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Abstract

MicroRNAs have turned out to be important regulators of gene expression. These molecules originate from longer
transcripts that are processed by ribonuclease III (RNAse III) enzymes. Dicer proteins are essential RNAse III enzymes that are
involved in the generation of microRNAs (miRNAs) and other small RNAs. The correct function of Dicer relies on the
participation of accessory dsRNA binding proteins, the exact function of which is not well-understood so far. In plants, the
double stranded RNA binding protein Hyponastic Leaves 1 (HYL1) helps Dicer Like protein (DCL1) to achieve an efficient and
precise excision of the miRNAs from their primary precursors. Here we dissected the regions of HYL1 that are essential for its
function in Arabidopsis thaliana plant model. We generated mutant forms of the protein that retain their structure but affect
its RNA-binding properties. The mutant versions of HYL1 were studied both in vitro and in vivo, and we were able to identify
essential aminoacids/residues for its activity. Remarkably, mutation and even ablation of one of the purportedly main RNA
binding determinants does not give rise to any major disturbances in the function of the protein. We studied the function of
the mutant forms in vivo, establishing a direct correlation between affinity for the pri-miRNA precursors and protein activity.
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Introduction

MicroRNAs are a class of post-transcriptional regulators that

negatively regulate the expression of mRNAs through comple-

mentary base pairing. They originate in endogenous transcipts

that fold into hairpin structures (pri-miRNA). The miRNAs are

located in stem-loop structures within the pri-miRNA and are

released through the action of RNAse III type enzymes. The

resulting <21 nt mature molecules are subsequently incorporated

into the effector RNA-induced silencing complex (RISC), guiding

the complex to target mRNAs through base pair complementarity,

resulting in translation inhibition or mRNA degradation [1].

The biogenesis of miRNA in animals proceeds in two steps

separated both in time and location. The nuclear RNAse Drosha

performs a first cut in the pri-miRNA, releasing the stem loop (pre-

miRNA). This RNA molecule is exported to the cytoplasm where

Dicer (Dcr) excises the first 22 nt of the pre-miRNA, and this final

miRNA molecule is subsequently transferred to the RISC

complex. MicroRNA processing in plants differs substantially, as

a single RNAse III enzyme, DCL1, produces both of the staggered

cuts necessary to release the miRNA from the primary miRNA

transcript in the nucleus [2].

A common feature to all the RNA interference (RNAi)

processing machineries characterized so far is the participation

of accessory RNA binding proteins in the dicing reaction. In

animals, Drosha is helped by the double stranded RNA Binding

Domain (dsRBD) containing protein DGCR8 (DiGeorge syn-

drome critical region gene 8), whereas Dicer processing of pre-

miRNA requires the presence of TRBP (human immunodeficien-

cy virus transactivating response RNA-binding protein). In

Drosophila melanogaster while pri-miRNAs are processed by

Drosha/PASHA (DGCR8 homologous) in the nucleus and Dcr-

1/Loquacious (Loqs) in the cytoplasm, the exogenous double

stranded RNA (dsRNA) are generated by Dcr2/Loqs-R2D2. Loqs

is required by Dcr-1 for efficient processing of certain classes of

pre-miRNAs into mature miRNAs, but it is dispensable for

miRNA RISC loading [3,4]. In contrast, Dcr-2 is able to process

dsRNA templates in the absence of R2D2, but requires this double

stranded RNA Binding Protein to form the Risc Loading Complex

(RLC), which thermodynamically orientates siRNA duplexes onto

Ago2 for passenger strand cleavage and active siRNA loaded

RISC formation [5,6]. Dcr-2 also requires the help of the dsRBD

containing protein R2D2 for the generation of small interference

RNA (siRNA). But the exact molecular role of these dsRBD-

containing proteins in RNA processing has not yet been

established.

Several accessory proteins that participate in the plant miRNA-

processing complex have been identified, most prominently
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SERRATE (SE) and HYL1 [7,8]. The protein HYL1 has been

shown to be essential for accurate digestion of the miRNA

precursors both in vivo and in vitro [9,10]. It was also suggested

to participate in miRNA strand selection [11]. The sequence of

HYL1 contains two dsRBDs in its N-terminus (residues 1–170)

followed by a long, presumably unstructured, C-terminal region

(residues 171–419) containing six repeats of a 28 aminoacid

sequence. The two dsRBDs of the protein are sufficient for its

activity in miRNA processing [12].

