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Abstract

Background: Sleep disordered breathing (SDB) can lead to daytime sleepiness, growth failure and developmental delay in
children. Polysomnography (PSG), the gold standard to diagnose SDB, is a highly resource-intensive test, confined to the
sleep laboratory.

Aim: To combine the blood oxygen saturation (SpO2) characterization and cardiac modulation, quantified by pulse rate
variability (PRV), to identify children with SDB using the Phone Oximeter, a device integrating a pulse oximeter with a
smartphone.

Methods: Following ethics approval and informed consent, 160 children referred to British Columbia Children’s Hospital for
overnight PSG were recruited. A second pulse oximeter sensor applied to the finger adjacent to the one used for standard

alongside the PSG.

Results: We studied 146 children through the analysis of the SpO2 pattern, and PRV as an estimate of heart rate variability
calculated from the PPG. SpO2 variability and SpO2 spectral power at low frequency, was significantly higher in children with
SDB due to the modulation provoked by airway obstruction during sleep (p-value v0:01). PRV analysis reflected a
significant augmentation of sympathetic activity provoked by intermittent hypoxia in SDB children. A linear classifier was
trained with the most discriminating features to identify children with SDB. The classifier was validated with internal and
external cross-validation, providing a high negative predictive value (92.6%) and a good balance between sensitivity (88.4%)
and specificity (83.6%). Combining SpO2 and PRV analysis improved the classification performance, providing an area under
the receiver operating characteristic curve of 88%, beyond the 82% achieved using SpO2 analysis alone.

Conclusions: These results demonstrate that the implementation of this algorithm in the Phone Oximeter will provide an
improved portable, at-home screening tool, with the capability of monitoring patients over multiple nights.
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Introduction

Sleep disordered breathing (SDB) describes a family of disorders

characterized by frequent partial or complete cessations of

breathing during sleep. SDB is a common and highly prevalent

condition in children (2% among children [1], [2] and 2.5%-6%

among adolescents [3]) that can cause severe complications if left

untreated. Symptoms include snoring, disturbed sleep, daytime

sleepiness and neurobehavioural problems [4],[5]. SDB includes

obstructive sleep apnea (OSA) syndrome, central sleep apnea

syndrome, Cheyne-Stokes respiration, and alveolar hypoventila-

tion syndrome [6]. OSA is the most common type of SDB in

children and is characterized by repeated obstruction of breathing

during sleep, which results in oxyhemoglobin desaturation,

hypercapnia and repeated arousals. Complications due to

recurrent hypoxia-reoxygenation episodes during the night,

include neurocognitive impairment, behavioural problems, failure
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to thrive, and cor pulmonale, particularly in severe cases [7],[8].

Thus, SDB poses a serious threat to the healthy growth and

development of many children.

Polysomnography (PSG), the gold standard to diagnose SDB, is

the most commonly used diagnostic technique shown to quantify

the ventilatory and sleep abnormalities associated with SDB. This

nocturnal study is highly resource-intensive [9],[10] and requires a

specialized sleep laboratory, expensive equipment and an over-

night stay in the facility [6], confining PSG monitoring to

centralized specialist facilities. For example, in British Columbia

all PSG studies in children are performed at the British Columbia

Children’s Hospital (BCCH) in Vancouver. This greatly limits

access, especially for those who live in remote locations. The

capacity to perform PSG at BCCH is limited to fewer than 250

cases per year, resulting in a waitlist of six months. In recently

developed clinical practice guidelines for the diagnosis and

management of SDB in children and adolescents [4], the

American Academy of Pediatrics concludes that all children/

adolescents should be screened for snoring and OSA symptoms

(defined in the guidelines [4],[7]) and PSG should be performed

only in those with regular snoring and signs of OSA.

The high cost (approximately $800 per night in direct health

care costs at BCCH) [11] and limited access of PSG have

generated a great interest in alternative techniques to simplify the

standard procedure. Already part of the standard PSG, pulse

oximetry is a simple non-invasive method of measuring blood

oxygen saturation (SpO2) and recording blood volume changes in

tissue using the photoplethysmographic signal (PPG). Numerous

groups have studied the use of overnight oximetry as a potential

standalone method to diagnose SDB. Nixon et al. developed a

severity scoring system using overnight oximetry and validated the

score as a tool to prioritize adenotonsillectomy surgeries [12],[13].

Álvarez et al. demonstrated that the characterization of overnight

oximetry provided significant information to identify adults

[14],[15] with significant OSA. Both studies focused on SpO2

alone; however, there are some SDB events that occur in the

absence of SpO2 desaturation [16]. It has been reported that SDB

affects the normal variation of heart rate [17],[18], suggesting that

combining SpO2 and Heart Rate Variability (HRV) analysis

might provide a more robust SDB detector. Based on this concept,

Heneghan et al. proposed a portable, automated OSA assessment

tool with a Holter-Oximeter [19], [20].

The original Phone Oximeter (Figure 1) is a mobile device that

integrates a commercially available and Federal Drug Adminis-

tration (FDA) approved microcontroller-based pulse oximeter

(Masimo Set uSpO2 Pulse Oximetry Cable) with a mobile

smartphone [21]. The Phone Oximeter enables the acquisition,

monitoring and analysis of vital signs and intuitive display of

information to health care providers. A low cost version of the

Phone Oximeter that does not require an intermediate micro-

controller was recently developed. This prototype interfaces the

sensor directly with the phone via the audio jack, reducing the

total cost of the Phone Oximeter to only that of the finger probe

[22],[23]. In our previous research, we showed that the

Figure 1. The Phone Oximeter. A mobile device that integrates a
pulse oximeter with a smartphone.
doi:10.1371/journal.pone.0112959.g001

Table 1. Demographic and PSG information in the study group (mean 6 standard deviation).

