory variable Xp

and the outcome Y , respectively.
2.
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1. In logistic or Cox regression, interest lies in odds and hazard ratios,

respectively. This leads us to the standardized criterion

exp½ d{a
p

��� ���SD Xp
� �
�§1zt or equivalently, jd{a

p jSD(Xp)§log(1zt).

The threshold value t could be set to, say, 0.05 but can be adopted to the

specific modeling situation.

Usually, the individual explanatory variables play different roles (e.g., exposure

variable of interest, important adjustment variable, less important adjustment

variable) and this should be reflected in the selection process. We have identified

three specific roles of explanatory variables, which may require different handling

when evaluating the change-in-estimate criterion:

1. ‘Passive or active’ explanatory variables: Generally, explanatory variables are used

as passive as well as active variables when evaluating the change-in-estimate

criterion.

2. ‘Only passive’ explanatory variables: In etiologic modeling, it is necessary to

always keep the exposure variable of interest in the model. Furthermore, one

may force the modeling process to always include some known confounders (in

etiologic modeling) or predictors (in prognostic modeling). Such exposures of

interest, known confounders or predictors are always considered as passive

variables in evaluating the change-in-estimate criterion for other variables.

3. ‘Only active’ explanatory variables: Less important explanatory variables

should only be included if their exclusion causes changes in the estimates of

more important explanatory variables. Thus, such variables of minor

importance are only considered as active but never as passive variables when

evaluating the change-in-estimate criterion.

Variable Selection Based on Significance

Most variable selection procedures that are used in practice only rely on significance,

e.g., univariate screening, forward selection, stepwise selection, and backward

elimination (BE). Literature suggests that BE procedures with a mild significance level

criterion, e.g., a~0:2, are superior to other approaches with regard to bias and root

mean squared error of regression coefficients [8,9,16,17]. BE has a tendency to under-

select important confounders [18], because it ignores variables with a strong association

with the exposure, but a relatively weak association with the outcome conditional on

the exposure. Royston and Sauerbrei also distinguish between ‘BE only’ and BE with

additional forward steps, in which variables that have already been excluded at earlier

iterations are reconsidered for inclusion [5]. They conclude that re-inclusion after

exclusion rarely occurs. Therefore, we consider BE-only with a significance criterion of

a~0:2 as the consensus method for significance-based variable selection. There is no
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statistical justification for univariate screening ([17,19] Chapter 4.4). Forward selection

may sometimes be preferred over BE for practical reasons, e.g., in very high-

dimensional variable selection problems. Stepwise selection, e.g., as implemented in

SAS procedures [13], is essentially a forward selection with additional backward steps.

The Initial Working Set of Variables

For estimating etiologic models a priori information should be used to define the

initial working set of variables to consider during statistical modeling. This a

priori information can often be represented by a directed acyclic graph (DAG)

which reflects the conditional dependencies of variables [20,21]. DAGs prompt

the analyst to carefully question the causal relationship between all explanatory

variables in a model, and they allow to identify the role of each variable: either as a

confounder, a mediator, a variable unrelated to the causal relationship of interest

[22], or incorporating the possibility of unmeasured quantities, a collider [23].

Finally, only variables assumed to be confounders, i.e., variables which are

possibly associated with the outcome and with the exposure variable of interest,

but which are not on the causal pathway from the exposure to the outcome,

should be included for multivariable adjustment. Application of such causal

diagrams requires that the analyst knows how each explanatory variable is causally

related to each other [24]. However, in many areas of research such knowledge is

hardly available or at least very uncertain.

For prognostic modeling situations the initial set of variables will be selected

based on other reasons, like future availability, the costs of collecting these variables,

the reliability of measurements, or the possibility of measurement errors.

Variable Selection Based on Significance and Change-In-Estimate

In summary, we propose to use BE augmented with a standardized change-in-

estimate criterion on the quantity of interest for variable selection. We will denote

this algorithm as ‘augmented backward elimination’ (ABE). The algorithm is

briefly outlined in Figure 1. The ABE algorithm has been implemented in a SAS

macro [13], which is described in more detail in a Technical Report [14]. The SAS

macro can handle continuous, binary and time-to-event outcomes by implicitly

applying linear regression using PROC REG, logistic regression using PROC

LOGISTIC, or Cox proportional hazards regression using PROC PHREG,

respectively. Basically, the ABE macro only needs the following specifications:

N Type of model (linear, logistic or Cox)

N Name of the outcome variable

N Names of the explanatory variables from the initial working set

N Roles of explanatory variables from the initial working set (‘passive or active’,

‘only passive’, ‘only active’)

N Significance threshold a (default: 0:2)

N Change-in-estimate threshold t (default: 0:05)
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Setting t~? (i.e., to a very large number) turns off the change-in-estimate

criterion, and the macro will only perform BE. On the other hand, the

specification of a~0 will include variables only because of the change-in-estimate

criterion, as then variables are not safe from exclusion because of their p-values.

