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Abstract

Although several circadian rhythms have been described in C. elegans, its molecular clock remains elusive. In this work we
employed a novel bioinformatic approach, applying probabilistic methodologies, to search for circadian clock proteins of
several of the best studied circadian model organisms of different taxa (Mus musculus, Drosophila melanogaster, Neurospora
crassa, Arabidopsis thaliana and Synechoccocus elongatus) in the proteomes of C. elegans and other members of the phylum
Nematoda. With this approach we found that the Nematoda contain proteins most related to the core and accessory
proteins of the insect and mammalian clocks, which provide new insights into the nematode clock and the evolution of the
circadian system.
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Introduction

C. elegans is a soil-dwelling nematode subjected to daily changes

in environmental variables in its natural habitat. Several daily and

circadian rhythms have been described in this organism, including

locomotor and swimming activity, tolerance to abiotic and biotic

stress, metabolic variables and melatonin synthesis [1–6]. Howev-

er, little is known about the molecular mechanism that governs its

circadian behaviors, in comparison to information related to other

model organisms. In particular, early studies in the fruit fly

Drosophila melanogaster suggested a feedback mechanism involv-

ing a transcription-translation oscillator (TTO), based on the

observation that the oscillation of the period gene at the mRNA

and protein level, as well as their interaction, was required to

maintain rhythmicity [7]. However, it was not clear whether

proteins exerted a direct effect over the mRNA or acted by means

of other biochemical signals. This was later complemented with

studies in the fungus Neurospora crassa, which showed that the

FREQUENCY (FRQ) protein was capable of regulating its own

transcription, by means of a negative feedback loop [8]. At the

present time, the transcriptional-translational feedback loop

(TTFL) is considered the fundamental block of every circadian

clock and has been identified in every organism studied so far [9],

although some exceptions have been reported very recently [10–

12].

In mammals, the core clock components are CLOCK, BMAL,

PER and CRY. During the day a CLOCK:BMAL heterodimer

activates the transcription of the per and cry genes. Once

translated, PER:PER and PER:CRY dimers are formed and then

translocate to the nucleus by dusk. These dimers interfere

negatively with CLOCK:BMAL and therefore repress the

transcription of their own genes. Once the PER:CRY dimer is

degraded, CLOCK:BMAL can again induce transcription of per
and cry, thus closing the loop. Posttranscriptional regulation also

plays a role fine tuning the circadian molecular machinery. For

example, casein kinase 1 epsilon (CKIe) also regulates the clock

fulfilling three roles: 1) tagging PER monomers for degradation; 2)

promoting PER:PER and PER:CRY translocation to the nucleus;

and 3) it is involved in the degradation of this dimers once they

have accomplished their repressive roles [13].

In the case of Drosophila, the process presents subtle changes

regarding the mammalian machinery. The dimer that activates per
transcription is CLOCK:CYCLE, which also drives TIMELESS

(TIM) transcription; TIM:PER dimers accumulate in the cyto-

plasm, enter the nucleus and repress CLOCK:CYCLE action and,

hence per and tim transcription. The dCRY protein acts as a

photoreceptor and, upon light stimulation, blocks the activity of

the PER-TIM dimmer by direct interaction with TIM [14].

The homolog to CKIe in flies, DOUBLETIME (DBT), is in

charge of tagging PER monomers in the cytoplasm. At dawn,
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CRY is activated and induces the degradation of TIM in the

PER:TIM dimers. At the same time, DBT induces the degrada-

tion of PER [15].

In Neurospora crassa, the transcription of the frq gene is

induced by the WHITE COLLAR (WC) complex, composed of

the WC1 and WC2 proteins. The FRQ protein interacts with an

RNA helicase, FRH, and this complex then represses the

transcription of FRQ. The VIVID photoreceptor acts in a similar

way to dCRY: it promotes the degradation of dCLOCK,

interacting with the negative element FRQ:FRH and the positive

element, the WC complex. Even though the clock proteins of

Neurospora are not conserved in insects and mammals, they share

certain domains, such as the Per-Arnt-Sim (PAS) domain found in

PER, CLOCK, WC1-2 and VIVID. Regardless of the actors it is

interesting to note that the central TTFL oscillator is very similar

in these very different organisms [16]. A similar loop can be found

in plants, where TOC1 is repressed by the negative elements LHY

y CCA1 [17]. In fact, the same clock architecture is found in the

cyanobacteria Synechococcus aureus, where the KAI-A protein

activates the transcription of the KaiBC operon, and the KAI-C

product represses it [18]. The cyanobacterial clock can, however,

remarkably sustain its rhythmicity in the absence of transcription

by means of posttranslational mechanisms, in a loop involving the

three KAI proteins [9,19].

The molecular mechanism of the C. elegans circadian clock has

yet to be elucidated. Previous bioinformatics approaches have

identified possible clock homologs. These include the PER

homolog protein LIN-42, and the CLOCK homolog protein

AHA-1 [20]. Both these proteins have been described to play a key

role in the developmental program of C. elegans [21–23]. Also, a

global genome wide transcriptomics analysis of Caenorhabditis
elegans N2 nematodes entrained to light:dark (LD) and temper-

ature (T:t, T = high temperature and t = low temperature) has

recently shown that several genes are expressed in a circadian

manner [24]. The datasets describe that 1817 transcripts are Tt

driven; 775 are LD driven; 286 are entrained by Tt and; 406 are

entrained by LD. Further analysis of the data showed that the

‘‘driven’’ datasets share 107 transcripts and only 2 genes are

entrained by both Zeitgebers (wdr-5.3, a homolog of mWDR5, a

member of a histone methyltransferase complex that in mammals

associates with mPER1; and Y102A5C.6, a pseudogen). One

interpretation could be that C. elegans actually has 2 different

clocks (differentially entrained by light and temperature). Another

interesting and surprising result is that in the conditions used in

that report, the mRNA of homologs to clock genes from other

organisms does not appear to cycle in C. elegans, suggesting that a

novel circadian molecular mechanism for nematodes.