Dataset SDB NonSDB

Number(F, M) 56 (18, 38) 90 (41, 49)

Age (y) 8.8 6 4.6 9.3 6 4

AHI (apnea hypoapnea/hour) 19.7 6 19.5** 1.4 6 1.1

AHI in REM{ 34.8 6 27.8** 4.4 6 5.1

AHI in NREM 15.8 6 22.8** 0.76 6 0.96

Lowest SpO2 (%) 82.3 6 15.0* 90.1 6 3.5

BMI (kg/m2) 23.2 6 8.3* 19.6 6 6.6

Sleep efficiency (%) 75.1 6 16.2 76.6 6 15.3

TST (min) 362.1 6 82.6 368 6 73.8

TBT (min) 479.9 6 40 481.4 6 24.1

Stage 1 (%) 6.5 6 5.9 5 6 3.2

Stage 2 (%) 56.9 6 12.8 59.4 6 10.4

Stage 3 (%) 15.3 6 9.6 17.3 6 9.1

REM (%) 20.2 6 8 18.2 6 6.1

Awakenings 21.2 6 10.6 18.6 6 9.3

Respiratory arousals 13.6 6 13.9** 1 6 0.9

*p-value ,0.001, **p-value ,0.0001 comparing SDB and NonSDB.
{p-value ,0.001 comparing AHI in REM and NREM sleep stages.
doi:10.1371/journal.pone.0112959.t001
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characterization of overnight SpO2 pattern, measured by the

Phone Oximeter, successfully identifies children with significant

SDB [24]. We also investigated the influence of SpO2 resolution

(0.1%, 1%) on the SpO2 pattern characterization and demon-

strated that it has a great influence in regularity measurements and

therefore should be considered when studying SDB [25]. In

addition, we calculated Pulse Rate Variability (PRV) from the

Phone Oximeter’s PPG, and compared it with HRV computed

from simultaneous electrocardiogram (ECG) [26]. In the time

domain, PRV provided accurate estimates of HRV, while some

differences were found in the frequency domain. Gil et al. also

showed that during non-stationary conditions there are some small

differences between HRV and PRV, mainly in the respiratory

band, which were related to the pulse transit time variability [27].

However, they also concluded that these differences are sufficiently

small to suggest the use of PRV as an alternative measure of HRV.

We also conducted an additional investigation of the effects of

SDB on PRV during different sleep stages and concluded that the

modulation of PRV might be helpful in improving the assessment

of SDB in children [28]. Therefore, the purpose of this study is to

combine both SpO2 pattern characterization and PRV analysis to

identify children with significant SDB, using the Phone Oximeter.

We evaluate the Phone Oximeter’s potential as a stand-alone SDB

screening tool to identify children who should undergo a complete

PSG study, with the eventual goal of reducing costs and hospital

waitlists.

Material and Methods

2.1 Dataset
2.1.1 Ethics statement. All subjects were recruited accord-

ing to a protocol approved by the University of British Columbia

and Children’s and Women’s Health Centre of British Columbia

Research Ethics Board (H11-01769). Parental/guardian written

informed consent was obtained for all subjects, and written assent

was obtained for all subjects over the age of 11 years.

2.1.2 Data acquisition. One hundred and sixty children

with signs of sleep apnea (such as snoring, daytime sleepiness,

behavioural problems or clinically large tonsils) referred to BCCH

for PSG recording were recruited to and participated in this study.

Children with cardiac arrhythmia or abnormal hemoglobin were

excluded. In addition, fourteen children were excluded from the

Figure 2. Power spectral density applied to a 2-minute SpO2 signal of (A) a child with, and (B) without SDB. The SDB child shows a clear
modulation frequency peak, whereas the NonSDB child illustrates no clear modulation peak.
doi:10.1371/journal.pone.0112959.g002
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study because the total duration of the sleep time or the collected

signals from the PSG or the Phone Oximeter (PPG and SpO2)

were shorter than 3 hours.

The data acquisition was carried out in the sleep unit. Standard

PSG was recorded using the Embla Sandman S4500, specifically

designed to meet the American Academy of Sleep Medicine

(AASM) accreditation requirements. The PSG included the

overnight measurement of ECG, electroencephalogram (EEG),

SpO2, chest and abdominal movement, nasal and oral airflow, and

video recordings. The pulse oximeter sensor of the Phone

Oximeter was applied to the finger adjacent to the one used

during standard PSG. The SpO2 (0.1% resolution) and PPG

signals, recorded by the Phone Oximeter, were sampled at 1 Hz

and 62.5 Hz, respectively.

A sleep technician visually scored the PSG in 30-second epochs

according to AASM 2007 standard criteria [29]. Hypnograms

were differentiated into stage 1, stage 2, stage 3 (non-REM) and

rapid eye movement (REM) sleep. According to the standard

criteria, obstructive apneas were defined as complete cessation of

airflow in the presence of respiratory effort lasting §10 seconds.

Hypopneas were defined as a §50% airflow reduction relative to

the 2 preceding breaths. Blood oxygen desaturations were defined

as a §3% decrease in arterial oxygen saturation. When

respiratory effort partially or totally ceased, apneas were scored

as mixed or central sleep apnea, respectively. The number of

apneas/hypopneas was counted hourly to compute the average

apneas/hypopnea index (AHI), which was specified also for REM

and non-REM (NREM) sleep stages. The total bed time (TBT),

total sleep time (TST) and the percentage of time spent in the

different sleep stages were also analyzed (Table 1). Pulse oximetry

data acquired with the Phone Oximeter and the reference AHI is

be publicly available online via doi:10.6084/m9.figshare.1209662.

The current clinical protocol at BCCH recommends children

with an AHI §5 undergo treatment for SDB. This study therefore

used an AHI §5 as a positive indication of SDB. The current

treatment for SDB at BCCH consists of continuous or bi-level

positive airway pressure (CPAP or BiPAP) or surgical adenoton-

sillectomy. Adenotonsillectomy being the most common treatment

for pediatric SDB [12],[30].

2.2 Characterization
The proposed algorithm characterizes both the SpO2 pattern

[24] and PRV [28], in the time and frequency domains, using a 2-

minute sliding window, with 1-minute overlap. This characteriza-

tion was performed offline in Matlab (Mathworks Inc, Natick,

USA).

greater than 4%, were considered as artifacts and eliminated prior

to further analysis. The SpO2 signal analysis was focused on

characterizing modulation generated by the desaturations result-

ing from SDB.