HYL1 and other helper proteins have similar domain architec-

tures, consisting of two or three dsRBDs organized in tandem.

However, the RNA binding properties of these helper proteins is

variable. Although R2D2 contains two dsRBDs it does not bind

siRNA alone, but requires the presence of Dcr-2 [5,13,14]. In

TRBP, the first two domains interact with precursor RNA,

whereas the third one does not [15–17]. In HYL1 the first domain

is the one that dominates RNA binding, with the second one

interacting only weakly [18,19]. Substrate binding is supposed to

be an essential part of the helper protein function, however it has

not been established whether it is an absolute requirement for the

participation of these proteins in miRNA biogenesis, and what the

consequences of altering the substrate binding affinity of the

proteins in the processing mechanism in vivo may be. In order to

clarify this issue in the present work we sought to identify the RNA

binding determinants of HYL1 and to assess their importance on

the function of the protein in vivo.

Materials and Methods

Plant material and growth conditions
Hyl1-2 (SALK_064863) plants of Arabidopsis thaliana (Col-0

ecotype), used for all experiments, were obtained from the

Arabidopsis Biological Resource Center (ABRC). Plants were

grown on MS medium with 50 mg/ml kanamycin and transplant-

ed to soil at 23uC under long days (16 h light/8 h dark) in a

growth room.

Construction of mutant protein vectors
The cDNA sequence of the HYL1 gene was originally isolated

from a mixed cDNA library of Arabidopsis by PCR and cloned in

pBluescript (pBS) plasmid. A BamHI site at the 59 end and a SalI

site at the 39 end were introduced for the construction of plant

binary vectors. Overlapping PCR, using the cDNA of HYL1 as

template, was used to make the five mutants versions of HYL1

(K17A/R19A, K38A, H43A/K44A, D40–46 and R67A/K68A.

The primers used for cloning and mutagenesis are shown in Text

S1. Mutations were verified by DNA sequencing, and the wild-

type and mutants versions of HYL1 were introduced into the

binary vector CHF5 under the control of the cauliflower mosaic

virus 35S.

All binary constructs were transformed into Agrobacterium
tumefaciens. Genetic transformation of homozygous hyl1-2
mutant plants was performed using the floral dip method [20].

For selection of transgenic plants, seeds were grown on soil

supplemented with 0.2 g/l BASTA at 23uC under long days (16 h

light/8 h dark) in a growth room. To classify the phenotype of T1

lines, the size and shape of the rosette leaves were examined. We

analyzed 30 to 50 T1 plants of each group.

Expression analysis
Inflorescence RNA was extracted using TRIzol reagent

(Invitrogen) and 0.5 mg of total RNA was treated with RQ1

RNase-free DNAse (Promega). Next, first-strand cDNA synthesis

was carried out using SuperScriptTM III Reverse Transcriptase

(Invitrogen) with the appropriate primers. PCR reactions were

performed in an Mx3000P QPCR System (Stratagene) using

SYBR Green I (Roche) to monitor double-stranded (ds) DNA

synthesis. Quantitative (q) PCR of each gene was carried out for at

least three biological replicates, with technical duplicates for each

biological replicate. MiR164a, miR172a and miR396a levels were

concurrently determined in each sample by stem-loop RT-qPCR

[21]. The relative transcript level was determined for each sample,

normalized using PROTEIN PHOSPHATASE 2A cDNA level

[22]. Primer sequences are detailed in Text S1.

Protein expression and purification
Fragments corresponding to the first dsRBD of HYL1 protein

(HYL1-1) and their R1, R2 and R3 mutants were amplified by

PCR from the binary vectors for plant transformation using the

primers shown in Text S1, cloned into the pET-TEV expression

vector and sequenced [23]. The plasmids were transformed in E.
coli BL21 (DE3) cells, which were then grown at 37uC in

M9 minimal medium supplemented with 1 g/l 15N-NH4Cl (Cam-

bridge Isotope Laboratories) in the case of NMR experiments and

in LB medium for the stability and affinity experiments.

Protein expression was induced with 1 mM IPTG (isopropyl-b-

D-thiogalactopyranoside) at OD600 <0.7 and cells were grown for

4–5 hours. Cells were harvested, resuspended in a buffer

containing 100 mM phosphate, 10 mM Tris, 5 mM b-mercapto-

ethanol, 8 M Urea pH 8 and disrupted by sonication. The

denatured proteins were purified using a Ni (II) column and

refolded by dyalisis in 100 volumes of 100 mM phosphate, 50 mM

NaCl, 5 mM b-mercaptoethanol, 50 mM glutamate, 50 mM

arginine. The refolded proteins were then digested using 1:100

mass ratio of His-tagged TEV protease, to remove the His-tag,

and the protease was removed by a further passage through a Ni

(II) column.