There are also some candidates for the entrainment mechanism,

including a role for TAX-2, a CNG channel involved in the

transduction of temperature and light signals. A mutant strain

carrying a mutation in tax-2 (PR671 strain) showed severely

affected transcriptional rhythms. This was studied using a GFP

reporter that can be entrained to temperature cycles (nlp36p::gfp)

and three randomly chosen light-entrainable transcripts. This

showed that tax-2 is necessary to convey light and temperature

signals to the clock. It is interesting to note that lite-1 mutant

nematodes (a gene that encodes for the LITE-1 photoreceptor),

required for low wavelength light responses, did not show any

problems in light synchronization [24].

The bioinformatics efforts performed to search for homologs of

the clock genes of other species in C. elegans have not been very

exhaustive and were performed by searching for protein alignment

using the BLASTP algorithm, with mammalian and insect

proteins as queries [20,25]. Nowadays, other techniques can be

applied, based in probabilistic methods, which might yield more

powerful results than those from BLASTP protein sequence

remote similarity search tools. Since the introduction of the

BLAST suite in the 1990s, several theoretical advances in the

homology search methodology have been made, such as hidden

Markov models (HMMs), which allow for searches with probabi-

listic inference technology that are as fast as BLAST [26–28]. In

this way, hidden Markov models can be generated out of protein

alignments of similar proteins of known function from different

organisms (i.e., the PERIOD proteins of several insects). With this

HMM as input a search can be performed in whole proteomes

using the HMMsearch included in the HMMER suite [28,29].

Also, several complete genomes and proteomes from different

species of nematodes of the genus Caenorhabditis (including C.
elegans) and other genus, such as Ascaris and Brugia [30], are

completely annotated. By combining the set of tools of the

HMMER suite and the availability of these complete proteomes,

we have been able to perform exhaustive searches of core clock

and accessory genes similarity between the known model species

and the proteomes of 19 nematode species.

Hidden Markov Models (HMM) generated from protein

alignments of the clock genes of the aforementioned model

organisms allow us to determine similar proteins in nematodes.

These HMM models contain the most relevant information

(protein domains) that allows these proteins to function as

components of the molecular clock. By means of these methods,

proteins that fit each generated HMM model can be found in

Caenorhabditis elegans and other nematodes. In this way, we can

determine components shared with the phylum Nematoda that

could be part of a TTFL biological clock.

This type of approach conveys high predictive value to perform

experiments to validate the role of particular genes in the circadian

clock of C. elegans.

Results

The proteome of C. elegans contains proteins with
similitude to clock components from known model
organism

Using the workflow depicted in figure 1, we first analyzed the

existence of clock components similar to those from the most well-

known circadian model organisms of 5 different phyla: Arabidopsis
thaliana (plant), Synechococcus elongatus (cyanobacteria), Neuros-
pora crassa (fungi), Drosophila melanogaster (insect), Mus musculus
(mammal), in C. elegans and then the corresponding ortholog

proteins in the rest of the nematodes used in this work.

C. elegans is very distantly related to plants as well as to

cyanobacteria. As expected, nematodes do not exhibit similarity to

any of the core clock proteins of either plants or prokaryotes.

It is interesting to note that the search for similar core clock

proteins of fungi revealed, quite unexpectedly, several candidate

proteins in the proteome of C. elegans that presented a significant

similarity to each of the components of the fungal clock, as can be

seen in table 1.

FRH, an RNA helicase that interacts with FRQ, had a

practically perfect match (E = 0) with the C. elegans protein

ceMTR-4. Both proteins have almost the same length (1006aa and

1026aa, respectively) and the same domains, with the exception of

a calcium binding domain (Prosite PS00018, calcium binding

domain, EF-Hand 1). Nevertheless, in C. elegans this protein

appears to be involved in the polyadenilation of mRNAs destined

to degradation or exosomal trimming and is also a substrate of the

RTK-RAS-ERK pathway in vivo [31,32].

Circadian Clock Proteins in Nematoda
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FWD-1, a protein involved in FRQ degradation, exhibited a

high degree of similarity (E = 1.2610280) with ceLIN-23

(K10B2.1). These proteins are likely to play a similar role in both

organisms since they are both proteins with F-Box and WD40

repeats domains. In C. elegans, ceLIN-23 is a component of the

SCF ubiquitin ligase complex (Skp1, Cullin, F-Box) which is

involved in ubiquitin mediated protein degradation. Also, ceLIN-

23 is a negative regulator of postembryonic cell division in all tissue

types. It also regulates neurite growth in some types of neurons

and the abundance of the glutamate receptor ceGLR-1 [33–36].

VIVID (VVD), another negative element of N. crassa’s
circadian clock, present similarity (E = 1.361026) with ceEGL-2

(F16B3.1). VVD is a 186 aa protein which contains a PAS domain,

that represses light input and regulates the time setting of the

circadian clock. On the other hand, ceEGL-2, is a 956aa

potassium channel required for egg laying, muscle activation,

defecation, mechanosensation and chemosensation [37–40].

The N. crassa clock has two positive elements that comprise the

WC complex, WC1 and WC2. WC1 presents similarity

(E = 1.161025) to a small region of ceEGL-2, probably due to

the fact that they both share a PAS domain. WC2, on the other

hand, presents similarity to ceHIF-1d (E = 3.9610210). In C.
elegans, this protein is involved in oxygen sensing and is required

for nematode survival in hypoxic environments (,1% oxygen)

[41]. These two proteins probably do not play the same role in

both organisms given the fact that WC2 possesses other domains

that are absent in ceHIF-1, such as the GATA zinc finger DNA

binding.