Time domain features: A number of time domain statistics

such as: mean, median, standard deviation and interquartile range

of the SpO2 as well as indices including the number of

desaturations from baseline below 2% (n2%), the cumulative time

spent below 92% (t92%) and the D index (variability measure)

were calculated for each time window. In addition, to evaluate the

complexity of the SpO2 pattern, nonlinear measures such as

sample entropy (SampEn), approximate entropy (ApEn) and

central tendency measure (CTM) [31], [32] were calculated.

Spectral domain features: The SpO2 signal was characterized

in the spectral domain using power spectral density (PSD). To

provide better frequency resolution, a parametric PSD was

performed approximating the SpO2 signal through an autore-

gressive model using:

SpO2(n)~{
Xp

k~1

ak
:SpO2(n{k)ze(n) ð1Þ

where e(n) denotes zero-mean white noise with variance se
2, ak

the autoregressive coefficients and p the model order. Once the

autoregressive coefficients and the variance was estimated, the

PSD of an autoregressive model was computed by:

PSD( f )~
se

2

D1z
Pp

k~1

ak:e{j2pfkTD2
ð2Þ

With 1/T as the sampling frequency.

The selection of model order is a trade-off between the

frequency resolution and the presence of spurious peaks. The

optimum model order was selected according to the minimum

description length criterion from Rissanen [33]. Using the 2-

minute sliding window, the SpO2 signal was divided into small

segments that can be assumed to be stationary and therefore,

permit computation of PSD (see Figure 2). The sleep apnea events

happen in a pseudo periodic pattern, which modulates the SpO2

signal and provokes a modulation frequency peak at very low

frequency band (Figure 3). In addition, this time-varying spectral

analysis permitted consideration of the SpO2 pattern changes in

the frequency domain (see Figure 4). Three spectral parameters

were extracted from the PSD: 1) the power (P) within the

modulation band (which consists of a frequency interval of

0.02 Hz centered around the modulation frequency peak, tracked

in the band from 0.005 to 0.1 Hz); 2) the ratio (R) between the

Figure 3. PSD applied to the SpO2 of whole study population.
The mean PSD (average of the PSDs obtained for each time window
overnight) for each SDB subject is represented in light grey, and
NonSDB is represented in dark grey.
doi:10.1371/journal.pone.0112959.g003
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power within the modulation band and total power; and 3) the

Shannon entropy (SE) of the PSD.

2.2.2 Pulse Rate Variability (PRV). A baseline removal and

smoothing Savitzky-Golay filter (order 3, frame size 11 samples)

was applied to the PPG signal. A signal quality index, obtained by

an adaptive version of the algorithm developed by Karlen et al.

[34], was performed for automatic rejection of windows containing

motion artifacts. In order to obtain the time series of pulse to pulse

intervals (PPIs) for each window, the locations of the peak of pulses

in each segment of PPG signal were detected by a simple zero-

crossing algorithm. The intervals between successive peaks were

subsequently computed. The PPIs shorter than 0.33 seconds or

longer than 1.5 seconds were considered as artifacts and deleted

from the time series. PRV was then obtained by converting each

sequence of PPIs into an equivalent, uniformly spaced time series

(sampling rate: 4 Hz), using a resampling method based on Berger

et al. algorithm [35].

Time domain features: The mean of PPIs (representing RR, or

the time interval between two consecutive R waves in the ECG),

the standard deviation of PPIs (representing SDNN, or the

standard deviation of the so-called normal-to-normal (NN)

intervals), and the root mean square of the successive differences

between adjacent PPIs (representing RMSSD, or the root mean

square of the successive differences between adjacent NN intervals)

were computed from each PPI time series.

Spectral domain features: The spectral PRV analysis was

performed using a parametric PSD based on an autoregressive

model of order 16. The power in each of the following frequency

bands was computed by determining the area under the PSD

curve bounded by the bandwidth: Very Low Frequency (VLF;

0.01–0.04 Hz), Low Frequency (LF; 0.04–0.15 Hz) and High

Figure 4. Time-varying power spectral density applied to an overnight SpO2 signal of (A) a child with and (B) without SDB. The SDB
child shows a clear modulation frequency peak and higher energy around this peak compared to the NonSDB child.
doi:10.1371/journal.pone.0112959.g004
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Table 2. Parameter description and corresponding statistics.

Feature Description Statistics

SpO2 pattern characterization

P Power modulation band M_P, M_P, S_P, I_P

R Power ratio (P/Total power) M_R, Me_R, S_R, I_R

SE Spectral Shannon entropy M_SE, Me_SE, S_SE, I_SE

D Delta index M_D, Me_D, S_D, I_D

iqr Inter quartile range M_iqr, Me_iqr, S_iqr, I_iqr

std Standard deviation M_std, Me_std, S_std, I_std

t94% Time spend below 94% M_t94%, Me_t94%, S_t94%, I_t94%

n2% Desaturations 2% below baseline M_n2%, Me_n2%, S_n2%, I_n2%

CTM Central tendency measure M_CTM, Me_CTM, S_CTM, I_CTM

ApEn Approximate entropy M_ApEn, Me_ApEn, S_ApEn, I_ApEn

SampEn Sample entropy M_SampEn, Me_SampEn, S_SampEn, I_SampEn

PRV characterization

LF Normalized power in low freq. band M_LF, Me_LF, S_LF, I_LF

HF Normalized power in high freq. band M_HF, Me_HF, S_HF, I_HF

LF/HF Ratio between LF/HF M_LF/HF, Me_LF/HF, S_LF/HF, I_LF/HF

RR Pulse to pulse interval (PPI) M_RR, Me_RR, S_RR, I_RR

SDNN Standard deviation of PPI M_SDNN, Me_SDNN, S_SDNN, I_SDNN

RMSSD Root mean square of standard deviation of PPI M_RMSSD, Me_RMSSD, S_RMSSD, I_RMSSD

doi:10.1371/journal.pone.0112959.t002

Figure 5. Diagram of the classification process with internal LOO and external 4-fold cross-validation (CV). The dataset was randomly
divided into 4 non-overlapping subsets. 3 formed the training dataset and the remaining formed the test dataset. This process was repeated four
times, until each subset was treated once as the test dataset. The most discriminant features classifying children with and without SD were selected
using LOO-CV. This feature selection was then evaluated with the independent test dataset.
doi:10.1371/journal.pone.0112959.g005
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Frequency (HF; 0.15–0.4 Hz). Normalized LF and HF powers

were determined by dividing LF and HF powers by the total

spectral power within the 0.04 and 0.4 Hz band. The ratio of the

low-to-high frequency power (LF/HF ratio) was also computed.