Specifying a~1 will always include all variables.

We agree with Hosmer and Lemeshow’s position that any automated algorithm

only suggests a preliminary final model. Such a model should be critically

evaluated for possible extensions such as non-linear and non-additive (interac-

tion) effects ([6], Chapter 5.2). Alternatively to the post-hoc inclusion of some

transformations of continuous variables to allow for the estimation of non-linear

effects, one could first apply an algorithm like ‘multivariable fractional

polynomials’ (MFP) which simultaneously selects variables and determines their

functional form by appropriate transformations [5]. Then ABE could be applied

by including the possibly transformed continuous variables and all other selected

variables as ‘only passive’ variables, and any further variables which were not

selected by MFP could be entered as ‘passive or active’ variables.

Figure 1. Brief outline of the augmented backward elimination procedure.

doi:10.1371/journal.pone.0113677.g001
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It should be mentioned that specifying a significance criterion of a~0:2 does

not mean that the model itself or all its regression coefficients are significant at

level 0:2. Simulations have shown that the actual significance levels of models

derived by any variable selection procedure are usually much higher than the

reported levels [25,26]. Likewise, one should be aware that the actual confidence

levels of the reported confidence intervals in the final model are often less than the

nominal ones. Additionally, performance measures of the model such as R2 or

area under the receiver operating characteristic curve are likely to be over-

estimated, i.e., too optimistic, if directly computed from the final estimates [27].

These phenomena are usually not dramatic if the sample size is large enough

compared to the number of variables considered, e.g., if the effective sample size is

at least 20 to 50 times the number of variables considered in the initial set.

However, it can lead to wrong conclusions in other cases if not appropriately

corrected [28].

Since the algorithm is available in a macro, it can easily be applied to bootstrap

resamples or subsets of the data at hand, which allows to derive bootstrap

confidence intervals for the regression coefficients (usually wider than their

model-based counterparts), or to perform cross-validation to obtain optimism-

corrected performance measures. In such analyses, the algorithm is applied to the

resamples or subsets without any changes in the parameter settings. It may then

result in different final models than obtained in the original analysis, and the final

models may even differ between resamples or subsets. Thus, such analyses account

for the variation in estimated regression coefficients that is produced by the

uncertainty of variable selection in a data set, and they validate the model

development strategy rather than the model itself. Later, we will demonstrate the

difference between model-based and bootstrap standard errors by means of a real-

life example.

Simulation Study

We evaluated the proposed ABE procedure and compared it to BE, no selection

and variable selection based on background knowledge in the setting of an

etiologic study. Analyses comprised continuous, binary and time-to-event

outcomes and were carried out using our SAS macro ABE.

We simulated seven normally distributed potential explanatory variables

X1, . . . ,X7 among which X1 was the exposure variable of main interest. A latent

outcome variable was defined as Y�~b1X1zX2zX4zX7. The covariance

structure of X1, . . . ,X7 was defined such that omission of X2,X4 or X7, or false

inclusion of X3 could induce bias into the estimate of b1, and that a pre-specified

variance inflation factor (VIF) of X1 given X2, . . . ,X7 was attained. From Y� we

generated continuous, binary and time-to-event variables to simulate linear,

logistic and Cox regression, respectively. Further simulation parameters were set

such that we obtained approximately equal sampling distributions of b̂1 in these

three types of regression analyses.
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Specifically, X2,X3,X4, and X5 were drawn from a multivariate normal

distribution with a mean vector of 0, standard deviations of 1 and bivariate

correlation coefficients of 0:5. X6 and X7 were independently drawn from a

standard normal distribution. X1 depended on X2,X3 and X6 and was simulated

from the equations X1~0:266 X2zX3zX6ð Þz0:710E for scenarios with VIF~2
and X1~0:337 X2zX3zX6ð Þz0:449E for VIF~4, where E was a random number

drawn from a standard normal distribution. The latent outcome variable was

defined as Y�~b1X1zX2zX4zX7.

