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Abstract

Despite the completion of the Arabidopsis genome sequence, for only a relatively low percentage of the encoded proteins
experimental evidence concerning their function is available. Plant proteins that harbour a single PLAT (Polycystin,
Lipoxygenase, Alpha-toxin and Triacylglycerol lipase) domain and belong to the PLAT-plant-stress protein family are
ubiquitously present in monocot and dicots. However, the function of PLAT-plant-stress proteins is still poorly understood.
Therefore, we have assessed the function of the uncharacterised Arabidopsis PLAT-plant-stress family members through a
combination of functional genetic and physiological approaches. PLAT1 overexpression conferred increased abiotic stress
tolerance, including cold, drought and salt stress, while loss-of-function resulted in opposite effects on abiotic stress
tolerance. Strikingly, PLAT1 promoted growth under non-stressed conditions. Abiotic stress treatments induced PLAT1
expression and caused expansion of its expression domain. The ABF/ABRE transcription factors, which are positive
mediators of abscisic acid signalling, activate PLAT1 promoter activity in transactivation assays and directly bind to the ABRE
elements located in this promoter in electrophoretic mobility shift assays. This suggests that PLAT1 represents a novel
downstream target of the abscisic acid signalling pathway. Thus, we showed that PLAT1 critically functions as positive
regulator of abiotic stress tolerance, but also is involved in regulating plant growth, and thereby assigned a function to this
previously uncharacterised PLAT domain protein. The functional data obtained for PLAT1 support that PLAT-plant-stress
proteins in general could be promising targets for improving abiotic stress tolerance without yield penalty.
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Introduction

The PLAT domain (PS50095; Polycystin-1, Lipoxygenase,

Alpha-toxin and Triacylglycerol lipase) forms a b-sandwich

composed of two sheets of four strands each and is an intracellular

domain. It occurs in a variety of membrane or lipid associated

proteins that are multi-domain proteins, but also in proteins

harbouring either a single PLAT domain or repeats [1–5].

Because of its similarity to the C2 domain, the PLAT domain

was proposed to function in protein-protein interactions as well as

protein-membrane interactions [2,4,6]. Indeed, the PLAT domain

of Caenorhabditis elegans polycystin LOV-1 and human poly-

cystin-1 interact with ATP-2, an ATP synthase F1 subunit [7],

while the human polycystin-1L2 interacts with different types of

G-proteins [8]. Importantly, the association with membranes is

essential for the proper function of PLAT domain proteins [2,7].

Further, the membrane targeted 11R-Lipoxygenase from Gerse-
mia fruticosa was shown to bind calcium, required to induce its

activity [9]. The PLAT domain regulates the catalytic activity in

multi-domain proteins, but also in proteins interacting with the

PLAT domain [2,6], and was shown to regulate substrate

specificity [10]. Whereas substantial experimental data on PLAT

domain proteins is available for the animal field, PLAT domain

proteins from plants were only poorly studied, despite the fact that

genes encoding PLAT domain proteins were isolated from several

plant species [3,4,11–16].

Transgenic approaches to improve abiotic stress tolerance often

resulted in yield penalties under optimal growth conditions

[17,18], while only few studies reported an associated improved

plant growth [4,19]. Interestingly, one of these studies addressed
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the so far only studied PLAT-plant-stress protein CaTIN1 from

Capsicum annuum, however this protein was only studied using

heterologous expression in tobacco [4]. Because both gain-of-

function and antisense CaTIN1 expression promoted abiotic and

biotic stress tolerance, CaTIN1 function remained elusive.

Proteins that belong to the PLAT-plant-stress protein family

(Conserved Domain cd1754) are ubiquitously present in monocot

and dicot plant species and harbour a single PLAT domain. Our

analyses of the limited in silico expression data available for

PLAT-plant-stress proteins indicate transcriptional induction by

different abiotic and biotic stimuli. This suggests that PLAT-plant-

stress proteins in general could promote tolerance towards stress

responses, although no data from functional studies in homologous

systems are available for these proteins.

The plant hormone abscisic acid (ABA) regulates different

aspects of plant development, such as stomatal aperture [20] and

seed germination [21]. ABA production is increased by abiotic

stresses and ABA regulated genes strongly overlap with those

induced under drought, salinity and less prominently cold stress

conditions [22–25]. The ABA stimulated stomatal closure has

been shown to serve as primary defence mechanism during the

initial phase of biotic stress responses [26,27]. In contrast, ABA

mostly negatively regulates the subsequent phases in biotic stress

responses by repressing the salicylic acid, ethylene, jasmonic acid

and cytokinin signalling pathways [26–29]. ABA-deficient mutants

showed enhanced defence responses against Botrytis cinerea [30],

and virulent bacteria in tomato [31] and Arabidopsis [32].

Although these findings suggest that ABA is involved in the

crosstalk between abiotic and biotic stress responses, no direct link

in the antagonistic interaction between these stresses is available.

Based on comparative genomic analysis, we identified three

Arabidopsis genes (PLAT1 AT4G39730, PLAT2 AT2G22170
and PLAT3 AT5G65158) that belong to the PLAT-plant-stress

subgroup and submitted this annotation to the TAIR database.

PLAT1 and PLAT2 are orthologs of CaTIN1 and CaTIN1-2,

respectively [4,16]. Our in silico analysis of published experimen-

tal data [33] revealed that cold stress induced the expression levels

for the PLAT1 ortholog in Thlaspi arvense, which is a close

relative of Arabidopsis. Based on these findings we hypothesised

that the Arabidopsis members from this PLAT-plant-stress

subgroup, similar to CaTIN1 [4], also promote tolerance towards

various stress responses. Here we report on the molecular

characterisation and functional analysis of the PLAT-plant-stress

subgroup family member AT4G39730 that we designated as

Arabidopsis PLAT domain protein 1 (PLAT1). We showed that

PLAT1 critically functions as positive regulator of abiotic stress

tolerance, also promotes plant growth and is a direct target of the

ABF transcription factors, which are positive mediators of the

ABA signalling pathway [34,35]. The possible practical applica-

tion to increase abiotic stress tolerance without yield penalty in

crop species is discussed.

Materials and Methods

Plasmid construction and plant transformation
Total RNA isolated from Arabidopsis (TRIR reagent from

Thermo Fischer Scientific, Germany) was reverse-transcribed

using the ReverAidTM First strand cDNA synthesis kit (Thermo

Fischer Scientific, Germany). Using this cDNA as template, the

full-length PLAT1 cDNA was amplified by PCR with the PLAT1-

F cDNA and PLAT1-R cDNA primers (Table S1 in File S1). The

dexamethasone inducible overexpression construct, 35S..