2.3 Data Analysis
The described feature set characterizes the behaviour of the

SpO2 signal and PRV for each 2-minute time window. However,

to identify children with SDB, the statistical distribution of each

time-varying parameter in the overnight recordings was evaluated

through their means (M), medians (Me), standard deviations (S),

and interquartile ranges (I) (see Table 2 for feature description).

The normality of each feature was assessed using the Shapiro-

Wilk test and visual inspection of the histograms and Q-Q plots. In

order to evaluate the differences between SDB and NonSDB, two-

sample t-tests for unequal variances were applied to the normally

distributed features.

A logarithmic transformation was applied to non-normally

distributed features to convert them into normally distributed

variables. Two-sample t-tests for unequal variances were then

calculated using log-transformed data. In addition, Mann-Whitney

U tests were also computed using the original data. A probability

of p-value v0:01 was considered significant and a Bonferroni

correction was applied where appropriate.

2.4 Feature Selection and Classification
Linear discriminant analysis was performed to classify children

with and without SDB. Based on the percentage of children with

SDB in the dataset (39%), a prior probability of 0.4 was specified

for the linear discriminant analysis. An external N-fold cross

validation (N = 4) was used to estimate the performance of the

linear discriminant. The dataset was randomly divided into N non-

overlapping subsets. N-1 formed the training dataset (75% of the

dataset, 110 children), and the remaining formed the test dataset

(25% of the dataset, 36 children). Then, two tests were carried out.

Firstly, the most discriminant features were selected using the

training dataset. Secondly, the performance of this feature set was

evaluated using the test dataset (Figure 5). This process was

repeated N = 4 times, until each subset was treated once as the test

dataset.

The features most effective for classifying children with and

without SDB were selected using a feature selection algorithm,

based on optimizing the area under the curve (AUC) of the

Receiver Operating Characteristic (ROC) curve obtained with the

Figure 6. Distribution of SpO2 pattern characterization features. Boxplot of some features extracted from SpO2 pattern characterization such
as (A) the mean of D (M_D), (B) the number of desaturations of 2% below baseline (M_n2%), (C) the spectral power in the modulation band (M_P),
and (D) the spectral Shannon entropy (M_SE). Children with SDB show higher SpO2 variability reflected M_D and a higher number of desaturations
M_n2% due to sleep apnea. They also reflect higher power in the modulation band and lower spectral complexity (see Table 3). Quartile values are
displayed as bottom, middle and top horizontal line of the boxes. Whiskers are used to represent the most extreme values within 1.5 times the
interquartile range from the median. Outliers (data with values beyond the ends of the whiskers) are displayed as circles.
doi:10.1371/journal.pone.0112959.g006
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linear classifier. An internal ‘‘leave-one-out’’ (LOO) cross-valida-

tion was applied to the feature selection to avoid a selection bias.

Only the statistically significant parameters ( p-value v0:01)

extracted from SpO2 and HRV analysis were applied to the

feature selection process.

Table 3. Effects of SDB on the normally distributed features extracted from SpO2 pattern characterization and PRV analysis.

Feature SDB NonSDB Mean diff 95% CI p-value

SpO2 pattern characterization

M_R 0.49 6 0.04 0.46 6 0.04 0.03 (0.017, 0.044) ,0.0001

S_R 0.14 6 0.02 0.13 6 0.01 0.06 (0, 0.01) 0.04

M_SE 6.86 6 0.18 6.98 6 0.16 20.12 (20.18, 20.07) ,0.0001

S_SE 0.47 6 0.09 0.46 6 0.08 0.02 (20.01, 0.05) 0.39

M_D 0.41 6 0.23 0.26 6 0.10 0.15 (0.08, 0.21) ,0.0001

S_D 0.33 6 0.30 0.18 6 0.12 0.15 (0.07, 0.24) ,0.0006

M_iqr 0.82 6 0.46 0.51 6 0.22 0.31 (0.18, 0.44) ,0.0001

S_iqr 0.69 6 0.63 0.40 6 0.40 0.29 (0.13, 0.46) ,0.0025

M_std 0.65 6 0.33 0.43 6 0.17 0.22 (0.12, 0.31) ,0.0001

S_std 0.52 6 0.40 0.32 6 0.25 0.20 (0.1, 0.32) ,0.001

HRV characterization

M_LF 0.34 6 0.10 0.29 6 0.10 0.04 (0.01, 0.08) 0.016

S_LF 0.15 6 0.03 0.13 6 0.05 0.02 (0.01, 0.04) ,0.001

M_HF 0.63 6 0.11 0.68 6 0.11 20.05 (20.09, 20.01) 0.01

S_HF 0.15 6 0.03 0.13 6 0.05 0.02 (0.01, 0.04) ,0.0001

M_RR 0.74 6 0.14 0.79 6 0.15 20.05 (20.10, 20.002) 0.04

S_RR 0.05 6 0.02 0.05 6 0.03 0.001 (20.008, 0.01) 0.82

Two-sample t-tests for unequal variances are applied to the data to obtain 95% confidence intervals (CI) and p-values. These features are represented by their mean 6

standard deviation for children with and without SDB, their mean difference, CIs, and p-value. For simplicity, only the mean (M) and standard deviation (S) of the
significant time varying features are represented. For abbreviations see table 2.
doi:10.1371/journal.pone.0112959.t003

Table 4. Effects of SDB on the non-normally distributed features extracted from SpO2 pattern characterization and PRV analysis.