C. elegans proteome exhibits similarity to insect and
mammalian clock proteins

C. elegans’ proteome includes many proteins with high

similarity to those of the core circadian clock of arthropods. The

best hits found with the searches performed using the HMM

Figure 1. Methodology workflow. The diagram briefly describes the methods we applied in this work.
doi:10.1371/journal.pone.0112871.g001

Table 1. Protein homologs to core clock proteins of plants, cyanobacteria and fungi.

Organism Protein Clock function C. elegans homolog E value

Arabidopsis thaliana CCA1 central clock None None

COP1 LHY/CCA1 modulator None None

DET1 LHY/CCA1 modulator None None

GI central clock None None

LHY central clock None None

LUX central clock None None

PRR5 central clock None None

PRR7 central clock None None

PRR9 central clock None None

TOC1 central clock None None

Synechococcus elongatus KAI-A central clock None None

KAI-B central clock None None

KAI-C central clock None None

Neurospora crassa FRH central clock W08D2.7 (MTR-4) 0

FRQ central clock None None

FWD-1 FRQ modulator K10B2.1 (LIN-23) 1.2e-80

VVD central clock F16B3.1 (EGL-2) 1.3e-06

WC-1 central clock F16B3.1 (EGL-2) 1.1e-05

WC-2 central clock F38A6.3d (HIF-1d) 3.9e-10

These proteins are the best hits found by probabilistic inference search based on Hidden Markov Models built upon multiple protein alignments of the core clock
proteins of plants (A. thaliana), prokaryotes (S. elongatus) and fungi (N. crassa). Common C. elegans names are enclosed between parenthesis when available.
doi:10.1371/journal.pone.0112871.t001
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profiles derived from insect protein alignments [15,42,43] are

shown in table 2.

The Period (PER) and Timeless (TIM) proteins constitute the

principal negative feedback loop of the circadian clock of

Drosophila melanogaster and other insects. Both proteins have

high homology counterparts in C. elegans’ proteome. ceLIN42b

(F47F6.1b) exhibits high similarity to PER (E = 2.1610230). Both

proteins possess PAS domains (PFAM PF00989) and a domain

recognized as PERIOD CIRCADIAN PROTEIN (PANTHER

PTHR11269), although they differ in length: PER has 1218aa and

ceLIN-42b is 597aa long. ceTIM-1(Y75B8A.22) presents high

similarity to TIM. These proteins are almost the same length

(1353aa and 1398aa, respectively) and share the same domains

according to analysis by InterProScan. It has been reported,

however, that both nematode proteins, ceLIN42 and ceTIM-1,

perform heterochronic functions in C. elegans [21,44].

The positive elements, Clock (CLK) and Cycle (CYC), show the

best hits with the same protein in C. elegans: ceAHA-1A

(C25A1.11A), with E = 1.70610221 and E = 4.1610275, respec-

tively. This is the only protein that has all the domains present in

both CLK and CYC. The analysis by InterProScan reveals 2 PAS

domains (SMART SM00091), a bHLH domain (PFAM PF00010),

nuclear translocation domains (PROSITE PR00785) and one

CIRCADIAN PROTEIN CLOCK/ARNT/BMAL/PAS domain

(PANTHER PTHR23042), among others. The length of the

protein is more similar to that of CYC, which is 413aa long, while

CLK is 1023aa long (ceAHA-1A is 453aa long). This protein

forms heterodimers with other PAS containing proteins, such as

ceAHR-1, ceHIF-1 and ceCKY-1, and is also probably capable of

forming homodimers, to then stimulate the transcription of its

target genes [45,46]. This is also the case in flies, where CLK-

CYC dimers activate the transcription of the negative factors and

other clock controlled genes [15].

Strikingly, C. elegans shows no homologs to the Cryptochrome

protein (CRY), involved in blue light photoreception and TIM

degradation, nor to CRY2, a potent repressor of CLK-CYC

mediated transcription, but insensitive to blue light [43]. It is,

however, interesting to note that in recent years a novel family of

photoreceptors, unknown to other species, has been described in

C. elegans. This nematodes exhibit a negative phototactic

behavior towards UV and blue light. This response is mediated,

at least in part, by the LITE-1 photoreceptor, a G protein coupled

receptor with similarity to the gustatory receptors of Drosophila
melanogaster. This protein activates a guanlyate cyclase, produc-

ing cGMP, upon activation by low wavelengths of light and, once

cGMP levels reach a certain concentration, cGMP-sensitive CNG

channels are opened and stimulation of photoreceptor cells occurs.

[47].

C. elegans also expressed proteins with great similarity to those

of the core circadian clock of mammals [48]. The list of the best

hits can be found in Table 3.

The positive elements of the mammalian clock are the proteins

Clock (CLK) and BMAL. BMAL is similar to dmCYC and there

are two variants, BMAL1 and BMAL2. Besides CLK there is also

another protein, NPAS2, capable of heterodimerizing with

BMAL, and activating the transcription of target genes. The C.
elegans protein with greatest similarity to CLK, BMAL1, BMAL2

and NPAS2 is ceAHA-1a, with E values of 1.5610217, 1.8610265,

5.4610263 and 6.8610219, respectively. These results are similar

to those found in the case of the insect clock, where the protein

with best similarity to CLK and CYC was also ceAHA-1a.

The negative elements of the mammalian clock are the proteins

Period (PER) and Cryptochrome (CRY). In this case, 3 PER

proteins have been described in mammals: PER1, PER2 y PER3.