PLAT1 was created by cloning the PLAT1 cDNA PCR product

in the OP shuttle vector pEG647. The resulting OP:PLAT1

cassette was transferred to the binary vector pEG618 harbouring

the 35S:LhGR activator component, resulting in 35S..PLAT1.

The PLAT1 rescue/reporter constructs were generated by PCR

amplification from genomic DNA with the PLAT1-F and PLAT1-

R rescue primers (Table S1 in File S1) to isolate the genomic

fragment harbouring 2039 bp PLAT1 promoter sequence,

including the 59-UTR region, and the PLAT1 coding region

without stop codon. Subsequently, the venus YFP or GUS

reporter proteins were fused in frame to the C-terminus of the

PLAT1 protein resulting in PLAT1:PLAT1-YFP and PLAT1:-
PLAT1-GUS, respectively. The different 35S:ABF1–4 overex-

pression constructs were created by cloning the ABF1–4 PCR

products (ABF1–4-F OX and ABF1–4-R OX primers, Table S1 in

File S1) into the pPS1 binary vector. The MBP-ABF1–4 fusion

proteins for the EMSA experiments were created by cloning the

ABF1–4 PCR products (ABF1–4-F and ABF1–4-R primers; Table S1

in File S1) into the pMA-c2xL vector harbouring the maltose

binding protein as tag for protein purification. Binary vectors were

introduced into Agrobacterium tumefaciens LBA4404 by electro-

poration and used to transform Arabidopsis plants using the floral

dip method [36].

Phylogenetic analysis
To identify members of the PLAT-plant-stress family from other

plant species, multiple database searches were performed using the

Basic Local Alignment Search Tool (BLAST) algorithms BLASTp

and tBLASTn available on the public databases, PLAZA 2.0

(bioinformatics.psb.ugent.be/plaza) and Phytozome v8.0 (www.

phytozome.net) with cutoff value of E,1025. We used nucleotide

and amino acid sequences of PLAT1 from the TAIR database

(www.arabidopsis.org) to BLAST all databases. Phylogenetic

analysis was performed by using CLUSTALW alignment in

PHYLIP format clustal algorithm, and displayed in a phylogram

tree format with locus name of each protein. Bootstrap values were

presented as a percent of 100 resampled trees at each tree node

using default settings of the TreeTop-Phylogenetic Tree (www.

genebee.msu.su/services/phtreereduced.html).

Plant materials and growth conditions
Nicotiana benthamiana plants were grown under greenhouse

conditions as described previously [37]. Arabidopsis plants (Col-0

ecotype) were grown in soil at 8 h light/16 h darkness at 22uC
(light intensity: 180 mmol m22 s21) or on half strength MS

medium under continuous light at 22uC (light intensity: 180 mmol

m22 s21) in growth cabinets. T3 homozygous T-DNA insertion

lines were obtained for the PLAT1 gene, plat1-1 SALK-112728c

and plat1-2 SALK-1283454c, and the PLAT2 gene, plat2 SAIL-

1171C06. The T-DNA insertions were verified with the primers

PLAT1-1-F, PLAT1-1-R and SALK LB2 (plat1-1), PLAT1-2-F,

PLAT1-1-R and SALK LB2 (plat1-2), and PLAT2-F, PLAT2-R

and pROK2 LB1 (plat2) (Table S1 in File S1). For all plant

experiments T3 or T4 homozygous plant lines were employed,

based on the segregation of the respective antibiotic selection

marker, except for the experiments shown in Figure S4, for which

segregating T2 Arabidopsis lines were employed.

Abiotic stress conditions
The abiotic stress experiments in soil were performed as 3

biological replicates (cold stress as 2 biological replicates) with at

least 10 plants each. For the Arabidopsis germination experiment,

seeds were directly germinated on half strength MS medium

including the respective chemicals as indicated. At least 100 seeds

per treatment/genotype were used in 3 independent experiments.

For the salt stress tolerance in plates, seeds were germinated and
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grown for 6 d on half strength MS medium, transferred to half

strength MS medium including NaCl (either 0, 150 or 200 mM)

and optionally 5 mM dexamethasone (35S..PLAT1 lines), and

grown for another 4 d. These experiments were performed as 2

biological replicates, each with 2 technical replicates and with .12

Col-0 and .26 mutant/transgenics seedlings per plate. For the

tunicamycin (TM) experiments, seeds were directly germinated on

half strength MS medium including different TM concentrations.

At least 70 seeds per treatment/genotype were used in 3

independent experiments, with 2 technical replicates each.

Biotic stress conditions
To determine pathogen susceptibility, leaves from 8-w-old

Arabidopsis plants were infected with Pseudomonas syringae pv.

tomato DC3000 with or without the avrRpm1 gene by infiltration

using a needleless syringe as described previously [38]. Visual

evaluation of disease symptoms were conducted at 3 to 5 d. For

expression analysis, 8-w-old plants were infected with P. syringae
pv. tomato DC3000 or Sclerotinia sclerotiorum. Subsequently, the

S. sclerotiorum infected plants were kept in a clear plastic box

under saturating humidity. The biotic stress experiments were

performed as 3 biological replicates with at least 10 plants each.

Expression analysis
Total RNA isolation and Northern-blot analysis was carried out

as described previously [37]. Filters were exposed to a screen for

4 d, which was scanned with a Phosphor imager (Fuji BAS2000,

Ray-test, Germany). The probes for the PLAT1, PLAT2 and

PLAT3 genes were generated by PCR from cDNA with the

primers, PLAT1-F probe and PLAT1-R probe, PLAT2-F probe

and PLAT2-R probe, and PLAT3-F probe and PLAT3-R probe

(Table S1 in File S1), respectively. The RT-PCR analysis was

performed essentially as described before [37]. At least 10

seedlings per genotype were grown for 14 d on control plates

before transfer to the respective stress and control medium. The

optimal cycle number was determined for each primer pair (Table

S2 in File S1). Expression values were corrected for the ACTIN
and UBIQUITIN signal intensities and expressed as relative

values compared to Col-0. For expression analysis, 3 independent

experiments were performed.

ABA determination
The extraction and analysis of ABA was carried out as described

previously [39].