Feature SDB NonSDB Mean diff p-value1 p-value2

SpO2 pattern characterization

M_P 0.0446 0.07 0.015 6 0.02 0.03 ,0.0001 ,0.0001

S_P 0.10 6 0.15 0.05 6 0.09 0.05 ,0.0001 ,0.0001

M_n2% 0.43 6 0.41 0.17 6 0.17 0.26 ,0.0001 ,0.0001

S_n2% 0.76 6 0.43 0.44 6 0.23 0.32 ,0.0001 ,0.0001

M_t94%` 1.64 6 3.41 1.38 6 6.48 0.25 ,0.0001 ,0.0001

S_t94%` 4.70 6 6.99 2.80 6 8.45 1.90 ,0.0005 ,0.0001

M_CMT 0.90 6 0.07 0.94 6 0.04 20.04 ,0.001 ,0.0001

S_CMT 0.11 6 0.05 0.07 6 0.03 0.03 ,0.0001 ,0.0001

HRV characterization

M_LF/HF 0.54 6 0.86 0.22 6 0.80 0.31 ,0.0001 ,0.0001

S_LF/HF 0.67 6 0.37 0.46 6 0.38 0.21 ,0.0001 ,0.0001

M_SDNN 0.07 6 0.04 0.069 6 0.07 0.001 0.19 0.08

S_SDNN 0.02 6 0.02 0.04 6 0.09 20.02 0.01 0.001

M_RMSSD 0.07 6 0.04 0.08 6 0.10 20.01 0.57 0.35

S_RMSSD 0.04 6 0.02 0.05 6 0.11 20.01 0.017 0.004

Two-sample t-tests for unequal variances are applied to the log-transformed data to obtain the p-values (illustrated by p-value1). Additionally, Mann-Whitney U tests are
also applied to the original data to account for the non-normal data distributions (p-value2). Features are described by their mean 6 standard deviation for children with
and without SDB and their mean difference. For abbreviations see table 2. For simplicity, only the mean (M) and standard deviation (S) of the significant time varying
features are represented. Two variables, represented by `, were transformed using Box-Cox because they contained zero values.
doi:10.1371/journal.pone.0112959.t004
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The results are represented in terms of accuracy, sensitivity, and

specificity classifying children with significant SDB (AHI §5).

Positive and negative predictive values are also calculated to take

into account the prevalence of SDB in this cohort. In addition, to

quantify the benefits of combining SpO2 pattern characterization

with PRV analysis, the same feature selection and classification

was performed using only the features extracted from the SpO2

characterization.

Results

3.1 Statistical Analysis
In total, we characterized the SpO2 pattern and PRV of 146

children (56 SDB, 90 NonSDB). The AHI was significantly higher

during REM sleep stages, and as expected the Body Mass Index

(BMI) was significantly higher in the SDB group [36] (see

Table 1).

Children with SDB showed a modulated SpO2 waveform due to

the desaturations caused by OSA. These SpO2 fluctuations are

reflected in the spectral domain through a clear modulation

frequency peak (see Figure 2 for a subject with and without SDB

and Figure 3 for the population with and without SDB) and lower

spectral complexity or randomness. In children with a high AHI,

the time varying PSD of the SpO2 illustrated a clear modulation

frequency peak relative to children without SDB (Figure 4). The

power in the modulation frequency band is positively correlated

with the AHI index (r = 0.7, p-value v 0.0001). Therefore,

children with SDB showed higher power in the modulation

frequency band and thus a higher power ratio (M_P, M_R), with

higher power dispersion overnight (S_P, S_R), and lower spectral

entropy (M_SE) than NonSDB children (Figure 6). SDB children

also showed higher SpO2 variability reflected by M D, M_iqr,

M_std, M_CTM and higher overnight SpO2 dispersion associated

with S D, S_iqr, S_std and S_CTM. As expected, the number of

desaturations below baseline (M_n2%) and the time spent below

92% (M_t92%) were higher in SDB children (see Tables 3 and 4).

With regards to PRV analysis, higher normalized LF power

(M_LF), lower HF power (M_HF) and thus higher LF/HF ratio

was observed in SDB children, reflecting higher sympathetic

activity due to episodes of OSA. They also showed higher heart

rate (M_RR) and higher overnight dispersion on PRV measures

such as S_LF, S_HF, S_LF/HF, S_SDNN, S_RMSSD (see

Tables 3 and 4, and Figure 7).

Figure 7. Distribution of PRV features. Boxplot of features extracted from PRV analysis such as (A) the mean of pulse to pulse intervals (M_RR),
(B) the standard deviation of RMSSD (S_RMSSD) in time domain, (C) the standard deviation of the normalized power in the LF, and (D) HF band in the
spectral domain (S_LF and S_HF, respectively). Children with SDB reflect higher heart rate and PRV dispersion, reflected by a lower pulse to pulse
interval and higher standard deviation of the standard PRV measures. Quartile values are displayed as bottom, middle and top horizontal lines of the
boxes. Whiskers are used to represent the most extreme values within 1.5 times the interquartile range from the median. Outliers (data with values
beyond the ends of the whiskers) are displayed as circles.
doi:10.1371/journal.pone.0112959.g007
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3.2 Feature Selection and Classification
The most discriminating 15 features were selected using the

training dataset and evaluated on the test dataset; this process was

repeated N = 4 times resulting in 4 external error estimates. The

best internally cross-validated AUC = 88% was obtained with 8

features, providing accuracy, sensitivity and specificity rates above

80% for the training dataset (see Figure 8.a and Figure 9.a). The

performance of the most discriminating 8 features evaluated on

the test dataset (Figure 8.b) provided on average, an AUC of 86%,

accuracy of 84.9%, sensitivity of 88.4% and specificity of 83.6%.