RNA synthesis
RNA samples were produced by in vitro transcription with T7

RNA polymerase, using annealed oligonucleotides. Briefly, a mix

was prepared containing 1X transcription buffer [40 mM Tris

(pH 8), 5 mM DTT, 1 mM spermidine, 0.01% Triton X-100, and

80 mg/mL PEG 8000], each rNTP at 4 mM (rA, rC, rG, and rU),

20 mM MgCl2, 40 mg/mL BSA, and 1 unit of pyrophosphatase,

and the annealed template at 35 mg/mL. The reaction was started

by addition of T7 RNA polymerase and allowed to proceed for 3 h

at 37uC. Then, 50 units of RNase-free DNase were added, and the

mix was further incubated for 30 min at 37uC. The reaction

mixture was then diluted 8-fold in 20 mM Tris, 10 mM EDTA,

and 8 M urea (pH 8.0) and loaded on a Q-Sepharose column

equilibrated with the same buffer. The column was eluted with a

gradient from 0 to 1 M NaCl in the same buffer. Fractions

containing RNA, as determined by A260, were checked via

denaturing 5% polyacrylamide gel electrophoresis. The fractions

with the desired transcript were pooled, dialyzed three times

against 200 volumes of H2O, and lyophilized for storage before

being used.

Fluorescence anisotropy titrations
For fluorescence anisotropy titrations, RNA fragments were

labeled with fluorescein using the 59 EndTag Nucleic Acid End

Labeling System and fluorescein maleimide-thiol reactive label

from Vector Laboratories. Labeled fragments were purified by

phenol extraction, precipitated with ethanol, and resuspended on

10 mM phosphate buffer (pH 7.0). The double stranded RNA

binding partner used is presented in Figure S1. The fluorescence

anisotropy was measured on a Varian Cary Eclipse spectrofluo-

HYL1 Function In Vivo
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rimeter exciting the sample at 492 nm and measuring emission at

520 nm. Anisotropy values were obtained from the average of

three measurements with an integration time of 20 s. The

excitation and emission slits were set to 10 nm. Labeled RNA

was annealed by heating at 100uC for 5 min and chilling at 0uC in

an ice-water bath. Data points were fit to the following equation:

r~r0z½
a|½P�

(bz½P�)�

Where [P] corresponds to free protein concentration, r0 is the

anisotropy of free RNA, a is the amplitude of the change in

Figure 1. In vivo analysis of HYL1 dsRBD1 mutants. A. Structure of HYL1-dsRBD1. The residues that were mutated in the present study are
highlighted in colours: region 1, red, region 2, green, region 3, blue. B. T1 lines phenotypes. Different phenotypes were found in T1 lines obtained after
hyl1 plants transformation. The different lines included the complete sequence for HYL1 protein with the mutations in the first dsRBD mentioned in
Figure 1A. Within each set of transgenic lines, the plants were classified as fully complemented (P1), partially complemented (P2) or not
complemented (P3) as function of their rosettes phenotypes. C. Phenotype analysis of transgenic plants. The plants were clustered according to each
phenotype, as shown in B. The coloured bars represent the fraction of the T1 plants classified as P1 (black), P2 (gray) and P3 (white). D. Functional
analysis of complemented plants. Relative transcript levels of pri-miRNA164a, pri-miRNA172a and pri-miRNA396a as well as their respective mature
miRNAs were determined for each genotype, normalized using PROTEIN PHOSPHATASE 2A (PP2A, AT1G13320) and compared to WT. The graph shows
the ratio of pri-miR164a/miR164a (black), pri-miR172a/miRNA172a (gray) and pri-miRNA396a/miRNA396a (white) levels for each genotype. The plants
overexpressing HYL1 with the first dsRBD mutated in regions 1 and 3 (R1 and R3) presented less pri-miRNA processing efficiency compared to plants
overexpressing HYL1 with the D40–46 deletion in region 2 (R2). Data shown are mean 6 SEM of 3 biological replicates. Asterisks indicate significant
differences between genotypes, as determined by ANOVA (*P,0.001).
doi:10.1371/journal.pone.0113243.g001

Figure 2. Folding states of HYL1-dsRBD1 mutant domains. SOFAST 1H-15N HMQC spectra of the mutant proteins compared to the wild type
protein (black in all spectra). The mutant protein K17A/R19A is shown in red, D40–46 in green and R67A/K68A in blue. Signals corresponding to the
mutated residues are shown with an arrow on the wild type spectra. The mutated domains in region 1, 2 and 3 retain the same folding as the wild
type HYL1 dsRBD1.
doi:10.1371/journal.pone.0113243.g002

HYL1 Function In Vivo
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anisotropy upon binding and b is the dissociation constant.