PLAT1-YFP localisation
For transient PLAT1-YFP expression a single colony of A.

tumefaciens LBA4404 containing either PLAT1:PLAT1-YFP or

the ER-rk CD3-959 ER-marker [40] construct was inoculated

into 5 ml induction medium with antibiotics and grown overnight

at 28uC. The bacteria were collected by centrifugation and

resuspended in 10 mM MES and 10 mM MgCl2 containing

200 mM acetosyringone to an OD600 of 1.0. Aliquots (1 ml) of A.
tumefaciens cells containing PLAT1:PLAT1-YFP and ER-marker

construct were mixed together, and then a syringe was used to

infiltrate the mixture into the lower surface of N. benthamiana
leaves. YFP and mCherry fluorescence was visualized 48 h post

infiltration, using Olympus confocal laser scanning microscope

(model FV1000, Tokyo, Japan). For stable PLAT-YFP expression

following ABA and salt treatment, the PLAT1:PLAT1-YFP line

YFP13-1 was employed, 10 plants per treatment.

Transactivation assay
Suspensions of A. tumefaciens carrying the respective

35S:ABF1–4 overexpression constructs and the PLAT1:PLAT1-
GUS rescue/reporter construct were mixed in a ratio of 1:1. The

resulting mixed suspensions were used to infiltrate leaves of 6-w-

old greenhouse grown N. benthamiana in soil. As control, leaves

were infiltrated with A. tumefaciens carrying the PLAT1:PLAT1-
GUS rescue construct only, or 10 mM MgCl2. The GUS

fluorometric assays were carried out as described previously

[41]. Samples were isolated from the infiltrated regions 2 d after

infiltration for 5 independent plants and ground in 500 ml of

extraction buffer containing 50 mM sodium phosphate, 10 mM

EDTA, 10 mM b-mercaptoethanol and 0.1% N-lauroylsarcosine

(pH = 7.4). After centrifugation at 4uC for 10 min at 13,000 rpm,

the supernatant was used for the determination of GUS enzyme

activity. 50 ml of supernatants was transferred into one slot of a

black 96-well plate and 50 ml of a 2 mM MUG (methylumbellif-

ery-b-D-glucuronide, Sigma) solution was added. For each sample

3 technical replicates were measured. The samples were incubated

at 37uC for 30, 60 and 90 min, before the reaction was stopped

with 1 M sodium carbonate. A standard curve was prepared with

MU (4-methylumbelliferone, Sigma) in a concentration range

from 0 to 16 mM. Excitation was measured at 365 nm, emission at

455 nm. Total protein amount was determined by the Bradford

assay. GUS enzyme activity was calculated in pmol Mu min21

mg21 protein.

Expression and purification of ABFs
The ABFs were prepared employing a MBP-fusion purification

procedure. Five ml of an overnight bacterial culture was incubated

with 500 ml rich broth medium containing glucose and ampicillin.

The cells were grown to 26108 cells ml21 (A600 = 0.5). IPTG was

added to a final concentration of 0.3 mM and a further incubation

at 37uC for 2 h followed. The cells were harvested by centrifu-

gation at 4,000 g for 20 min. The supernatant was discarded and

the pellet re-suspended in 25 ml of column buffer (20 mM Tris-

HCl, 200 mM NaCl, 1 mM EDTA, 1 mM DTT and 0.1 mM

PMSF (pH = 7.4). The pellet was kept at 220uC overnight and

thawed in cold water the next morning. The sample was placed in

an ice-water bath and sonicated in short pulses of 15 s for at least

2 min. The suspension was centrifuged at 9,000 g for 30 min and

the supernatant diluted 1/3 (v/v) with column buffer before

purification. Amylase resin was poured in a 5 ml column and

washed with 8 column volumes of column buffer. The diluted

sample was loaded and slowly ran over the column. The column

was then washed with 12 volumes of column buffer and the

proteins subsequently eluted with column buffer containing

10 mM maltose. 10 to 15 fractions containing 2 ml each were

collected. Proteins were checked via SDS-page.

Electrophoretic mobility shift assay
For EMSA, the 200 bp PLAT1 promoter, generated by PCR

with the primers pPLAT1-F and pPLAT1-R (Table S1 in File S1)

was used as positive probe. The mutated version lacking the 2

ABRE elements was generated in 2 steps by PCR using the

primers WIP-F1 and WIP-R1, and WIP-F2 and WIP-R2. The 2

PCR fragments were joined to create the negative 200 bp probe

WIP1. The 200 bp PLAT1 promoter fragment was labelled with

[c-32P]ATP using T4 polynucleotide kinase (59 end labelling). The

reaction was incubated for 1 h at 37uC, purified and eluted with

10 mM Tris, pH = 8.0. The labelled probe was incubated 30 min

at room temperature with 5 mg of the respective ABFx protein

extracts alone, with 100 fold molar excess of ‘‘cold’’ specific

competitor (200 bp PLAT1 promoter), and with 100 fold molar

PLAT1 Regulates Abiotic Stress Tolerance

PLOS ONE | www.plosone.org 3 November 2014 | Volume 9 | Issue 11 | e112946



excess of ‘‘cold’’ negative probe (WIP1), including poly-dIdC as

nonspecific competitor. The EMSA samples were run on a 5%

native poly-acrylamide gel (10610 cm). Before loading the

samples, the gel was pre-run 40 min at 80 V and 4uC and the

samples were run at 120 V and 4uC. After electrophoresis,

radioactivity was detected in the dried gel as described above.

Functionality of the EMSA assay and ABFx preparation using the

MBP fusion protein was proven using the ABF1 protein extract

and the published [34] positive ABRE-F and ABRE-R, and

negative mABRE-F and mABRE-R control primers (Table S1 in

File S1).

Statistical analysis
Standard deviations and average values were calculated in

excel. Statistical significance for differences between treatments

was analysed using the unpaired two sided Student’s t-test in excel.

***, ** or * indicate statistical significance at p,0.001, p,0.01 or

p,0.05, respectively.

Accession numbers
The AGI locus identifiers for the Arabidopsis PLAT-plant-stress

family members are: PLAT1, AT4G39730; PLAT2, AT2G22170

and PLAT3, AT5G65158.