Once again, as was the case with the insect PER protein, the

similar to PER2 and PER3 is ceLIN-42B, with an E value of

2.9610221 and 5.5610220, respectively. PER1, on the other

hand, was most similar (E = 7,5610217) to ceLIN-42C. There are

no CRY similarities in C. elegans.
Even though the similarity scores are high, those found in the

case of the insect core clock were higher (compare tables 2 and 3).

C. elegans also conserves many insect and mammalian
clock modulators/regulators

Since proteins with high degree of similarity to arthropod core

clock proteins were found in C. elegans, we broadened the search

to include known circadian accessory proteins of Drosophila
melanogaster [42,49].

The proteins that form accessory loops were the first candidates

to search for. These proteins are Vrille, Par Domain Protein 1E

and Clockwork Orange.

Vrille (VRI) belongs to the 2nd negative feedback loop of the

clock that inhibits CLK transcription. A similar protein, ceATF-2

(K08F2.2), with a score of E = 1.7610217 was found. Domain

analysis shows that both proteins possess a bZIP domain (PFAM

PF07716). It is known that ceATF-2 is a transcription factor that

negatively regulate the autophagy genes ceBEC-1 y ceLGG-1

[50], but it is unknown whether it regulates ceAHA-1 (similar to

CLK, see table 2) or not.

Par Domain Protein 1e (PDP1e), is involved in the 2nd positive

feedback loop of the fly’s clock and fulfills an antagonistic role to

that of VRI, promoting CLK expression. In this case, ceCES-2 is

the most similar protein, with an E = 261026. Both proteins

possess bZIP (PFAM PF07716) domains, although their sizes are

very different. While PDP1e is 647aa long, ceCES-2 is only 211

residues long. It is known that this protein regulates apoptosis in

Table 2. Homolog proteins to core clock genes of insects.

Organism Protein Clock function C. elegans homolog E value

Drosophila melanogaster PER central clock F47F6.1b (LIN-42b) 2.10E-30

TIM central clock Y75B8A.22 (TIM-1) 3.20E-18

CLK central clock C25A1.11a (AHA-1a) 1.70E-21

CYC central clock C25A1.11a (AHA-1a) 4.10E-75

CRY central clock None None

These proteins are the best hits found by probabilistic inference search based on Hidden Markov Models built upon multiple protein alignments of the core clock
proteins of insects (D. melanogaster). Common C. elegans names are enclosed between parenthesis when available.
doi:10.1371/journal.pone.0112871.t002
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the nematodes and that it is capable of forming dimers with

ceATF-2 [51,52].

Clockwork Orange (CWO) is part of a third loop and acts as a

transcriptional repressor of CLK target genes, thus modulating the

amplitude of Drosophila’s circadian clock controlled genes’

oscillations. No similarities were found in C. elegans.
Clock modulating proteins were then studied: CREB, Dou-

bleTime (DBT), Casein kinase 2 (CK2), Shaggy (SGG), the protein

phosphatases 1 and 2 (PP1 y PP2), Supernumerary Limbs (SLMB),

Rhodopsin (Rh), Nemo (NMO), Nocte and phospholipase C

(NORPA). The similarities and function of these proteins are

summarized in table 4.

Proteins related to insect clock output were then studied. These

include Takeout (TO), Pigment Dispersing Factor (PDF), Slow-

poke (SLO), Narrow Abdomen (NA), Inward Rectifier (IR), Jetlag

(Jet), COP9 signalosome (CSN4), Protein kinase A (PKA), Beta

Alanil Conjugase Synthase (EBONY), Lark (LRK), Transcription

factor FER2 (FER2). The similarities and functions of these

proteins are summarized in table 4.

Even though the homology score was higher in the case of the

insect core clock proteins, C. elegans’ proteome was also searched

for the mammalian accessory proteins [48].

The positive elements of the second loop are ROR-A and

ROR-B. They act positively on BMAL transcription. The protein

with higher similarity to ROR-A is ceNHR-23b (C01H6.5b), with

E = 1.4610270; and the similar to ROR-B is ceNHR-23a

(C01H6.5a), with E = 4.5610273. In the nematodes this protein

acts as a nuclear hormone receptor required for larval molting

[53].

REB-ERV alpha (NR1D1 and NR1D2) acts as the negative

element of the second loop, inhibiting BMAL transcription. The

closest protein similar to NR1D1 and NR1D2 is ceNHR-85a

(W05B5.3a), with E values of 8.1610247 and 8.7610255,

respectively. This protein is a nuclear hormone receptor involved

in egg laying and SDS resistant dauer larva formation [54].

DBP (D-Box binding protein) is part of a second accessory loop,

acting through binding to D-Box elements of target genes [55].

The similar to DBP is ceCES-2 (ZK909.4), with E = 1.5610218,

which is also the homolog to dmPDP-1e.

We also studied clock-modulating proteins such as CASEIN

KINASE 1A, CASEIN KINASE 1D, CASEIN KINASE 1E,

DEC1, DEC2, FBXL3, NOCTURNIN (CCRN4L),

PPARGC1A. The similarities and functions of these proteins are

summarized in table 5.

We then looked for the proteins related to input and output of

the clock, including melatonin receptors MEL1A and MEL1B,

MELANOPSIN (OPN4), PROKINETICIN (PKC2), VIP and

VIP receptor (VPAC2). The similarities and function of these

proteins are summarized in table 5. It is interesting to note that

previous work from our lab described the existence of melatonin

synthesis rhythms and in the ASMT enzyme, which is the rate

limiting enzyme of the process [56]. However, the receptors for

this humoral signal remain undiscovered. Here we report several

melatonin receptor candidates; the one with the highest degree of

similarity to the mammalian receptor is ceF41E7.3. This protein is

an orphan neuropeptide receptor and could certainly be tested

experimentally to verify whether it plays a role in melatonin

signaling.