Subsequently, we generated continuous, binary and time-to-event outcome

variables YC,YB and YT from Y� to simulate linear, logistic and Cox regression,

respectively. In particular, YC was drawn from a normal distribution with mean

Y� and standard deviation 0:36. YB was drawn from a Bernoulli distribution with

event probability 1=(1zexp½{Y��). The overall expected event probability was

approximately 0:5. Weibull distributed survival times T were drawn from

{ log (U)=0:125 exp Y�ð Þ½ �1=3
, where U was a standard uniform random variable

[29]. To obtain approximately 55% censoring (averaged over all scenarios),

follow-up times F were drawn from a uniform U ½0,3:35� distribution, and the

observable survival time and status indicators were defined as YT~min(T,U) and

ST~I(TwU), respectively. For Cox regression, all covariates were divided by 2.

These definitions guaranteed that the sampling standard deviations of estimates of

b1 from linear, logistic and Cox regression in the scenarios with VIF~2 and

b1~1 were approximately equal when the models were specified correctly.

In a factorial design we simulated 1000 samples of 120 observations for each

combination of true b1 (either 0 or 1), VIF (2,4) and type of regression (linear,

logistic or Cox). If b1~1 and VIF~2, this sample size gave a power of 50% to

reject the null hypothesis b1~0 at a two-sided significance level of 5% in all three

types of regression, when the model was specified correctly. (In other words, in

such models the expected p-value for this hypothesis was 0:05.) Each sample was

analyzed by a regression on all explanatory variables without selection, applying

ABE with t~0:05 or 0:1 and a~0:05 or 0:2, and applying BE with a~0:05 or 0:2.

Unselected, ABE and BE analyses were then repeated by applying the disjunctive

cause criterion [30] assuming that causal relationships between the variables

X1, . . . ,X7 and their likely effects on the outcome were known, which means that

X5 was eliminated from the scope of explanatory variables to consider.

For these evaluations, we used correctly specified models as ‘benchmark’, i.e.,

those containing X1,X2,X4 and X7 without further selection. We computed the

bias and root mean squared error (RMSE) of unselected models, BE and ABE

relative to the mean b̂1 from such correctly specified models.

Simulation Results

While the full results of our simulation study are contained in a Technical Report

[14], the relative behavior of modeling by ABE, BE or by applying no variable

selection can already be understood from the results selected for Table 1.
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Table 1. Simulation study: bias and root mean squared error (RMSE) of regression coefficients b̂1 of a continuous exposure variable X1 in unselected
models, models selected by backward elimination (BE) and models selected by augmented backward elimination (ABE) for linear, logistic and Cox
regression.

VIF b1

Variable selection among
X2, . . . ,X7 Bias (6100)

RMSE
(6100) Selected models (%)

of bb1 Biased Correct Inflated

Linear regression

No selection 1 24 100

2 0 BE, a~0:2 3 21 33 35 32

ABE, a~0:2,t~0:05a~0:2,t~0:05 2 22 28 34 38

No selection 1 24 100

2 1 BE, a~0:2 3 21 33 35 32

ABE, a~0:2,t~0:05 2 21 29 35 36

No selection 1 57 100

4 0 BE, a~0:2 6 50 39 34 27

ABE, a~0:2,t~0:05 2 56 25 14 61

No selection 1 57 100

4 1 BE, a~0:2 6 50 40 34 27

ABE, a~0:2,t~0:05 2 56 28 17 56

Logistic regression

No selection 1 20 100

2 0 BE, a~0:2 1 17 7 48 45

ABE, a~0:2,t~0:05 1 20 1 4 95

No selection 6 25 100

2 1 BE, a~0:2 5 21 11 43 46

ABE, a~0:2,t~0:05 6 25 2 3 95

No selection 2 47 100

4 0 BE, a~0:2
Geben Sie hier eine Formel ein.

4 38 12 46 42

ABE, a~0:2,t~0:05 2 47 1 2 97

No selection 6 55 100

4 1 BE, a~0:2 7 46 17 41 43

ABE, a~0:2,t~0:05 6 55 1 1 98

Cox regression

No selection 21 22 100

2 0 BE, a~0:2
Geben Sie hier eine Formel ein.