Results

PLAT1 expression is induced by abiotic stress conditions
The PLAT-plant-stress subgroup of PLAT domain proteins

comprises three Arabidopsis family members. Phylogenetic anal-

ysis of these Arabidopsis PLAT-plant-stress proteins using the

neighbour-joining method showed that PLAT3 falls outside the

other members (Figure S1A). In silico expression analysis by the

eFP Browser [42] showed PLAT1 and PLAT2 expression during

many developmental stages, which is affected under different stress

conditions, whereas PLAT3 is not represented on the Affymetrix

ATH1 arrays. To corroborate these data, we investigated

expression of the PLAT family members by northern blot and

RT-PCR analysis. This showed that PLAT1 was indeed expressed

throughout development (Figure S1B). In contrast, PLAT2
expression was only detected in young seedlings (Figure S1E),

whereas PLAT3 expression could not be detected in any of the

analysed organs and developmental stages, neither by northern

blot nor RT-PCR analysis at 35 cycles. PLAT1 expression was

induced both by salt, following one day of watering with 200 mM

NaCl (Figure S1C), and cold treatment, following incubation of 3-

w-old plants at 8uC for 2 d (Figure S1D). PLAT1 expression was

also induced following the transfer of young seedlings to medium

with 200 mM NaCl (Figure 1). However, both the extent of

PLAT1 induction and the temporal dynamics were different from

that following salt stress using older plants grown in soil (Figure

S1C), probably because PLAT1 expression is highest in young

seedlings (Figure S1B). PLAT2 expression was repressed following

the transfer of young seedlings to medium with 200 mM NaCl

(Figure 1). These results confirmed the in silico expression data

and suggested that among the Arabidopsis PLAT family members

mainly PLAT1 is involved in abiotic stress responses.

PLAT1 promotes tolerance towards abiotic stress
conditions

To analyse PLAT function in stress responses and plant

development, we obtained T-DNA insertion mutants for PLAT1
and PLAT2. Two independent homozygous Arabidopsis loss-of-

function mutants were obtained for PLAT1 (plat1-1 and plat1-2)

and one promoter insertion mutant was obtained for PLAT2

(plat2) from the SALK and SAIL mutant collections, respectively

[43,44]. Since both plat1 mutants exhibited similar phenotypic

defects, only the characterisation of the plat1-1 mutant is

described in detail. The plat1-1 and plat2 mutants exhibited no

obvious growth defects under control conditions and most likely

represent null alleles because PLAT1 and PLAT2 expression was

not detected in the respective insertion mutants (Figure S1E).

The plat1-1 mutant was more sensitive to salt and drought

stress, as well as cold stress conditions (Figure 2), evident by a

reduction in root length upon growth at 8uC from 9.4161.25 mm

for Col-0 to 7.0261.27 mm or 6.2060.94 mm for plat1-1 and

plat1-2, respectively (p,0.001, n = 14). In contrast, the plat2
mutant did not show obvious changes in salt stress tolerance

(Figure 3). Together with the differential effect of salt stress on

expression of the PLAT family members (Figure 1), these data

support that only PLAT1 is involved in abiotic stress tolerance.

To analyse whether PLAT1 also plays a role in biotic stress

responses, we studied PLAT1 expression following inoculation of

plants with the hemibiotrophic pathogen P. syringae pv. tomato
DC3000 or DC3000 avrRpm1 (RPM1, Figure S2A), and the

necrotrophic fungal pathogen S. sclerotiorum (Figure S2B). This

showed that PLAT1 expression was not specifically affected by

these pathogens since increased expression was also observed for

the respective control treatments (10 mM MgCl2 and PDA

medium). Next, disease symptom development following inocula-

tion with P. syringae pv. tomato DC3000 was investigated. Disease

Figure 1. PLAT1 expression is induced by salt stress conditions.
Relative PLAT1 and PLAT2 expression in 14-d-old Col-0 seedlings
following transfer to salt stress medium compared to control
conditions. PLAT1 black bars, PLAT2 grey bars. Values are means of 3
replicates 6 standard deviation. n$10 per replicate. ** or * indicate
statistical significance calculated using the unpaired Student’s t-test at
p,0.01 or p,0.05, respectively.
doi:10.1371/journal.pone.0112946.g001

Figure 2. PLAT1 loss-of-function reduces abiotic stress toler-
ance. (A) Salt stress tolerance in wild-type (Col-0) and plat1-1 seedlings
irrigated with 200 mM NaCl for 14 d. n$10 (B) Drought stress tolerance
in wild-type and plat1-1 seedlings, following 14 d without watering. n$
10 (C) Cold stress tolerance in 7-d-old wild-type, plat1-1 and plat1-2
seedlings following 14 d of incubation at 8uC. n = 14. Scale bar = 1 cm.
doi:10.1371/journal.pone.0112946.g002
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symptom development was not obviously affected in plat1-1
(Figure S2C), which is in agreement with the fact that biotic stress

conditions did not significantly affect PLAT1 expression.

Because ABA is strongly involved in abiotic stress responses, we

analysed whether PLAT1 function is correlated with ABA

signalling. One characteristic effect of ABA is the inhibition of

seed germination [45]. Further, seed germination frequency is

reduced by salt and osmotic stress conditions, resulting from

increased ABA signalling. Under control conditions the germina-

tion frequency of the plat1-1 seeds was similar to that of wild-type

(Figure 4A). However, under osmotic stress using 300 mM

mannitol (Figure 4B) and salt stress conditions employing

200 mM NaCl (Figure 4C), the plat1-1 seeds exhibited a higher

germination frequency compared to wild-type, suggesting that

ABA signalling is reduced in plat1-1. Indeed, plat1-1 seed

germination is less severely reduced by ABA (1.5 mM) compared

to wild-type (Figure 4D).

Since a change in seed dormancy could have influenced the

seed germination assays and thus interpretation for ABA

sensitivity, we analysed germination for the different PLAT lines

on control medium without prior stratification. This showed that

seed dormancy was only affected by PLAT2 loss-of-function

(Figure S3). Further, ABA levels were not significantly affected in

plat1-1 plants compared to wild-type control (Table S3 in File S1).

Together, these results indicate that PLAT1 loss-of-function

reduced ABA sensitivity, which could have caused increased

sensitivity towards abiotic stress conditions.

We generated genomic PLAT1 rescue constructs, where the

PLAT1 protein was fused to either the YFP or GUS reporter

proteins. Following genetic complementation of the plat1-1
mutant, seed responses towards ABA could be completely restored

back to that of wild-type employing the genomic rescue/reporter

constructs: 5 out of 6 lines for PLAT1:PLAT1-GUS (Figure S4A)

and 15 out of 20 lines PLAT1:PLAT1-YFP (Figure S4B). This

confirmed that the defects in abiotic stress tolerance were indeed

caused by the T-DNA insertion in the plat1-1 mutant and that the

PLAT1 fusion proteins are functional in these rescued lines.