C. elegans’ proteome exhibits high similarity to clock
accessory proteins of insects and mammals

The previous results show that C. elegans expresses the proteins

needed to build a clock similar to that of insects with the important

exception of a protein similar to dmCRY, the protein responsible

for TIM degradation upon blue light stimulation [42]. In the

mammalian case, mCRY is part of the core of the clock itself [13].

In the case of clock accessory proteins, C. elegans exhibits

similarities to form a complete secondary insect-like loop and also

most of the insect modulatory and output proteins, with the

exception of rhodopsins, dmNOCTE, dmTO y dmEBONY.

However, no similarities to dmCWO were found, a protein

involved in the third loop of the insect clock. We also found

similarities to the proteins of the secondary loops and several of the

accessory proteins of the mammalian clock. It is interesting to

point out that there were no similarities to VIP, a neuropeptide

involved in the synchronization of the mammalian clock neurons,

although our methods indicated similarities to its receptor VPAC2.

In insects, functions analog to VIP neuropeptide appear to be

encoded by PDF. C. elegans present two PDF similarities and also

a protein similar to a PDF receptor [57,58]. It is tempting to

consider PDF as a putative output protein for the C. elegans

circadian clock, a possibility that remains to be determined

experimentally.

The insect and mammalian similarity tables (see tables 2–5)

include several accessory proteins with highly elevated and

significant E values. This can be explained by the fact than many

of those proteins are ionic channels, phosphatases or kinases, all of

which are very conserved throughout evolution [59–66] and hence

Table 3. Protein homologs to the core clock proteins of mammals.

Organism Protein Clock function C. elegans homolog E value

Mus musculus PER PER1 central clock F47F6.1c (LIN-42c) 7.50E-17

PER2 central clock F47F6.1b (LIN-42b) 2.90E-21

PER3 central clock F47F6.1b (LIN-42b) 5.50E-20

BMAL BMAL1 central clock C25A1.11a (AHA-1a) 1.80E-65

BMAL2 central clock C25A1.11a (AHA-1a) 5.40E-63

CLK central clock C25A1.11a (AHA-1a) 1.50E-17

NPAS2 central clock C25A1.11a (AHA-1a) 6.80E-19

CRY CRY1 central clock None none

CRY2 central clock None none

These proteins are the best hits found by probabilistic inference search based on Hidden Markov Models built upon multiple protein alignments of the core clock of
mammals (M. musculus). Common C. elegans names are enclosed between parenthesis when available.
doi:10.1371/journal.pone.0112871.t003
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high E values were expected. On the other hand, proteins that are

more clock-specific, as is the case of PRMT-5 (PROTEIN
ARGININE METHYL TRANSFERASE 5), bear more interest

in this type of predictive studies. This protein, which is highly

similar (E = 3.70E-144) to the C. elegans protein C34E10.5,

modulates the alternative splicing of clock genes in D. melanoga-
ster and A. thaliana. Null mutants of this enzyme present severely

affected rhythms in both species [67,68]. It would be interesting to

study how this protein affects the circadian behavior of C. elegans.

Common clock components in the phylum Nematoda
and phylogenetic studies

Once that it was established that the proteome of C. elegans
contained proteins with similarity to insect and mammalian clock

proteins, we searched for homolog proteins in the complete

proteomes of other nematodes: Ascaris suum, Brugia malayi,
Bursaphelenchus xylophilus, Caenorhabditis angaria, Caenorhab-
ditis brenneri, Caenorhabditis briggsae, Caenorhabditis japonica,
Caenorhabditis remanei, Caenorhabditis sp7, Caenorhabditis sp9,
Caenorhabditis sp11 and Pristionchus pacificus. The results are

Table 4. Homolog proteins to accessory proteins of the insect circadian clock.