Titration curves were normalized for plotting by subtracting from

each data point the value of r0 and dividing the result by

amplitude a.

Protein unfolding experiments by CD
For the stability experiments, the refolded proteins were

desalted in PD-10 Desalting Columns (GE Healtcare) using

10 mM phosphate buffer pH 7. Protein concentration was

measured by UV spectroscopy. HYL1-1 and HYL1-1 mutants

were incubated with urea at different concentrations for three

hours at room temperature to ensure equilibrium conditions and

to minimize chemical modifications. Ellipticity of protein samples

was evaluated using a Jasco 810 spectropolarimeter calibrated with

(+) 10-camphorsulphonic acid. Far–UV CD spectra were recorded

in the range between 190 and 250 nm, urea induced unfolding

was monitored by changes of the ellipticity at 220 nm. Protein

concentration was 10 mM, and a cell of 0.1 cm path length was

used. In all cases, data were acquired at a scan speed of 20 nm

min21 and at least 3 scans were averaged for each sample. The

signal at 250 nm was used as an internal control to correct for

small fluctuations in the baseline. All measurements were done at

20uC.

Nuclear Magnetic Resonance (NMR) spectroscopy
NMR spectra were recorded at 298 K. All spectra were

processed with NMRPipe [24] and analyzed with CCPNMR [25].

To evaluate the state of folding of the protein constructs, a 1H-15N

SOFAST-HMQC spectrum [26] was acquired on a 600 MHz

Bruker spectrometer.

Protein structural modeling and electrostatic field
calculations

A model for the structures of the each of the mutant proteins

was generated using the software Rosetta [27]. The electrostatic

field of the proteins was calculated with the APBS tool [28], and

represented setting 1.5 V isocontours for positive and negative

potentials.

Figure 3. Electrostatic field calculations on the wild type and mutant proteins. The electrostatic field around each modeled protein and
HYL1-dsRBD1 wild type was calculated using APBS [28]. The 1.5 V isocontours are shown for positive (blue) and negative (red) potential. Mutants in
regions 1 and 3 display a big disruption of the positive electrostatic patch in the dsRNA-binding surface for substrate binding.
doi:10.1371/journal.pone.0113243.g003

Figure 4. Biophysical characterization of HYL1-dsRBD1 mutant domains. A. Protein stability measurements. Induced urea unfolding of the
wild type and mutant proteins were followed by circular dichroism at 220 nm. In the left, on the top, the DGH2O/RT of each protein is shown.
Mutants in region 2 and 3 display an increase of the stability relative to wild type, whereas the mutant in region 1 and the wild type have comparable
values. B. Substrate binding affinity of the mutant domains. Fluorescence anisotropy of labeled substrate RNA was measured at increasing protein
concentration. All the mutant proteins have lower binding affinities than the wild type domain. The mutants in region 1 and 3 have the most reduced
binding affinities. In A and B symbols correspond to the following proteins: gray hexagons, wild type; black triangles, K17A/R19A; gray circles, D40–
46; gray diamonds, K38A; black squares H43A/K44A; gray triangles R67A/K68A.
doi:10.1371/journal.pone.0113243.g004
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Results