Transgenic expression levels can be influenced to a large extend by

plant sequences flanking the respective T-DNA integration sites,

causing variation between individual transgenic lines harbouring

the same T-DNA construct. In addition to transformed plat1-1
lines with restored (wild-type) ABA sensitivity, also transgenics

were obtained exhibiting increased ABA sensitivity and thus tissue

specific PLAT1 overexpression phenotype (Figure S4). To study

whether PLAT1 overexpression would confer an opposite

phenotype compared to the plat1 mutant, we selected these lines

with tissue specific PLAT1 overexpression for further analysis and

also generated ectopic PLAT1 overexpression lines. Because we

could not obtain transgenics harbouring constitutive PLAT1
overexpression, we generated lines with inducible PLAT1
overexpression (35S..PLAT1) employing the dexamethasone

inducible OP-LhGR two component system [46]. From 17

transgenic PLAT1 OX lines, the majority exhibited delayed

germination on 1.5 mM ABA (Figure S4C).

To compare tissue specific with ectopic overexpression, which

could cause considerable differences in overexpression phenotypes

[47], we selected the GUS1-3, GUS2-1, GUS3-5, YFP5-1 and

YFP13-1 genomic rescue lines with increased ABA sensitivity in

the seed germination assays for further analysis. In these selected

tissue specific (GUS and YFP) PLAT1 overexpression lines,

PLAT1 transcript levels were increased to a similar extend as the

ectopic (OX) overexpression lines, compared to wild-type control

(Table S4 in File S1). The different types of PLAT1 overexpres-

sion lines promoted salt stress tolerance after transfer to medium

containing both 200 mM NaCl and 5 mM dexamethasone (DEX)

(Figure 3). Thus, PLAT1 overexpression resulted in higher

PLAT1 expression levels and reciprocal phenotypic effects

compared to the plat1-1 mutant, confirming that PLAT1

functions in promoting tolerance towards abiotic stress conditions.

PLAT1 promotes growth
The DEX induced PLAT1 OX lines from the salt stress

experiment shown in Figure 3, appeared to show faster develop-

ment on control medium including DEX (Figure 5A-E). There-

fore, shoot and root growth was analysed in the plat1-1 mutant

and PLAT1 overexpression lines. This showed that the different

PLAT1 overexpression lines produced more shoot biomass

compared to wild-type control (Figure 5F), while the length of

the root apical meristem and total root length were not affected

(Table S5 in File S1). Interestingly, the number of emerged lateral

roots was increased, but only for the ectopic PLAT1 (OX)

overexpression lines (Table S5 in File S1). This effect on lateral

root formation was the only difference observed between the tissue

specific and ectopic overexpression lines, and could reflect the

difference between increased expression at its natural expression

site (GUS and YFP) and broader expression in new (ectopic) cell

types (OX). In contrast, PLAT1 loss-of-function did not affect

either shoot or root growth, except for a reduced number of

emerged lateral roots (Figure 5F, Table S5 in File S1).

PLAT1 is expressed in structures related to the regulation
of water household

The PLAT1:PLAT1-GUS rescue/reporter construct conferred

GUS activity (4 out of 6 lines analysed) in vascular tissue, leaf

edges, hydathodes and stomata, which are structures related to the

regulation of water household. The expression in stomata

corresponds to the identification of PLAT1 in guard cells [48].

GUS activity could also be observed in floral organs, root tips,

pericycle cells and lateral root primordia (Figure 6A-6H). The

basal PLAT1 expression pattern in the shoot correlated with the

abiotic stress tolerance, while that of the root correlated with the

changes in lateral root number for the plat1-1 mutant and PLAT1
overexpression lines. Both treatment with salt and ABA resulted in

Figure 3. PLAT1 promotes tolerance towards salt stress
conditions. Survival, expressed as the percentage of the seedlings
transferred at the 6-d-old stage that developed (pale) green leaves
during 4 d of salt stress conditions for the different mutant and
transgenic lines (grey bars, n$26 per replicate) compared to Col-0
control plants (black bars, n$12 per replicate) that were grown on the
same plates. Values are means of 3 replicates 6 standard deviation. ***,
** or * indicate statistical significance calculated using the unpaired
Student’s t-test at p,0.001, p,0.01 or p,0.05, respectively.
doi:10.1371/journal.pone.0112946.g003
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an expanded PLAT1 expression domain in root tips (Figure 6I-

6N) and leaves (Figure 6O-6U), evident by the GUS activity in leaf

mesophyll cells (Figure 6T and 6U), as well as in root pericycle

cells (Figure S5).

To understand protein function, knowledge on its sub-cellular

localisation is essential, because this influences access to and

availability of interaction partners [49]. According to the

Aramemnon membrane protein database [50], PLAT1 was

predicted to contain a signal peptide involved in the secretory

pathway and one transmembrane spanning domain. To analyse

the sub-cellular localisation we transiently transformed the

PLAT1:PLAT1-YFP construct together with different organelle

markers [40] to N. benthamiana, which showed that the PLAT1-

YFP fusion protein co-localised with the mCherry ER-marker ER-

rk CD3-959 (Figure 7A-7C). The analysis of YFP reporter activity

in the stable rescued plat1-1 transformants harbouring the

PLAT1:PLAT1-YFP construct reflected the expression pattern

evident from the GUS rescue reporter lines, confirmed PLAT1
induction by salt and ABA (Figure 7D-7I), and PLAT1 localisation

to the ER (Figure 7J-7M). Further, PLAT1 is localised to rod

shaped ER structures that resemble ER bodies (Figure 7M).

The PLAT1 promoter is a direct target of the ABF
transcription factors

Sequence analysis of the PLAT1 promoter identified 2 G-

boxes/ABRE elements (CACGTG motif) located at positions 2

165 to 2156 and 2134 to 2126 relative to the transcription start

site. ABRE elements are direct binding sites of the ABF/AREB

(bZIP) transcription factors, which are positive mediators of the

ABA signalling pathway [34,35]. We employed a transactivation

assay to investigate whether the PLAT1 promoter is indeed

regulated by these ABF transcription factors. Leaves from wild-

type tobacco N. benthamiana plants were simultaneously infiltrat-

ed with A. tumefaciens harbouring either one of the 35S:ABF1–4

overexpression constructs (ABF1–4) and the PLAT1:PLAT1-GUS
genomic rescue/reporter construct (pGUS). Each of the double

infiltrations resulted in significantly higher GUS activity levels,

compared to infiltration with the PLAT1:PLAT1-GUS reporter

construct only (Figure 8). This indicated that the ABF transcrip-

tion factors activate the PLAT1 promoter.