Organism Protein Clock function C. elegans homolog E value

Drosophila melanogaster VRI 2nd loop K08F8.2 (ATF-2) 1.70E-17

PDP1E 2nd loop ZK909.4 (CES-2) 2.00E-06

CWO 3rd loop None none

CREB Modulator Y41C4A.4d (CRH-1d) 8.10E-43

DBT Modulator C03C10.1 (KIN-19) 5.30E-190

CK2A Modulator B0205.7 (KIN-3) 3.50E-209

CK2B Modulator T01G9.6b (KIN-10) 1.50E-121

SGG Modulator Y18D10A.5 (GSK-3) 3.30E-189

PP1 PP1b Modulator F29F11.6a (GSP-1a) 1.30E-216

PP1-13C Modulator F56C9.1 (GSP-2) 1.30E-218

PP2 PP2a_MTS Modulator Y75B8A.30 (PPH-4.1) 3.90E-177

PP2a_TWS Modulator F26E4.1 (SUR-6) 4.00E-213

PP2a_WBT_A Modulator W08G11.4 (PPTR-1) 4.30E-256

PP2a_WBT_B Modulator C13G3.3c (PPTR-2c) 9.50E-279

PRMT-5 Modulator C34E10.5 (PRMT-5) 3.70E-144

SLMB Modulator K10B2.1 (LIN-23) 1.90E-232

RH1 Modulator C52B11.3 (DOP-4) 8.60E-34

RH5 Modulator C52B11.3 (DOP-4) 4.00E-30

RH6 Modulator C52B11.3 (DOP-4) 8.40E-30

NMO Modulator W06F12.1e (LIT-1e) 1.50E-182

NOCTE Modulator None None

NORPA Modulator B0348.4a (EGL8a) 0

TO Output None None

PDF Output T07E3.6b (PDF-1) 3.00E-02

PDFR Output C13B9.4a (PDFR-1a) 1.80E-127

SLO Output Y51A2D.19a (SLO-1a) 0

NA Output C11D2.6a (UNC-77a) 0

IR Output M02A10.2a (IRK-2a) 8.50E-159

JET Output C02F5.7a 8.80E-128

CSN4 Output Y55F3AM.15 (CSN-4) 7.80E-85

PKA Output ZK909.2h (KIN-1h) 1.60E-217

EBONY Output Y66D12A.14 1.40E-60

LRK Output F18H3.3b (PAB-2b) 1.80E-36

FER2 Output B0304.1b (HLH-1b) 1.90E-12

JAFRAC Output F09E5.15a (PRDX-2a) 5.10E-105

WDS-PB Output C14B1.4 (WDR-5.1) 3.50E-165

These proteins are the best hits found by probabilistic inference search based on Hidden Markov Models built upon multiple protein alignments of the accessory
proteins of the circadian clock of insects (D. melanogaster). Those proteins that did not possess the same domains that the query profile are highlighted (bold). Common
C. elegans names are enclosed between parenthesis when available.
doi:10.1371/journal.pone.0112871.t004
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summarized in Tables S1 and S2. Thirteen mammalian and thirty

two insect C. elegans’ protein hits were also found in the other

nematode proteomes that were analyzed. Interestingly there were

7 proteins common to mammals, insects and nematodes. These

common proteins include two core clock components, the positive

core clock element Cycle/BMAL and the negative element Period;

and four modulators, the circadian clock kinase Dbt/CSNK4; the

F-Box modulator Jetlag/FBXL; the transcriptional coactivator

Lark/PPARGC1-a; the peroxirredoxin Jafrac/PRDX-2 and the

WDR5 histone modification proteins Wds/WD-Rep. The best

conserved protein hits can be seen in table 6 and figure S2.

We also studied the evolutionary relationships between these

clock proteins conserved among the three different phyla.

Concatemers of these 7 proteins for different species of the three

taxa were built from the respective protein alignments and a

phylogenetic tree was constructed as described in the materials

and methods section. A cytochrome B phylogenetic tree was also

built for comparison purposes. As can be seen in figure 2 both

trees show three clearly distinct clades, one belonging to each

phylum.

There is a longstanding debate about C. elegans’ relationship

with other model organisms [69]. There are two hypotheses, the

coelomata hypothesis indicates that nematode are closer to insects

than to mammals; and the ecdysozoa hypothesis states that insects

and mammals are closer to each other than either of them to C.
elegans; indeed, there is evidence supporting both hypotheses.

Studies based on 18S RNA sequence state that the nematodes are

more closely related to animals that go through the process of

ecdysis. This hypothesis, however, depends on the exclusion of all

nematodes with the exception of Trichinella spiralis. If the rest of

the nematodes are included, then they group in a clade consistent

with the coelomata hypothesis [70]. RNApol 2 sequence-based

trees also support this hypothesis [71]. As shown in figure 2, our

results also favor this hypothesis, suggesting that D. melanogaster
and M. musculus are closer to each other, than either of them to

C. elegans.
The analysis of trees based on a single core clock protein

indicates the same kind of grouping (figure 3). One interesting case

is that of the TIMELESS homolog. ceTIM-1 is closer to

dmTIMEOUT and to mmTIMELESS, that to dmTIMELESS

(figure S1). In mammals, this protein is essential for embryonic

development and is associated to DNA metabolism. It is also

known to associate with peroxirredoxin 2 during cell cycle check

points [72]. In Drosophila, TIMEOUT is also involved in DNA

metabolism, chromosomal cohesion and circadian photoreception

[73–75]. This means that C. elegans’ similarity to TIMELESS is

closer to the proteins that perform developmental roles rather than

to the protein involved in circadian rhythms; indeed, there is

experimental evidence to support ceTIM-1’s role in chromosomal

cohesion and developmental timing [44,76,77].

Circadian Cis acting promoter elements analysis
In parallel to the proteins (trans acting factors) of the clock, cis

acting promoter elements modulate the phase of the rhythms

found at the mRNA level in other model organisms [78–80]. We

searched for the most well-known cis elements, including the

Table 5. Homolog protein to accessory proteins of the mammalian circadian clock.

Organism Protein Clock function C. elegans homolog E value

ROR ROR-A 2nd loop C01H6.5b (NHR-23b) 1.40E-70

Mus musculus REB-ERVa ROR-B 2nd loop C01H6.5a (NHR-23a) 4.50E-73

NR1D1 2nd loop W05B5.3a (NHR-85a) 8.10E-47

NR1D2 2nd loop W05B5.3a (NHR-85a) 8.70E-55

DBP 3rd loop ZK909.4 (CES-2) 1.50E-18

CSNK CSNK1a Modulator C03C10.1 (KIN-19) 4.30E-204

CSNK1d Modulator F46F2.2b (KIN-20b) 1.40E-172

CSNK1e Modulator F46F2.2b (KIN-20b) 5.00E-172

CCRN4L Modulator ZC518.3c (CCR-4c) 3.50E-21

DEC1 Modulator Y54G2A.1 (LIN-22) 4.20E-05

DEC2 Modulator Y54G2A.1 (LIN-22) 1.50E-05

FBXL-3 Modulator C02F5.7a 5.20E-04

PPARGC1a Modulator F18H3.3b (PAB-2b) 6.10E-08

MEL receptor MEL1A Output F41E7.3 (NPR-6) 1.00E-26

MEL1B Output F41E7.3 (NPR-6) 1.10E-31

OPN4 Input T11B7.4e (ALP-1e) 5.20E-61

PKC2 Output None None

VIP Output None None

VPAC2 Output C18B12.2 (SEB-3) 1.60E-37

PRDX-2 Output F09E5.15a (PRDX-2a) 1.70E-104

WD-REP Output C14B1.4 (WDR-5.1) 2.70E-159

These proteins are the best hits found by probabilistic inference search based on Hidden Markov Models built upon multiple protein alignments of the accessory
proteins of the circadian clock of mammals (M. musculus). Those proteins that did not possess the same domains that the query profile are highlighted (bold). Common
C. elegans names are enclosed between parenthesis when available.
doi:10.1371/journal.pone.0112871.t005
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canonic E-Box element, in the promoters of all the genes that