The positive and negative predictive value showed that only

76.9% of the children classified as SDB would have the disease,

and 92.6% of the children classified as NonSDB would not. (See

Figure 9.b and Table 5).

The combined SpO2 and PRV analysis improved the perfor-

mance of the classifier identifying children with SDB. The AUC

obtained with the SpO2 characterization alone (82%) increased to

88% by including PRV information (see Figure 9).

3.3 Performance of the Proposed Feature Set
The feature selection algorithm chose the 15 most discriminat-

ing features in each iteration (N = 4 iterations in total). The

histogram of the most discriminating features is represented in

Figure 10, showing how many times each feature was selected in

the four different iterations. 5 features were selected in each of the

four iterations and 3 were selected in three of the four iterations,

reflecting high discriminant value. Therefore, we selected these 8

features to screen children with and without SDB using a linear

discriminant. These most discriminating features (marked with * in

Figure 10) are related to the variability and modulation of SpO2

and PRV due to intermittent apnea/hypopnea events during the

sleep. A linear classifier based on this fixed 8-feature set provided

an accuracy of 85.0%, sensitivity of 88.4%, specificity of 83.6%,

positive predictive value of 76.0% and negative predictive value of

90.6% using 4-fold cross-validation.

Discussion

This study shows that combining the SpO2 pattern character-

ization and PRV analysis performed using the Phone Oximeter’s

measurements (SpO2 and PPG), improved the Phone Oximeter’s

performance as a possible SDB screening tool. In 146 children

(SDB prevalence of 38%) the SpO2 fluctuations caused by SDB

modulated the SpO2 signal, which was reflected in the frequency

domain by a clear modulation peak and less spectral randomness.

Therefore, children with SDB showed significantly greater SpO2

variability and overnight dispersion in the time domain, accom-

Figure 8. Performance of the feature selection. The performance is represented in terms of accuracy, sensitivity and specificity in classifying
SDB and NonSDB children, whenever the feature that provided the higher AUC (with the training set) was included in the linear discriminant. The
results obtained with (A) the training dataset (with internal LOO cross-validation) and (B) the test dataset (with external 4-fold cross-validation) are
illustrated.
doi:10.1371/journal.pone.0112959.g008
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panied by higher SpO2 spectral power at low frequencies

(modulation band) and lower spectral complexity in the frequency

domain, than NonSDB children.

SDB children showed higher sympathetic activity as a response

to intermittent hypoxia and arousals during sleep. This was

reflected by a significantly higher normalized power at low

frequency and lower normalized power at high frequency,

resulting in a higher LF/HF ratio. These results confirmed

previous findings about cardiac modulation in subjects with SDB

[19],[20],[37],[38].

The most discriminating features identifying children with SDB

were automatically selected (with internal cross-validation) and

evaluated (with external cross-validation). The selected features

were related mainly to the spectral analysis of PRV, and SpO2

variability and modulation represented in the spectral domain.

This reflects the significant effect of intermittent apnea events and

respiratory arousals in the sympathetic and parasympathetic

activity, and the recurrent desaturations in the SpO2 pattern

variability. The best performance, obtained with 8 features,

provided higher accuracy, sensitivity and specificity values than

the SpO2 pattern characterization alone. The results showed that

when using the Phone Oximeter as an SDB screening tool, 88.4%

of the children with SDB would be correctly identified. However,

23.1% of the children misclassified as having SDB, would be

unnecessarily sent for a PSG, and 7.4% of the children with SDB,

would be wrongly classified as NonSDB and remain undiagnosed.

Based on the feature selection histogram, a fixed set of the most

frequently selected features was suggested to create the optimal

linear discriminant. Similar cross-validated classification results

were obtained with the proposed optimal linear discriminant.

Our results, obtained with the Phone Oximeter, are comparable

with previous studies with more sophisticated approaches or

devices. Heneghan et al. proposed a combined Holter-Oximeter as

a portable home-based device to automatically assess OSA in

adults with signs of SDB [19],[20]. Their system provided an

automatic epoch-by-epoch estimate of OSA occurrence and

calculated an AHI for each subject. Overall the system correctly

identified 85.3% of all 1-minute epochs. Chung et al. reported that

oxygen desaturation index (ODI), calculated from nocturnal

oximetry, was a good predictor of AHI in adult surgical patients

[39]. An ODI w5 provided an accuracy of 87%, sensitivity of

96.3% and specificity of 67.3% identifying adults with an AHI

§5. In this study, we focused on identifying children with SDB,

which is more challenging than in their adult counterparts. Yet,

the Phone Oximeter alone provided similar accuracies, maintain-

ing a good sensitivity-specificity balance.

Gil et al. successfully associated amplitude fluctuations in the

PPG signal with SDB, and used HRV calculated from ECG to

discriminate between amplitude fluctuations related or unrelated

to apneic events [37], [38]. In a similar study, they recently

proposed using pulse rate variability (PRV) instead of HRV [40]

and reported an accuracy of 86.67% in identifying children with

SDB. However, their dataset consisted of 21 children, 10 of whom

were diagnosed with SDB. In our previous study, we obtained

similar results (accuracy 86.8%) characterizing the SpO2 pattern of

68 children, 30 of whom were diagnosed with SDB [24]. In this

study, with a bigger cohort (146 children), we showed that

combining SpO2 pattern characterization [24] and PRV analysis

[28], the Phone Oximeter provides a more robust stand-alone

approach to screening for SDB in children. The sensitivity

increased from 80% to 88%, reflecting that with this analysis we

were able to detect more OSA events (perhaps those that occur in

absence of SpO2 desaturation). Furthermore, compared to ECG

Figure 9. Training and test ROC. The ROC obtained with the 8 most
discriminating features (see Table 5) applied to (A) the training dataset
(with internal LOO cross-validation) and (B) the test dataset (with
external 4-fold cross-validation).
doi:10.1371/journal.pone.0112959.g009

Table 5. Classification performance based on the linear discriminant analysis using the most discriminatory set of 8 features.