Electrophoretic mobility shift assays (EMSA) confirmed these

transactivation results and showed that the ABF1, ABF3 and

ABF4 transcription factors directly bind to the PLAT1 200 bp

promoter fragment (2200 to +1), which contains the 2 ABRE

elements. This ABF binding was specifically competed with a 100-

fold molar excess of unlabelled 200 bp PLAT1 promoter fragment

(PLAT1; Figure S6), but not with the mutated 200 bp promoter

fragment WIP1, where point mutations were introduced in the

Figure 4. PLAT1 loss-of-function reduces ABA sensitivity during seed germination. (A) Seed germination of plat1-1 and wild-type (Col-0).
(B) Seed germination of plat1-1 and wild-type on 300 mM mannitol (osmotic stress). (C) Seed germination of plat1-1 and wild-type on 200 mM NaCl
(salt stress). (D) Seed germination of plat1-1 and wild-type on 1.5 mM ABA. Values are means of 3 replicates 6 standard deviation. n$100 per
replicate.
doi:10.1371/journal.pone.0112946.g004

Figure 5. PLAT1 promotes plant growth. Phenotypes of plants
from control medium including 5 mM DEX from the salt stress
experiment shown in Figure 3. (A) Wild-type. (B) plat1-1. (C-E) Three
independent PLAT1 ectopic overexpression lines (OX). Scale bar = 1 cm.
(F) Shoot biomass production (weight per 5 shoots) for the different
PLAT1 lines. Values are means of 8 replicates 6 standard deviation. ***,
** or * indicate statistical significance calculated using the unpaired
Student’s t-test at p,0.001, p,0.01 or p,0.05, respectively.
doi:10.1371/journal.pone.0112946.g005
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two ABRE elements (WIP1; Figure S6). Thus, PLAT1 expression

is regulated by the ABA signalling pathway as direct target of the

ABF transcription factors.

PLAT1 promotes tolerance towards ER stress elicited by
tunicamycin

The PLAT1 subcellular localisation in the ER (Figure 7)

suggested that PLAT1 function is related to ER stress. Under

stress conditions, misfolded proteins accumulate in the ER that

eventually cause ER stress [51], resulting in reduced growth and

induction of the unfolded protein response (UPR) to compensate

for this increased accumulation of misfolded proteins. TM is used

as ER stress agent and interferes with N-linked glycosylation of

secreted glycoproteins, which prevents protein folding in the ER

[51]. The tolerance of the different PLAT1 overexpression lines

towards TM was improved compared to Col-0 wild-type

(Figure 9). In contrast, the plat1-1 mutant was more sensitive,

while the response towards TM was not affected in the plat2
mutant (Figure 9), which supports a function for PLAT1 in ER

stress responses and/or UPR. The basal expression levels for the

ER stress markers BIP1,2, CNX1, CRT1 and PDIL [52] was

higher for the different PLAT1 overexpression lines (Figure S7),

which suggests that the capacity of these lines to deal with

unprocessed and/or misfolded proteins in the ER is increased,

which could contribute to an increased abiotic stress tolerance.

Discussion

The complete Arabidopsis genome sequence is available,

nevertheless only for a relatively low percentage of Arabidopsis
proteins experimental evidence concerning their function is

Figure 6. PLAT1 is expressed in the vasculature, hydathodes
and stomata of aerial organs. PLAT1 expression is reflected by GUS
activity in plat1-1 mutant plants rescued by the PLAT1:PLAT1-GUS
rescue/reporter construct (line GUS3-5). The PLAT1 promoter confers
expression in the leaf vasculature (A, B, E), hydathodes (B, F, G), floral
organs (C), stomata (D) and the primary root tip and root pericycle cells
(H). PLAT1 expression in primary root tips, 24 h following transfer to
control (I), 200 mM NaCl (J) or 1.5 mM ABA plates (K). PLAT1 expression
in lateral root tips, 24 h following transfer to control (L), 200 mM NaCl
(M) or 1.5 mM ABA plates (N). PLAT1 expression in fully expanded
rosette leaf from 4-w-old seedling, control (O), following 24 h (P), or
48 h (Q) of treatment with 1.5 mM ABA and following 24 h (R), or 48 h
(S) watering with 200 mM NaCl. Detail of rosette leaf showing
expansion of expression domain in leaf mesophyll following 24 h ABA
treatment (T), or 48 h watering with NaCl (U). Scale bar = 1 cm (A-C)
and (O-S), 1 mm (D-H), (T), (U), 0.1 mm (I-N). n$10.
doi:10.1371/journal.pone.0112946.g006

Figure 7. PLAT1 is localised to the ER in Arabidopsis and
Nicotiana benthamiana. Transient transformation of the PLAT1:PLAT1-
YFP construct to N. benthamiana. YFP channel showing PLAT1-YFP
expression (A), RFP channel showing ER-rk CD3-959 mCherry marker
expression (B), co-localisation of PLAT1-YFP with the ER-rk CD3-959
marker (C). PLAT1 expression in stable plat1-1 transgenics (line YFP13-1)
rescued by the PLAT1:PLAT1-YFP rescue/reporter construct (D-I) 48 h
following transfer of 3-d-old seedlings to control, NaCl or ABA plates,
with YFP channel (D-F) and merged YFP and bright field channels (G-I).
PLAT1 expression following transfer to control medium (D, G), following
transfer to 200 mM NaCl (E, H), and expression following transfer to
1.5 mM ABA (F, I). Hypocotyl section from line YFP13-1 with YFP channel
showing PLAT1:PLAT1-YFP reporter activity (J), red autofluorescence of
chloroplasts (K), merged image of bright field, YFP and red
autofluorescence (L). (M) Detail of (L), showing PLAT1 localisation to
putative ER bodies (arrows) and the ER (arrow heads). Scale bar = 10 mm
(A-C), 0.1 mm (D-L), 0.05 mm (M). n$10.
doi:10.1371/journal.pone.0112946.g007
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available. While among the PLAT-plant-stress family only

CaTIN1 function has been studied by heterologous expression in

tobacco [4], for other family members only limited in silico
expression data is available. This showed that these members were

induced by different abiotic and biotic stimuli, suggesting that

PLAT-plant-stress proteins in general could promote tolerance

towards stress responses and thus can be of great importance for

developing stress tolerant crops. Nevertheless, little information is

available on the function of these proteins. We assigned a function

to the previously uncharacterised Arabidopsis PLAT domain

proteins, which are members of this PLAT-plant-stress subgroup.