codify for proteins similar to insect/mammalian proteins (group 1),

insect proteins (group 2) and mammalian proteins (group 3). The

analysis revealed several circadian related cis acting promoter

elements can be found in C. elegans.
The morning E-Box element was found to be represented in the

promoters of all three groups. This element is bound by bHLH

domain containing proteins, such as Cycle/Bmal, and was the first

promoter element associated with circadian transcription [55,81].

This element is found in the promoters of the cycle/bmal, lark/

pparg1-a, wds/wd-r-2 and dbt/csnk4 group 1 gene homologs.

Strikingly it is not found in the promoter of the period homolog

lin-42, although a non-canonic E-Box element is present (data not

shown).

The daytime canonic D-Box element was also found in the

promoter elements of some of the C. elegans’ gene homologs

(groups 1 and 2). This element is bound by DBP in a repressor-

antiphasic-to-activator mechanism [55]. It was found in the

promoter of the cycle/bmal of the group 1 genes homologs.

The nighttime canonic RRE element is bound by RevErbA/

ROR binding elements in a repressor-precedes-activator pattern

(as is the case for the E-Box element) [55,80]. Interestingly, this

element was found in the promoters of the nhr-85, the RevErbA

homolog, and in the peroxirredoxin-2 gene homolog.

The complete set of results, which includes other circadian

expression associated promoter elements (GRE, PPRE, CREB,

HSE and CEBP) can be found in Table S3.

Discussion

The bioinformatics analysis approach used in this C. elegans
work based on homolog sequence searches from the model

organisms Mus musculus, Drosophila melanogaster, Neurospora
crassa, Arabidopsis thaliana and Synechoccocus elongatus yielded

some novel and unexpected results that differ from simple BlastP

search strategies (Table S4). On the one hand, C. elegans expresses

similar proteins to the ones from the core clock of three of the

studied model organisms: M. musculus, D. melanogaster and N.
crassa. The high homology to mammal and insect core clock

proteins is not surprising if we take into account previous reports

and results from our own lab. In fact, most of the studies

performed on recent years were focused on the role of these

components in the C. elegans clock. However, the existence of

high similarity to the clock proteins of the fungi N. crassa is much

more unexpected and has not been reported so far to our

knowledge. In particular, the perfect similitude between ncFRH

and its possible C. elegans counterpart, ceMTR-4, is remarkable.

These proteins not only share sequence similitude but also exhibit

a similar size (1106aa and 1026aa, respectively) and present almost

the same protein domains with just one exception (calcium binding

domain, EF-Hand 1). It is also notable that ncFWD-1, which is

involved in ncFRQ degradation, exhibited strong sequence

similitude to ceLIN-23, which has very similar molecular functions

already described in the nematode. Nevertheless, the lack of a

protein similar to ncFRQ would hinder the function of a C.
elegans clock based on the fungal TTFL model. Regarding the rest

of the central clock components of N. crassa, we must also point

out that the WC complex proteins (ncWC1 and ncWC2), that act

as positive elements, do not appear to have proteins with strong

similitude in C. elegans. The same is true in the case of ncVIVID.

These results suggest that only part of an ancestral clock is

conserved in nematodes and some of the elements could have been

substituted by some new, yet unknown, elements, thus closing the

regulatory loop. Even though the similitude is not perfect and the

functions described in C. elegans for these proteins is different to

those expected, they could also be part of the nematode clock by

performing additional functions that have not been discovered yet.

Even though there are no experimental records to support this

hypothesis, the possibility of similitude between C. elegans’ clock

components and those of N. crassa’s clock has not been examined.

As a first approximation, none of the C. elegans’ proteins similar to

N. crassa’s core clock proteins appear to cycle at the mRNA level

in the different conditions studied according to the published

microarray study [24].

Besides the high similitude to the N. crassa’s clock, the results

obtained after comparing the proteins that make up the insect and

mammalian clock were more conclusive. C. elegans exhibits not

only the required proteins to build the core clock but also some

accessory proteins required for circadian rhythms in both the

insect and the mammalian molecular clock. Among the sets of core

proteins, ceLIN-42b and ceLIN-42c were of great similarity to

PER and ceTIM-1 could be the equivalent of the insect TIM clock

protein. Also, ceAHA-1a is the sole protein with similarity to the

positive elements of the clock (dmCLK/CYC y mmCLK/BMAL)

and includes all of the required domains for the circadian

functions of these proteins. It must be pointed out, however, that

these homolog proteins exert heterochronic and chromosomal

cohesion roles in the nematodes [20,21,44] and their function in

the circadian clock of C. elegans is not completely clear.

lin-42 encodes three different isoforms, LIN-42a, LIN-42b and

LIN-42c. The b and c isoforms contain PAS domains such as those

found in insect and mammalian PER. The experimental evidence

suggests that lin-42 is involved in larval development controlling

the multiple changes that occur in different tissues (hypodermis,

gonads, sex myoblasts and vulva) [21,22], in molting synchroni-

zation [82] and in circadian locomotor activity period determina-

tion [3]. It is also known that lin-42 gene expression cycles

throughout development [21,83] and that LIN-42a in particular,

whose mRNA peaks during the four larval moltings with a close to

8-h period [82], is required to generate quick, rhythmic and

productive molts. In line with this, the forced and constitutive

expression of lin-42a in wild type nematodes generates anachro-

nistic larval molts and lethargy [82]. The molting defects observed

in the lin-42(ok2385) (which bears a deletion affecting isoforms a

and b) and lin-42(n1089) (which bears a deletion affecting

isoforms b and c) mutants are completely rescued by lin-42a [82].