1 19 20 40 40

ABE, a~0:2,t~0:05 21 22 7 13 80

No selection 2 23 100

2 1 BE, a~0:2
Geben Sie hier eine Formel ein.

3 20 19 40 41

ABE, a~0:2,t~0:05 2 23 7 13 80

No selection 22 52 100

4 0 BE, a~0:2 4 47 26 36 38

ABE, a~0:2,t~0:05 22 52 6 5 89

No selection 1 52 100
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In general, we found that no selection and ABE selection lead to less biased

estimates of the exposure effect than BE. The bias of ABE is small in absolute

terms (usually around 1{2% and only in logistic regression 6%) and never

exceeding the bias of no selection. The bias of BE with a~0:2, although slightly

larger, is still acceptable for most practical purposes. BE with a~0:2 has some

advantages with respect to RMSE compared to ABE and no selection. The RMSE

of ABE is slightly smaller than that of no selection in linear regression, and both

procedures yield virtually identical RMSEs in logistic and Cox regression. These

observations can be explained by comparing the proportion of selecting ‘inflated’

and ‘biased’ models, i.e., models in which noise variables were falsely included or

important variables were falsely excluded, respectively. Unselected models always

contain such noise variables. In 39{64% of the simulated data sets for linear

regression, and in 2{20% of the simulated data sets for logistic and Cox

regression, ABE manages to identify and exclude those noise variables but

occasionally also eliminates some of the important variables (25{29% in linear

regression, 1{7% in logistic and Cox regression). By contrast, BE excludes noise

variables more often (54{73%), which likely explains its RMSE advantages. Note

that despite BE’s nominal significance level of a~0:2, the probability of false

inclusion of at least one noise variable lies in the range of 27{46% in our setting.

Important variables are frequently missed by BE (33{40% in linear regression,

7{17% in logistic regression, 19{28% in Cox regression), and this causes a

slightly higher bias.

In additional simulations which are only reported in the Technical Report [14],

we found that lowering the significance level in BE to a~0:05 further increases

BE’s bias since important adjustment variables are more frequently missed, and

this also causes a modest increase in RMSE. Furthermore, increasing the change-

in-estimate threshold of ABE to t~0:1 makes ABE more similar to BE, i.e., bias is

increased but RMSE slightly decreased. With smaller samples, bias and RMSE are

generally more inflated with all methods. Finally, incorporating background

knowledge into variable selection improves bias and RMSE for all investigated

Table 1. Cont.

VIF b1

Variable selection among
X2, . . . ,X7 Bias (6100)

RMSE
(6100) Selected models (%)

of bb1 Biased Correct Inflated

4 1 BE, a~0:2
Geben Sie hier
eine Formel ein.

6 46 28 36 36

ABE, a~0:2,t~0:05 1 52 7 4 89

Abbreviations and symbols: a, significance threshold; ABE, augmented backward elimination; BE, backward elimination; RMSE, root mean squared error; t,
change-in-estimate threshold; VIF, variance inflation factor of X1 conditional on X2, . . . ,X7. Sample size, 120 subjects; Number of simulations, 1000; Variables
selection based on six continuous candidate adjustment variables X2, . . . ,X7, among which three are truly associated with the outcome and five are
correlated with the exposure; ‘Biased’, at least one variable from the true model was not selected; ‘Correct’, selected set of variables matches the true
model; ‘Inflated’, selected set of variables contains all variables of the true model and at least one further variable. Full details on the simulation setup are
contained in the Methods section.

doi:10.1371/journal.pone.0113677.t001
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selection procedures. Thus, we conclude that in the scenarios studied, application

of ABE with the proposed settings for a and t is at least as safe as application of BE

with regard to bias, and is at least as good as, but often better than, including all

available variables from the initial set for adjustment with regard to bias and

RMSE.