LD performance (Test) Acc (%) Sn (%) Sp (%) NPV (%) PPV (%)

8 features (SpO2 and PRV) 84.9 88.4 83.6 92.6 76.9

8 features (SpO2) 78.5 80.0 83.9 87.4 77.6

The results were obtained with the test dataset using 4-fold cross-validation. The performance of combined SpO2 and PRV analysis is compared to SpO2 analysis alone,
in terms of accuracy (Acc), sensitivity (Sn), specificity (Sp) and negative and positive predictive value (NPP and PPV, respectively).
doi:10.1371/journal.pone.0112959.t005
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recordings, PPG recordings are more convenient to obtain, with

the potential of being used at home. Nixon et al. successfully

proposed and validated a score system based on overnight

oximetry to prioritize surgery [12], [13]. The aim of our study is

instead to provide a screening tool that would prioritize children

for referral to a formal sleep laboratory, such as at BCCH, for

PSG. We do not intend to diagnose SDB with the Phone

Oximeter, but to have an intermediate at-home monitoring step

that will reach more children suspected of having SDB in a timely

and less-stressful means.

Álvarez et al. proposed SpO2 regularity as useful information to

improve SBD diagnosis in adults and showed that subjects with

SDB had lower SpO2 regularity than NonSDB subjects [15].

However, we obtained no significant difference in the SpO2

regularity between SDB and NonSDB children. In a recent study,

we found that theSpO2 resolution had a major influence on

regularity measurements and demonstrated that different resolu-

tions provided different results. As it is illustrated in Figure 11,

higher SpO2 resolution permits observation of the small changes in

the SpO2 signal, which have a great impact on the complexity

value of the SpO2 signal. Therefore, the devices’ resolution should

be carefully considered when dealing with SpO2 regularity to

identify children with SDB [41].

Considering the population in British Columbia under 14 years

old (16% of 4,609,946 [42]), in conjunction with SDB prevalence

[2] of 2%, around 14,750 children would suffer from SDB. In this

study, 38% of children with signs of SDB referred to BCCH for a

PSG, were diagnosed with SDB upon analysis of a full PSG.

Therefore, approximately 38,815 children with signs of SDB may

require a PSG at BCCH, where only 250 PSGs can be performed

per year. The availability of PSG does not meet the demand

requirements, and results in long waitlists. The results of this study

show that using the Phone Oximeter as a screening tool prior to

PSG could reduce the number of PSGs required to less than half,

while effectively studying the same number of children. From the

56 SDB children studied, 50 would have been correctly screened

and sent for a PSG, while 6 cases of SDB would have remained

undetected in the first screening test (false negatives). From the 90

NonSDB children studied, 75 would have been correctly classified,

while 15 children (false positives) would have been sent for PSG

unnecessarily. In total, only 65 out of the 146 children (44%)

would have been referred to the hospital for a PSG. With a

capacity of only 250 PSGs per year at BCCH, and considering

that only 44% of the screened children require a full PSG, we can

back-calculate that the number of patients that it is possible to

screen using the Phone Oximeter under current hospital

limitations is 568 per year (250 would be sent for a PSG, while

the remaining 318 children, would be watched for progression of

symptoms). In this manner, more than double the number

children with signs of SDB could be screened each year, and

sent for PSG if required. Therefore, using the Phone Oximeter

would result in increased coverage of medical services to children

in British Columbia with signs of SDB, reducing wait times and

optimizing usage of hospital resources.

The Phone Oximeter provides the perfect platform to create an

SDB screening prototype, permitting overnight pulse oximetry

recordings and allowing implementation of the algorithm on a

smartphone. In addition, it can wirelessly communicate informa-

tion (raw data, results etc.). More sophisticated analysis approaches

such as the correntropy spectral density [25], [43], could be

applied to the SpO2 for a more robust spectral analysis that

includes nonlinear information. However, simpler algorithms are

preferred so that they can be easily implemented on a smartphone

with low computational load. By using the low cost version of the

Phone Oximeter, which interfaces the sensor directly with the

phone via the audio jack, the cost to monitor SDB with the phone

will be reduced to that of the finger probe alone. The offline SpO2

and PRV analysis for the overnight study of each subject takes

between 1 to 2 seconds. Real time performance is not required,

since we aim to provide a final screening result after the overnight

recording.

The pediatric population of this study includes children with a

higher likelihood of SDB than the general population, having

Figure 10. Feature histogram. The histogram of the feature selection process, where the 15 most discriminating features were selected in each
iteration. The histogram illustrates the total number of times each feature was automatically chosen by the selection algorithm in each iteration (4 in
total). The feature selection was validated internally with a LOO cross-validation and externally with 4-fold cross-validation. The features selected in
every iteration (4 times) or nearly every iteration (3 times) were defined as the most discriminating and were proposed as the optimal to create the
final linear discriminant. They are represented in black and marked with *.
doi:10.1371/journal.pone.0112959.g010
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already been referred to BCCH for a PSG. Although our target

population for the SDB screening tool is children with signs of

SDB, the utility of the Phone Oximeter in a general population

with a lower prevalence of SDB is presently unproven.

A limitation of this study is that the recordings were performed

in a hospital sleep laboratory at the BCCH. At-home screening is

our goal for the next study. During recordings performed at home,

we expect artifacts caused by sensor displacement to be more

severe, which could degrade the performance of the Phone

Oximeter as an SDB screening tool. Therefore, the implementa-

tion of an accurate artifact detection technique for the PPG and

SpO2 signals, directly on the phone, is one of our main future

challenges.

Previous studies suggest that the indication for SDB treatment,

primarily adenotonsillectomy, is an AHI (from PSG).5, which

coincides with the current practice at BCCH. Therefore, in this

study we considered children with an AHI §5 as positive for SDB.