The combination of genetic and physiological approaches

supported functional diversification within this Arabidopsis PLAT

protein family. PLAT1 critically functions as positive regulator of

abiotic stress tolerance and also confers increased plant growth.

Because PLAT1 is a direct activated target of the ABF

transcription factors and PLAT1 levels affect ABA sensitivity

based on seed germination assays, PLAT1 represents a novel

downstream target of the ABA signalling pathway. PLAT2

appears to function specifically in seed dormancy, while PLAT3
might represent a non-expressed pseudogene.

Analysis of the plat1-1 loss-of-function mutant, PLAT1
overexpression lines and genetic complementation of the plat1-1
mutant, showed that PLAT1 critically functions as positive

regulator of abiotic stress tolerance. Abiotic stress treatments

induced PLAT1 expression, PLAT1 loss-of-function resulted in

reduced abiotic stress tolerance, whereas PLAT1 overexpression

conferred an inverse response, evident from increased cold,

drought and salt stress tolerance. No change in pathogen

susceptibility was detected for the plat1-1 loss-of-function mutant,

which correlates with the fact that pathogen infection did not

significantly affect PLAT1 expression. It is however possible that

an altered pathogen resistance in plat1-1 could have been too

weak to be detected in the employed pathosystem. Otherwise,

functional redundancy among the PLAT family members

(partially) could have compensated for PLAT1 loss-of-function in

biotic stress tolerance.

High ABA levels confer resistance towards abiotic stress

conditions like drought and salinity, which is linked to its role in

regulating stomatal aperture, while ABA shows antagonistic

interaction with pathogen defence signalling pathways [26,28–

31]. The ABF/ABRE transcription factors, which are positive

mediators of the ABA signalling pathway [34,35], were shown to

be induced by cold (ABF1), salinity (ABF2 and ABF3) and drought

stress (ABF4) [34], while ABF2 or ABF3 overexpression enhanced

abiotic stress tolerance [53]. PLAT1 overexpression increased and

loss-of-function reduced sensitivity towards ABA during seed

germination. Because ABA levels were not significantly affected in

the different PLAT1 lines, PLAT1 overexpression resembled the

effect of increased ABA signalling, including the differential

regulation of abiotic and biotic stress tolerance.

Although it is widely speculated that the effect of ABA signalling

on stress tolerance in higher plants is regulated by the complex

(antagonistic) interactions with other phytohormones, our under-

standing of the ABA signalling pathway leading to the adaptation

of naturally occurring multi-stress responses remains unclear [54].

Genes harbouring two ABRE elements in their promoter were

predicted to be direct (activated) target genes of the ABF/ABRE

transcription factors [34] and the expression for a large number of

such genes was affected by a triple ABF loss-of-function mutant

[35]. However, only the DREB2C and RD29B genes were

functionally shown to be direct ABF target genes [55,56]. The

PLAT1 promoter harbours two ABRE elements, located at

positions 2165 to 2156 and 2134 to 2126 relative to the

transcription start site. In agreement with these findings,

transactivation and EMSA experiments showed that the ABF

transcription factors directly bind to and activate the PLAT1
promoter. Analysis of plat1-1 lines complemented with the

PLAT1:PLAT1-GUS rescue/reporter construct showed that

PLAT1 is expressed in the leaf vasculature, hydathodes and

stomata, which are structures linked to the regulation of water

household, but also at specific regions in the root. Together with

the induced PLAT1 expression levels as well as expanded

expression domain following ABA treatment and abiotic stress

conditions, PLAT1 expression correlates with PLAT1 function in

abiotic stress tolerance and its regulation by ABA signalling.

Together, these data showed that PLAT1 represents a novel

component of the ABA signalling as direct target of the ABF

transcription factors, which might explain its function in stress

tolerance.

ABA in general negatively affects plant growth, mainly through

crosstalk with the brassinosteroid pathway [57], and promotes

quiescence of stem cells resulting in reduced root growth and

Figure 8. The PLAT1 promoter is activated by the ABF
transcription factors. GUS activity in 8-w-old N. benthamiana leaves
infiltrated with A. tumefaciens harbouring the PLAT1:PLAT1-GUS reporter
(pGUS) or an empty vector (EV) as negative control, compared to the
simultaneous infiltration of the 35S:ABF1–4 and PLAT1:PLAT1-GUS
constructs. Values are means of 3 replicates 6 standard deviation. ***
or ** indicate statistical significance calculated using the unpaired
Student’s t-test at p,0.001 or p,0.01, respectively.
doi:10.1371/journal.pone.0112946.g008

Figure 9. PLAT1 promotes tolerance towards tunicamycin
elicited ER stress. Survival is expressed as the percentage of the
plated seeds that developed (pale) green seedlings. Control conditions
black bars, ER stress (0.05 mg l21 TM) grey bars. Values are means of 3
replicates 6 standard deviation. n$70 per replicate. *** or ** indicate
statistical significance calculated using the unpaired Student’s t-test at
p,0.001 or p,0.01, respectively.
doi:10.1371/journal.pone.0112946.g009
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lateral root formation [58–60]. In addition to the effects on stress

tolerance, which could be correlated with PLAT1 being a

downstream target of the ABA signalling pathway, PLAT1

promotes plant growth, evident by a faster development and

consequently increased shoot biomass. Therefore, PLAT1 function

exhibits both expected and unexpected ABA related responses.

Heterologous CaTIN1 overexpression in tobacco also resulted in

increased abiotic stress tolerance and plant growth, but addition-

ally conferred increased biotic resistance, probably through

influencing the redox state. Further, CaTIN1 expression was

induced by ethylene treatment and infection by tobacco mosaic

virus, but not following ABA treatment [4]. Thus, despite the fact

that PLAT1 and CaTIN1 are orthologs, partially convergent

evolution occurred in the different plant species on protein

function and transcriptional regulation.

Transient expression experiments and analysis of plat1-1 lines

complemented with the PLAT1:PLAT1-YFP rescue/reporter

construct showed that PLAT1 is localised to the ER, but also in

rod shaped structures resembling ER bodies. This is supported by

the induction of these structures with PLAT1-YFP signals

following ABA treatment or salt stress conditions. ER bodies are

specific to Brassicaceae and induced following stress conditions

and wounding [61–63], but no direct correlation between ER

bodies and abiotic stress responses has been shown. PLAT1

promotes tolerance towards the ER stress elicitor TM and the

basal expression levels of ER stress markers, representing

chaperonins functioning in ER stress and/or UPR.