Example

Recently, Plischke et al. investigated the etiologic effect of urine osmolarity UOSM

(mosm/L) on progression to end stage renal disease defined as admission to

dialysis in patients with chronic kidney disease [31]. The study was approved by

the Medical University of Vienna’s internal review board, No. 1982/2013. Of the

245 patients attending their nephrology outpatient clinic 95 (38:78%) patients

required dialysis during a median follow-up time of 7:93 years. Here we want to

elucidate the effect of different levels of UOSM, the exposure of interest, on the

cause-specific hazard. Consequently, patients who died within follow-up but

before initiating dialysis are considered as censored [32]. We used the logarithm

to base 2 of UOSM for all modeling because of its skewed distribution. Based on a

priori knowledge nine explanatory variables measured at baseline are considered

as potential confounders: log2 of creatinine clearance (ml/min), log2 of

proteinuria (g/L), presence of polycystic kidney disease, whether or not beta-

blockers, diuretics, or angiotensin-converting enzyme inhibitors and angiotensin

II type 1 receptor blockers (ACEI/ARBs) were used, age in decades, gender, and

mean arterial pressure (mmHg) (Table 2). We assume that all these variables

Table 2. Urine osmolarity example: demographic and clinical characteristics of all 245 patients at baseline.

Median (1st, 3rd quartile) or Mean (SD) or n (%)

UOSM (mosm/L) 510.1 (417.2, 620.6)

Creatinine clearance (ml/min) 46.4 (29.9, 78.8)

Proteinuria (g/L) 1.0 (0.4, 2.5)

Mean arterial pressure (mmHg) 97.7 (7.8)

Age (years) 54.6 (15.3)

Male gender 139 (56.7%)

Polycystic kidney disease 16 (6.5%)

Beta-blockers 116 (47.4%)

Diuretics 115 (46.9%)

ACEI/ARBs 206 (84.1%)

Log2 of UOSM 9.0 (0.5)

Log2 of creatinine clearance 5.6 (0.9)

Log2 of proteinuria 0.0 (1.6)

Depending on the scale of the characteristic and its distribution either the median (1st, 3rd quartile), mean
(standard deviation SD), or absolute number n (percentage) is given.
Abbreviations: ACEI/ARBs, use of angiotensin-converting enzyme inhibitors and Angiotensin II type 1
receptor blockers; SD, standard deviation; UOSM, urine osmolarity.

doi:10.1371/journal.pone.0113677.t002
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fulfill the disjunctive cause criterion for selection of potential confounders, i.e., all

variables are either a possible cause of the exposure or a possible cause of the

outcome. The largest absolute correlation occurred between UOSM and creatinine

clearance (0:59), followed by three correlation coefficients slightly above 0:30 (use

of diuretics and age; creatinine clearance and age; proteinuria and ACEI/ARBs).

The final model should be as simple as possible and should not include

irrelevant variables. BE with a significance threshold a of 0:2 selects six of the ten

variables from the initial set into the final model (Table 3). Figure 2 (first row, left

column) shows the sensitivity of the absolute standardized regression coefficient

of UOSM on the choices of a. Model stability was assessed by inclusion frequencies

of each variable in 1000 bootstrap resamples, each analyzed with BE and a~0:2.

All explanatory variables selected into the (original) final model by BE are selected

in at least 60% of all bootstrap resamples. Figure 3 (first row) shows the number

of selected variables in the 1000 models of the bootstrap resamples. In 60% of the

bootstrap resamples six to seven variables were selected. The sensitivity of the

bootstrap inclusion frequencies on the choice of significance threshold a is shown

in Figure 3 (first row, right column).

Applying ABE with a~0:2 and t~0:05 additionally selects ACEI/ARB use,

since this causes a change in the standardized hazard ratio of proteinuria by more

than 5%. ACEI/ARB use is included in almost 50% of all bootstrap resamples.

Figure 3 (second row) also shows that ABE tends to select slightly more variables

than BE. From a medical point of view the inclusion of ACEI/ARBs into the

model can be explained, as ACEI/ARBs inhibit the activity of the renin-

Table 3. Urine osmolarity example: final models selected by backward elimination (BE) with a significance threshold a~0:2, augmented backward
elimination (ABE) with a~0:2 and a change-in-estimate threshold t~0:05, and unselected model (No selection).

Parameter BE (a~0:2) HR (95% CI), p

Bootstrap
inclusion
frequencies

ABE (a~0:2,t~0:05) HR

(95% CI), p

Bootstrap
inclusion
frequencies

No selection HR (95% CI),
p

Log2 of UOSM 2.03 (1.11, 3.71), 0.021 2.05 (1.13, 3.72), 0.019 1.95 (1.03, 3.72), 0.042

Log2 of creatinine clearence 0.14 (0.09, 0.21), ,0.001 100.0% 0.14 (0.09, 0.21), ,0.001 100.0% 0.13 (0.08, 0.21), ,0.001