However, there is no discrete definition of OSA based on AHI

alone, but rather a continuum from normal to abnormal. We

recognize that some studies consider an AHI §2 as abnormal or

mild OSA. For example, The Childhood Adenotonsillectomy

Trial (CHAT), designed to evaluate the efficacy of early

adenotonsillectomy versus watchful waiting with supportive care,

defined OSA as an AHI score ~ 2. Surgical treatment did not

significantly improve attention or executive function in these

patients, but did reduce OSA symptoms. However, the population

in the CHAT study primarily had mild cases of OSA, reflected by

the AHI interquartile range (2.5 to 8.9) in the OSA positive group,

which may have affected their assessment of treatment efficacy.

Therefore, we will further investigate the Phone Oximeter’s

performance identifying children with SDB based on different

AHI thresholds (AHI §1, AHI §2), using different classifiers. An

AHI §2 will result in a recommendation for at-home monitoring,

and an AHI §5 will result in a referral to BCCH for a PSG.

The most common cause of SDB in children is adenotonsillar

hypertrophy [4], [5]. Most children can be discharged the same

day following adenotonsillectomy surgery, however, those with

advanced SDB have a 20-fold higher risk of post anesthetic

respiratory complications. Therefore, the aim of our follow-up

study is to adapt and test the innovative SDB screening tool in

children with suspected SDB before adenotonsillectomy and the

incidence of desaturation or ongoing SDB in the days following

surgery [8],[44].

Figure 11. SpO2 signal with different resolutions. An SpO2 signal segment, recorded using the Phone Oximeter (0.1% resolution) for (A) SDB
and (B) NonSDB children, and the corresponding SpO2 signal recorded simultaneously with the PSG’s pulse oximeter (1% resolution) for the same
SDB (C) and NonSDB (D) children. The SpO2 resolution has a great influence in regularity measures like approximate entropy and Lempel-Ziv [41].
Therefore, SpO2 resolution should be taken into account when studying the SpO2 pattern in children with SDB.The SpO2 randomness shown for
NonSDB children in 0.1% resolution SpO2 signal (provided by the Phone Oximeter), is not reflected in the 1% resolution SpO2 signal (provided by the
PSG’s pulse oximeter) because of the rounding effect. This resolution difference might be the reason why children with SDB showed a higher
complexity than NonSDB children with conventional pulse oximeter.
doi:10.1371/journal.pone.0112959.g011
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The time-varying characterization of the SpO2 pattern and

PRV is a suitable tool to provide further knowledge of SpO2 and

cardiac modulation during sleep apnea, to identify children with

SDB. This provides the potential for the Phone Oximeter to be

used as an SDB screening tool, providing a portable at-home

device with the capability of monitoring patients over multiple

nights. At-home screening will result in less sleep disturbance,

facilitate a more natural sleep pattern and prevent unnecessary

burden to both families and the health care system. Additionally,

this tool has the potential to optimize resources by identifying

those children who should undergo a complete PSG test.

Acknowledgments

The authors would like to thank the clinical staff of the sleep laboratory at

British Columbia Children’s Hospital for their collaboration and assistance

with data acquisition, Aryannah Umedaly and Richa Anand for helping to

revise this manuscript and Guohai Zhou for his advice regarding statistical

analysis.

Author Contributions

Conceived and designed the experiments: AG PD WK DW JMA GAD.

Performed the experiments: AG. Analyzed the data: AG PD. Contributed

reagents/materials/analysis tools: AG PD WK DW JMA GAD. Wrote the

paper: AG PD WK DW JMA GAD.

References

1. Wildhaber JH, Moeller A (2007) Sleep and respiration in children: time to wake

up! Swiss Medical Weekly137: 689–694.

2. Rosen CL, Larkin EK, Kirchner HL, Emancipator JL, Bivins SF, et al. (2003)

Prevalence and risk factors for sleep-disordered breathing in 8- to 11-year-old

children: association with race and prematurity. The Journal of Pediatrics 142:

383–389.

3. Johnson EO, Roth T (2006) An Epidemiologic Study of Sleep-Disordered

Breathing Symptoms Among Adolescents. Sleep 29: 1135–1142.

4. Marcus CL, Brooks LJ, Draper KA, Gozal D, Halbower AC, et al. (2012)

Diagnosis and management of childhood obstructive sleep apnea syndrome.

Pediatrics 130: 576–584.

5. Sinha D, Guilleminault C (2010) Sleep disordered breathing in children. Indian

Journal of Medical Research 131: 311–320.

6. Kushida CA, Littner MR, Morgenthaler T, Alessi CA, Bailey D, et al. (2005)

Practice parameters for the indications for polysomnography and related

procedures: an update for 2005. Sleep 28: 499–521.

7. Section on Pediatric Pulmonology and Subcommittee on Obstructive Sleep

Apnea Syndrome (2002) Clinical Practice Guideline: Diagnosis and Manage-

ment of Childhood Obstructive Sleep Apnea Syndrome. Pediatrics 109: 704–

712.

8. Huang YS, Guilleminault C, Lee LA, Lin CH, Hwang FM (2014) Treatment

outcomes of adenotonsillectomy for children with obstructive sleep apnea: a

prospective longitudinal study. Sleep 37: 71–77.

9. Deutsch PA, Simmons MS, Wallace JM (2006) Cost-effectiveness of split-night

polysomnography and home studies in the evaluation of obstructive sleep apnea

syndrome. Journal of Clinical Sleep Medicine 2: 145–153.

10. Chervin RD, Murman DL, Malow BA, Totten V (1999) Cost-utility of three

approaches to the diagnosis of sleep apnea: polysomnography, home testing, and

empirical therapy. Annals of Internal Medicine 130: 496–505.

11. Medical Services Commission of British Columbia (2013) Respirology.

12. Horwood L, Brouillette RT, McGregor CD, Manoukian JJ, Constantin E (2014)

Testing for pediatric obstructive sleep apnea when health care resources are

rationed. JAMA Otolaryngology Head & Neck Surgery Published online May

22, 2014.

13. Nixon GM, Kermack AS, Davis GM, Manoukian JJ, Brown A, et al. (2014)

Planning Adenotonsillectomy in Children With Obstructive Sleep Apnea: The

Role of Overnight Oximetry. Pediatrics 113: e19–e25.
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