Rational design of mutations in HYL1
The function of HYL1 in plants is defined by its two N-terminal

double stranded RNA binding domains [12]. However, we and

others have shown that both domains have different roles within

the protein [18,19]. While the first domain binds tightly to

substrate RNA, the second one shows little affinity for the same

primary miRNA transcripts and contributes to a small extent to

the overall RNA-binding affinity of the protein. Therefore, it can

be concluded that the substrate recognition function of HYL1 is

located in the first dsRBD. In order to understand the structural

determinants of this recognition, we introduced mutations in the

regions of this domain that interact with RNA. Crystal and

solution structures of several dsRBDs in complex with RNA show

that these domains bind dsRNA via the sidechains of three

separated regions of the protein. A group of well-conserved

residues in helix 1 (region 1) and the loop between strands 1 and 2

(region 2) interact with the OH moieties of backbone riboses,

whereas a set of basic residues, either Arg or Lys, located at the N-

terminus of helix 2 (region 3) interact with the phosphate

backbone [29–33]. Our NMR characterization of the interaction

between HYL1 and dsRBD1 showed a similar pattern of

interactions [18]. Therefore, we decided to probe the relevance

of each region to the function of the protein by the introduction of

mutations based on the NMR results. With this aim we

constructed a double mutant in region 1 (K17A/R19A), one

point mutant, one double mutant and a deletion of the whole loop

mutant in region 2 (K38A, H43A/K44A and D40–46) and a

double mutant in region 3 (R67A/K68A) (Figure 1A). We

considered that these different variants would bring new insights

into the role of the different domains of HYL1 both in vivo and

in vitro.

In vivo function of HYL1 variants
In order to verify the relevance of the changes introduced in

HYL1-dsRBD1 for the function of the protein in vivo we

employed a complementation experiment with the hyl1-2 null

mutant of Arabidopsis thaliana [34]. These plants exhibit a

pleiotropic phenotype characterized by hyponastic leaves, reduced

leaf size, slow growth, reduced plant height, late flowering and

reduced fertility, as well as multiple lateral shoots [35]. In hyl1-2
plants miRNA processing is impaired, leading to a decrease of

mature miRNAs and an increase in the steady state levels of pri-

miRNAs [7,9,10].

We transformed the mutant plants with the full-length hyl1
genes bearing the designed mutations, under the control of the

35 S promoter of the Cauliflower mosaic virus. The first

generation of transgenic plants show varying phenotypic features

that range between strong hyl-1 phenotype to fully complemented

wild type phenotype. We classified the plants as completely

rescued (P1), partially rescued (P2) or not rescued (P3), based on

their phenotypic characteristics (Figure 1B). A distribution of

phenotypes among the primary transgenic plants of Arabidopsis is

expected, as the transgenes insert at random position along the

genome, and are then influenced in different ways by the genomic

environment. This has been previously observed for transgenes in

general and also for different domains of HYL1 in particular [12].

The classification shows that the level of phenotypic rescue cluster

within regions and that, unexpectedly, the highest deficiency in

HYL1 function corresponds to mutants in regions 1 and 3,

whereas mutants in region 2 show high levels of phenotypic rescue,

indicating that the region is mostly unimportant for the function of

HYL1 in vivo (Figure 1C). This last result was puzzling, since

several previous studies on homologous proteins have shown that

this loop is essential for dsRNA recognition by dsRBDs [36,37].

With the aim of further testing this result, we produced a mutant

containing a deletion of the whole loop corresponding to region 2

(D40–46). This mutant protein resulted functional as well, thus

confirming that region 2 is dispensable for the function of HYL1

(Figure 1C).

Aside from phenotype, it is well established that the function of

HYL1 is to assist DCL1 in miRNA processing [9,10]. We decided

to test the function in a direct way by measuring the levels of

mature miRNA and primary miRNA transcripts in the transgenic

plant lines. In order to correct for possible variations of the

expression levels we measured the protein expression level of

different plant lines by means of western blot analysis (Figure S2)

and selected lines with similar HYL1 levels for further analysis.

We quantified miR164a, miR172a and miR396a together with

their corresponding pri-miRNAs in the wild type, hyl1-2, and

hyl1-2 mutants transformed with the different constructs (Fig-

ure 1D). In all cases, the processing activity corresponds well with

the phenotypic rescue. Therefore we can confirm that the

mutations in regions 1 and 3 affect the function of HYL1 during

pri-miRNA processing.

Structural analysis of the mutant domains
The introduction of mutations can lead to either local or global

changes in the structure of the protein. We were interested in

verifying the involvement of the mutated sidechains in the function

of HYL1. Therefore, with the aim of ruling out large structural

rearrangements that would invalidate our results, we generated

constructs for the isolated dsRBD1, labeled the proteins with 15N

and obtained a 1H-15N HMQC spectrum of each of the mutants.