Log2 of proteinuria 1.88 (1.61, 2.19), ,0.001 100.0% 1.94 (1.64, 2.29), ,0.001 100.0% 1.90 (1.60, 2.25), ,0.001

Polycystic kidney disease 2.94 (1.50, 5.80), 0.002 93.1% 2.98 (1.51, 5.88), 0.002 94.3% 2.95 (1.48, 5.87), 0.002

Beta-blockers 1.57 (1.02, 2.44), 0.042 74.2% 1.58 (1.02, 2.446), 0.040 77.1% 1.55 (0.99, 2.42), 0.057

Diuretics 1.41 (0.91, 2.16), 0.122 60.6% 1.45 (0.94, 2.24), 0.096 66.3% 1.49 (0.94, 2.38), 0.092

ACEI/ARBs 35.2% 0.71 (0.35, 1.45), 0.344 47.7% 0.69 (0.33, 1.42), 0.310

Age (in decades) 36.9% 45.9% 0.96 (0.83, 1.11), 0.593

Male gender 33.0% 40.4% 1.14 (0.72, 1.83), 0.577

Mean arterial pressure 30.1% 36.8% 1.01 (0.97, 1.04), 0.730

Urine osmolarity UOSM, the exposure of main interest, is included in all models. The initial set of adjustment variables for these models was selected by the
disjunctive cause criterion. Hazard ratios (HR), 95% confidence limits (CI) and p-values are given. Model stability was evaluated by bootstrap inclusion
frequencies (based on 1000 bootstrap resamples). UOSM, creatinine clearance, and proteinuria were log2-transformed and therefore, corresponding hazard
ratios are per doubling of each variable.
Abbreviations and symbols: a, significance threshold; ABE, augmented backward elimination; ACEI/ARBs, use of angiotensin-converting enzyme inhibitors
and Angiotensin II type 1 receptor blockers; BE, backward elimination; CI, confidence interval; HR, hazard ratio; t, change-in-estimate threshold; Uosm, urine
osmolarity (mosm/L).

doi:10.1371/journal.pone.0113677.t003
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angiotensin-aldosterone system (RAAS), which controls fluid and electrolyte

balance through effects on the heart, blood vessels and the kidneys, and have been

shown to be renoprotective and slow the progression of chronic nephropathies

[33]. Angiotensin II, the main effector of the RAAS, exerts a vasoconstrictory

effect on postglomerular arterioles, increasing glomerular hydraulic pressure and

ultrafiltration of plasma proteins. Additionally, Angiotensin II has been linked to

sustained cell growth, inflammation and fibrosis, which have also been associated

with accelerated renal damage.

Confidence limits and p-values given in Table 3 do not reflect model

uncertainty and hence, are likely to underestimate the variability of regression

coefficients. Table 4 shows bootstrap standard errors for UOSM which are clearly

higher than their model-based counterparts. Robust standard errors correct some

Figure 3. Urine osmolarity example: number of selected variables in the final models of 1000 bootstrap
resamples for backward elimination BE with a~0:2 and augmented backward elimination ABE with
a~0:2 and t~0:05. The highlighted bars indicate the number of selected variables in the original sample.
Abbreviations and symbols: a, significance threshold; ABE, augmented backward elimination; BE, backward
elimination; t, change-in-estimate threshold;.

doi:10.1371/journal.pone.0113677.g003

Figure 2. Urine osmolarity example: selection path (left column) of standardized regression
coefficients b̂ and model stability (inclusion frequencies) in 1000 bootstrap resamples (right column)
for backward elimination (BE) and augmented backward elimination (ABE). First row: BE with a[½0,0:5�;
second row: ABE with a[½0,0:5� and t~0:05; third row: ABE with a~0:2 and t[ 0,0:15½ �. Abbreviations: ABE,
augmented backward elimination; BE, backward elimination; log2UOsm, log2 of urine osmorality; log2CCL,
log2 of creatinine clearance; log2Prot, log2 of proteinuria; BBlock, use of beta-blockers; PKD, presence of
polycystic kidney disease; Diur, use of diuretics; Age, age in decades; ACEI, use of angiotensin-converting
enzyme inhibitors and Angiotensin II type 1 receptor blockers; MAP, mean arterial pressure.

doi:10.1371/journal.pone.0113677.g002
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but not all of the uncertainty induced by model selection and may be a good

compromise if full resampling cannot be applied [34].