Together our results indicate that PLAT1 functions in abiotic

stress tolerance, either directly through promoting abiotic stress

responses, and/or indirectly through improving basal tolerance/

fitness. A direct promotion of abiotic stress responses could result

from promoting ABA signaling, which is related to its function as

novel direct target gene of the ABA signaling pathway. An indirect

effect could result from stimulating ER stress responses for a

higher basal tolerance/fitness. ER stress responses were shown to

be indispensable for abiotic stress responses [64,65] and the ER

appears to play a prominent role in ABA-mediated stress signalling

since ABA release from the ER is important for plants coping with

stress [66]. The PLAT1 protein essentially harbours one trans-

membrane spanning domain and one large PLAT domain that

covers the rest of the protein sequence and which has been shown

to function in protein interaction. Therefore, PLAT1 most likely

does not possess enzymatic activity, but rather functions as

‘docking site’ for interacting proteins with enzymatic or signalling

activity functioning in ABA regulated pathways, enabling PLAT1

to regulate their activity.

To obtain plants through biotechnology or breeding approaches

with increased tolerance towards adverse conditions, but without

yield penalties under optimal growth conditions, it is important to

identify all genes involved in stress responses and understand their

function. Therefore, the identification and assignment of a

function to the previously uncharacterised PLAT-plant-stress

family member PLAT1 contributes to this important goal. The

improved plant growth associated with the increased tolerance

towards cold, drought and salt stress mediated by PLAT1
overexpression could be an important asset in crop improvement.

To enable the application of PLAT1 or other members from the

PLAT-plant-stress family in crop improvement, future studies will

be needed to address the multifaceted role of these proteins in

stress tolerance and plant development.

Supporting Information

Figure S1 PLAT1 expression patterns under different
conditions. (A) Phylogenetic tree of the PLAT-plant-stress

subgroup. Phylogenetic analysis was carried out using the

neighbour-joining method with 100 bootstraps and displayed

using TreeTop. Glycine max (Glyma), Zea mays (GRMZM), Oryza
sativa (Os), Populus trichocarpa (POPTR), Sorghum bicolor (Sb).

(B) PLAT1 expression in different organs from 3-w-old, 6-w-old

and 12-w-old wild-type (Col-0) plants: F, Flower; H, hypocotyl; L,

leaf; R, root; S, inflorescence stem and W, whole plant. (C)

PLAT1 expression following salt treatment (right) compared to

control watering (left). (D) PLAT1 expression following cold

treatment. (E) PLAT1 and PLAT2 expression by RT-PCR in the

respective T-DNA insertion mutants plat1-1 and plat2. Bottom

panels, rRNA for loading control (A-D).

(TIF)

Figure S2 PLAT1 loss-of-function does not affect biotic
stress tolerance. (A) PLAT1 expression following leaf infiltra-

tion of 107 cfu ml21 of P. syringae pv. tomato DC3000 or DC3000

avrRpm1 in 10 mM MgCl2, compared to control treatment

(MgCl2). (B) PLAT1 expression following infection with S.
sclerotiorum compared to control treatment (PDA). (C) Leaves

from wild-type (Col-0) plants (Top panel) and plat1-1 plants

(Bottom panel), 3 d after infection with 107 cfu ml21 P. syringae
pv. tomato DC3000. Scale bar = 1 cm, n$10.

(TIF)

Figure S3 PLAT2 functions in seed dormancy. Seed

germination of plat1-1, PLAT1:PLAT1-GUS line GUS3-5,

35S..PLAT1 line OX9-6, plat2 and wild-type (Col-0) on

control medium including 5 mM DEX without prior stratification.

Values are means of 3 replicates 6 standard deviation. n$100 per

replicate.

(TIF)

Figure S4 Increased ABA sensitivity by tissue specific or
ectopic PLAT1 overexpression. (A, B) Seed germination of

plat1-1, wild-type (Col-0) and plat1-1 lines complemented with

the PLAT1:PLAT1-GUS rescue construct (GUS) (A), or plat1-1
lines complemented with the PLAT1:PLAT1-YFP rescue con-

struct (YFP) (B) on medium supplemented with 1.5 mM ABA. (C)

Seed germination of wild-type and transgenic lines harbouring the

35S..PLAT1 ectopic overexpression construct (OX) on medi-

um supplemented with 1.5 mM ABA and 5 mM DEX. Values are

means of 3 replicates 6 standard deviation. n$100 per replicate.

(TIF)

Figure S5 PLAT1 expression is induced in adult roots by
ABA treatment and salt stress. PLAT1:PLAT1-GUS
seedlings were monitored for PLAT1 expression 8 h (A-C) and

24 h (D-F) following transfer to control, NaCl or ABA plates. (A,

D) Detail of 2-w-old adult root with PLAT1 expression in

emerging lateral root primordia following transfer to control

medium. (B, E) Detail of adult root with expanded expression

domain following transfer to 200 mM NaCl. (C, F) Detail of adult

root with expanded expression domain following transfer to

1.5 mM ABA. Scale bar = 0.1 mm, n$10.

(TIF)

Figure S6 PLAT1 functions as direct ABF target in ABA
signalling. EMSA assay showing that the ABF transcription

factors bind to the 200 bp PLAT1 promoter region containing

two ABRE elements PLAT1 (*). This binding was specifically

competed with a 100 molar excess of unlabelled PLAT1 promoter

fragment (PLAT1), but not the negative probe lacking the two
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ABRE elements (WIP1). Arrowhead indicates shifted band.

Bracket indicates free probe.

(TIF)

Figure S7 PLAT1 overexpression lines exhibit higher
basal expression levels for ER stress markers. Relative

expression levels for ER stress markers in the different PLAT1
overexpression lines compared to wild-type (Col-0) and the plat1-1
mutant. (A) BIP1,2 (HSP70), (B) CNX1 (CALNEXIN1), (C)

CRT1 (CALRETICULIN1) and (D) PDIL (PROTEIN DISUL-
FIDE ISOMERASE-like). Values are means of 3 replicates 6

standard deviation. n$10 per replicate. ***, ** or * indicate

statistical significance calculated using the unpaired Student’s t-test

at p,0.001, p,0.01 or p,0.05, respectively.

(TIF)

File S1 Combined file containing supporting tables.
Table S1: List of primers used for cloning, genotyping of T-DNA

insertion mutants and EMSA controls. Table S2: List of primers

used for RT-PCR. Table S3: ABA levels are not affected by

PLAT1. Table S4: PLAT1 transcript levels in the different

overexpression lines. Table S5: PLAT1 promotes lateral root

formation.

(DOC)
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