This kind of spectrum is exquisitely sensitive to alterations in the

structure of the protein, and allows for the localization of these

alterations with residue definition. The superposition of the spectra

of the different mutants with that of the wild type protein shows

that the structural alterations brought by the mutations are mostly

restricted to the regions structurally close to the mutations

themselves, not leading to global modifications (Figure 2). This is

true even for the deletion mutant, where one could expect a more

important rearrangement of the protein structure.

In order to find a structural basis for the alterations in HYL1

function brought about by the mutations, we obtained structural

models of the mutant proteins based on the crystal structure of the

wild type protein (3ADG.pdb) using the software Rosetta [27]. As

expected, the point mutations do not lead to large structural

rearrangements, and the deletion of the b1–b2 loop is well-

tolerated by the protein fold (Figure S3). Overall, the more

important difference in the HYL1 variants resides in the

electrostatic potential field around the protein. The wild type

protein has a large positive electrostatic potential patch around

regions 1 and 3, caused by a cluster of basic residues. These

residues contact the phosphate backbone of the RNA via

electrostatic interactions. Removal of these basic side chains in

region 1 and region 3 mutants, lead to a highly reduced

electrostatic potential. In contrast, the mutants in region 2 show

a mostly conserved electrostatic potential (Figure 3). Therefore, we

conclude that the electrostatic attraction of the substrate by

residues in regions 1 and 3 of HYL1 is essential for the correct

function of the protein.

Stability and substrate binding
Having established that all the mutant proteins were correctly

folded, we wondered if the differences observed on in vivo
activities could be due to a destabilization of the protein induced

HYL1 Function In Vivo
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by the mutations introduced. Therefore we measured the stability

(DGuN-U) of the HYL1 dsRBD1 and the corresponding mutants.

For this purpose, we used circular dichroism to monitor urea-

induced denaturation. We observed that protein stability is

actually increased in mutants in region 2 and 3 relative to wild

type, whereas the stability of the mutant in region 1 is comparable

to that of the wild type protein (Figure 4A). From these results we

could conclude that mutations do not impair HYL1 dsRBD1

stability. In order to evaluate the effect of the mutations on the

binding affinity for substrate RNA we resorted to a fluorescence

polarization assay, using the isolated dsRBD1 constructs and the

lower-stem region of pri-miR172 as binding partner. All mutant

proteins showed a decrease in binding affinity. Most noticeably,

the double mutant in region 1 (K17A/R19A) hardly bound RNA,

even at the highest protein concentration tested, whereas the

double mutant in region 3 (R67A/K68A) showed a much-reduced

affinity (Figure 4B).

Quite strikingly, considering the purported importance of

region 2 in binding, all mutations in this region gave only slightly

diminished binding affinities. The dissociation constants of these

mutants are similar, ranging between 2.5 and 5.4 mM, giving an

overall coherent picture of the influence of this region in HYL1

affinity for RNA. Even when the whole loop is deleted, the protein

retains significant affinity for the substrate.

Discussion

The exact function of HYL1 within the plant miRNA-

processing complex is not understood at present. The protein is

known to be important for the accuracy of the processing of

miRNA, as it was demonstrated both in vitro and in vivo [9,10].

In fact, recent works have shown that the lack of HYL1 can be

compensated with a more active form of DCL1 [38,39]. In this

case, enough correctly processed miRNA can be generated,

thereby limiting the effects of inaccuracy. HYL1 was also

suggested to participate in miRNA strand selection and delivery

to AGO1 within the RISC complex, much in the same way as

TRBP in humans [11]. While there has been more effort in

establishing the role of similar dsRBD-containing helper proteins

in other organisms, there has been no consensus on their function

so far.

Although the mechanism of HYL1 function in miRNA

processing is not fully understood, binding to substrate RNA

seems to be an essential part of it. RNA binding by HYL1 is

dominated by dsRBD1, with marginal contribution to the binding

affinity by dsRBD2 and the rest of the protein [18,19]. In the

present paper we dissected the function of each of the dsRNA

binding determinants within HYL1 dsRBD1.

Our characterization shows that regions 1 and 3 of the domain

are the most important structural determinants of RNA binding.