Up to now, all variables from the initial set were used as ‘passive or active’

variables when evaluating the change-in-estimate criterion. If required, we could

define only UOSM as ‘passive or active’ and treat all other explanatory variables as

‘only active’. Then only explanatory variables which reach the significance

threshold a or change the standardized hazard ratio of UOSM by more than tt will

be selected into the final model. Applying ABE with such redefined roles of

variables and with a~0:2 and t~0:05 gives the same final model as selected by

BE with a~0:2.

Discussion

In biomedical research we are often confronted with complex statistical modeling

problems involving a large number of potential explanatory variables and only

restricted prior knowledge about their relationships. Therefore, practical and

reproducible approaches to statistical modeling are needed.

The first step in finding a practically useful statistical model should always be a

careful pre-selection of explanatory variables based on subject-matter knowledge.

Often this is the most important prerequisite for any analytical modeling steps to

follow. If enough subject-matter knowledge is available causal diagrams may be of

help. However, causal diagrams are always based on expert knowledge and

opinions and their construction may sometimes not be universally reproducible.

This may motivate the careful use of a reproducible data-driven variable selection

procedure.

Based on our evaluation of unselected models, ABE and BE, we recommend

ABE for development of statistical models when there is only little guidance on

which variables to include. Compared to BE, ABE more often avoids bias due to

the false exclusion of an important confounding variable. Compared to no

variable selection, ABE frequently supplies smaller and thus practically more

useful models but with no detrimental consequences on bias or RMSE. By

construction, ABE models essentially show only negligible differences compared

to unselected models including all candidate variables. In practice, this may be

Table 4. Urine osmolarity example: incorporating model uncertainty into standard error (SE) estimates of urine osmolarity UOSM.

Selection algorithm Model-based SE Robust SE Bootstrap SE

BE with a~0:2 0.307 0.346 0.400

ABE with a~0:2, t~0:05 0.305 0.340 0.400

Model-based standard error, robust standard error and standard error based on 1000 bootstrap resamples for models selected with backward elimination
(BE) and augmented backward elimination (ABE).
Abbreviations and symbols: a, significance threshold; ABE, augmented backward elimination; BE, backward elimination; t, change-in-estimate threshold;
SE, standard error; Uosm, urine osmolarity (mosm/L).

doi:10.1371/journal.pone.0113677.t004
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important to demonstrate to reviewers and readers of a research report that all

relevant confounders are accounted for.

Our proposal for standardization of the change-in-estimate criterion employed

by ABE focuses on the quantity of interest in a given type of regression analysis

(regression coefficients, hazard ratios or odds ratios). It also considers the scaling

of the variables, such that its results are invariant to linear transformations of

variables. ABE can be adopted to the statistical modeling problem at hand, by

defining the role and thus the importance of each candidate explanatory variable.

Our approximation of the change-in-estimate shows that a ‘significant’ change-

in-estimate always results if the variable in question has a significant effect on the

outcome. Thus, if ‘false positive’ selections are to be avoided, a simple

significance-based selection such as BE is the method of choice. However, even

though ABE and other data-driven variable selection methods may be useful

statistical tools, they should not be a replacement for careful thinking of possible

causal relationships.

Whenever data-dependent variable selection is conducted, reported standard

errors and confidence limits understate the true uncertainty of regression

coefficients and derived quantities (hazard or odds ratios). We have demonstrated

how to use resampling-based methods to obtain more reliable interval estimates

and to evaluate model stability.

We have written a SAS macro ABE, which implements augmented backward

elimination for linear, logistic and Cox regression. By means of a simulation and

an analysis of a biomedical study, we evaluated the ABE algorithm and its

implementation in SAS. Depending on the settings of the parameters of ABE

(significance threshold a, change-in-estimate threshold t and roles of candidate

explanatory variables), the number of variables in the final model selected by ABE

will be between the number of variables selected by BE and the total number of

variables. Based on our simulations and practical experiences with ABE, we

suggest to use a significance threshold of a~0:2 and a change-in-estimate

threshold of t~0:05. The SAS macro ABE is freely available under a General

Public License (GPL) at: http://cemsiis.meduniwien.ac.at/en/kb/science-research/

software/statistical-software/abe/.

Supporting Information

Materials S1. SAS code to reproduce the simulation study and the analysis of the

urine osmolarity example.

doi:10.1371/journal.pone.0113677.s001 (ZIP)
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