In most dsRBDs, region 3 contains a well-conserved KKxAK

motif that recognizes the phosphodiester backbone of the dsRNA

major groove. These residues form a significant electrostatic patch

on the surface of the domain created by the positively charged

lysine side chains (Figure 3). In HYL1, however, the motif is split

between region 1 and region 3: the third lysine residue in the motif

is replaced by a glutamate, but this substitution is compensated by

the presence of a lysine residue in position 17, whose terminal

amino group is located in a position equivalent to that of the lysine

absent in region 3. The mutations that we introduced in regions 1

and 3 give rise then to a structurally similar result, that is, the

disruption of this electrostatic patch. In this way we can rationalize

the similar impact on both function and affinity of both mutations

introduced. It was suggested that electrostatic interactions play an

important role in dsRBD-RNA recognition [37,40] although these

effects seem to be dissimilar between different dsRBDs [41]. The

absence of alterations in stability on the mutant proteins that could

hinder RNA recognition highlight that phosphate backbone

recognition is essential for RNA binding by these domains.

An unexpected result in our work is that the loop b1–b2 in

dsRBD1 is dispensable for HYL1 activity and has little influence

on the RNA-binding affinity. This result is difficult to rationalize

from a structural point of view, as the loop plays an important role

in RNA binding in other reported cases, inserting in the dsRNA

minor groove. It provides with a set of direct interactions with the

ribose moieties and the bases, and contributes to the recognition of

the of the A-form RNA double helix, as it is located exactly two

turns away from the region 1 interaction position. The importance

of this loop in other dsRBDs has been demonstrated through

mutational analysis [36,37]. However, in HYL1 the highly

conserved histidine residue at the top of the loop can be mutated

and even the whole loop deleted without major changes in RNA

affinity, protein stability or protein function. This shows that the

importance of the loop in RNA recognition can be dissimilar

among dsRBDs. In this respect, it is noteworthy that the dsRBDs

of Dicer proteins have a short loop that could not in principle

participate in RNA binding, or at least not if the dsRBD binds

RNA in the canonical way [42,43]. The absence of the loop was

suggested to hinder RNA binding by these domains [43], but it

was recently shown that Dicer dsRBD do bind dsRNA and

miRNA precursors [44]. This experimental evidence goes in line

with our results, showing that the loop b1–b2 is dispensable for

dsRNA binding by HYL1. A structural study of the complex

formed by these domains or by the HYL1 deletion mutant with

RNA would be necessary to understand how the binding mode of

these proteins differs from that of canonical dsRBDs. The

regulation of HYL1 activity by phosphorylation was also recently

demonstrated [45]. Remarkably, one of the regulatory phosphor-

ylation sites is S42, located within this loop. When this serine

residue is mutated to aspartic acid, mimicking phosphorylation,

the function of the protein is inhibited, whereas when the

phosphorylation sites are eliminated by mutation of serines to

alanines the resulting protein is fully functional. Considering such

a fact, we can speculate that mutations in region 2 could hinder a

natural inhibition of HYL1 activity by phosphorylation, therefore

offsetting the partial loss of affinity introduced by the mutation.

In summary, we could show that there is a direct correlation

between substrate binding affinity by HYL1-dsRBD1 and its

in vivo activity. Our work also establishes that RNA binding by

HYL1 dsRBD1 is essential for its function. These results

contribute to understanding the participation of this protein in

substrate recognition within the plant miRNA processing machin-

ery.

Supporting Information

Figure S1 Structure of pre-miRNA 172-ls. The pre-miRNA

172 ls was used to measure the binding affinities of the wild type

and mutated dsRBD1-HYL1 proteins. The double stranded RNA

was labelled in the 59 end with fluorescein (see materials and

method section).

(DOCX)

Figure S2 HYL1 expression level in inflorescences. A.

The phenotype rescue of hyl1 plants do not depend to the HYL1

expression level. Transgenic plants with similar HYL1 levels are

complemented in different ways and they clustered in different

groups (see figure 1B). B. The expression levels of the inflores-

cences of 36 T1 lines were determined. The amount of
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recombinant HYL1 protein are highly variables. We selected 3

plants with similar protein levels to continue with further studies

(e.i miRNA processing efficiency). The numbers after each label

indicate the plant ID. The wells where the bands are absent

indicate that protein levels are under the detection limit. The film

exposure time was 2 minutes.

(DOCX)

Figure S3 Modeled structure of HYL1-dsRBD1. Hyl-

dsRBD1 D40–46 (left), compared to wild type HYL1-dsRBD1

(PDB 3ADG, right). The structure of the HYL1 mutant was

modeled using Rosetta [27]. The final structure adopt a folding

that is similar to the crystallographic structure of the wild type

HYL1 dsRBD.

(DOC)

Text S1 Methods and primers information. Western blot

method and primer sequences information.

(DOCX)
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