In addition, the defects in the temporal program of cellular

division observed in nematodes carrying the n1089, mg152 and

ve11 mutant alleles can also be fully reversed by the downstream

portion of the lin-42 locus, that codifies for the LIN-42a isoform

[22]. However, it must be noted that the three lin-42 isoforms may

interact and influence the pace of larval development. In this

sense, the overexpression of LIN-42c causes a dramatically

reduction in the pace of development in lin-42(ok2385) larvae,

suggesting an antagonic role to that of LIN-42a. Also, the a and b

isoforms share SYQ and LT domains, potentially performing

redundant roles [82]. Taken together, these results suggest that

LIN-42a would be the isoform mainly involved in heterochronic

functions, leading to speculate that the PAS-containing b and c

isoform may fulfill other functions, one of which could be the

regulation of circadian rhythms in the nematodes. In accordance

to this hypothesis, adult nematodes that lack PAS containing LIN-

42 isoforms exhibit a longer locomotor activity circadian period

than wild type [3].

ceTIM-1, another possible negative element found in C.
elegans, has been implied to be only involved in heterochronic

functions. RNAi-mediated studies to knock down ceTIM-1 and

ceKIN-20 (homolog to dmDBT and mmCSNK4) indicated that
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both elements are involved in the seam cell terminal differentiation

program during the L4 stage [76]. Also, ceTIM-1 is essential for

chromosomal cohesion regulation and is involved in chromosomal

location determination of the non-SMZ cohesion subunits [44]. It

is interesting to point out that in insects a paralog gene to timeless,
timeout, has been described. timeless is a canonic gene of the

circadian clock of D. melanogaster and other insects, while timeout
is a multiple-function gene and plays a key role in the maintenance

of chromosome integrity, light entrainment of the circadian clock,

embryonic development and DNA replication regulation. Studies

have shown that in many insects timeout circadian expression is

light-dependent and also particularly necessary for circadian

photoreception in fruit flies [73,84]. In mammals, there is only

one tim gene, called timeless, that is more similar in sequence to

insect timeout rather than to insect timeless (figure S1). This gene is

involved in replication termination and cell cycle progression [85–

87] and has recently been shown to participate in period

determination and circadian rhythmicity [88,89]. It is also known

that its expression is rhythmic in the retina [90]. There is also

evidence that hymenopteran insects, including ants, bees and

wasps, do not have a timeless gene and still have a functional

circadian clock [84,91]. In C. elegans, as is also the case in

mammals, there is only one tim gene (ceTIM-1) that is closer in

sequence to D. melanogaster timeout (figure S1). It could be

speculated that ceTIM-1 might also fulfill multiple roles in C.
elegans as in the mentioned examples, even though the function of

this protein in the inner workings of the circadian clock has yet to

be found.

On the other hand, the absence in C. elegans of proteins similar

to the Cryptochromes (CRY) of both insects and mammals is

striking. Nevertheless, and in accordance to the absence of a CRY

protein, C. elegans also completely lacks photolyases, enzymes

involved in DNA repair from which cryptochromes evolved

[43,92]. As mentioned earlier, the photoreceptor function of CRY

in D. melanogaster could have been replaced by the convergent

evolution of the novel photoreceptor family discovered in C.
elegans, composed by LITE-1 and GUR-3 [47,93,94]. Even

though there is no direct evidence of the role of these proteins in

the photic synchronization of the clock, the CNG channel protein

TAX-2, which acts downstream of these photoreceptors, is

required for the rhythmic expression of diverse transcripts

entrained under light: dark 12 h: 12 h cycles [24]. The absence

of CRY in the genome of C. elegans could mean that the negative

transcriptional loop elements conformed by PER/CRY in

mammals could have been replaced in the nematode by a PER/

TIM dimer, or LIN-42/TIM-1. On the other hand, given the fact

that there is no evidence of interaction between these two proteins,

the existence of a novel negative element yet to be described

cannot be ruled out. In this sense it is worth noting that even

though in most insect clocks the PER/TIM dimer fulfills the

repressor role, in other insects it is a PER/CRY dimer that

performs the same role, even if they also have a TIM protein [43],

which infers a great plasticity in the molecular mechanism of the

circadian clock.

The most similar protein to the positive elements of the insect

and mammalian clocks is ceAHA-1. This protein belongs to the

bHLH/PAS protein family, which have the property of binding as

an homo or heterodimer to DNA consensus sequences known as

an E-Box. There is experimental evidence showing that ceAHA-1

is capable of physical interaction with at least three proteins by

means of their PAS domains (ceCKY-1, ceHIF-1 and ceAHR-1)

forming heterodimers that translocate to the nucleus and act as

Figure 2. Phylogenetic analysis. A) Phylogenetic tree of the conserved clock proteins of insects, mammals and nematodes. B) Phylogenetic tree
based on Cytochrome B protein sequences of insects, mammals and nematodes. The insets show a zoomed in view of the Chordata phylum
branches.
doi:10.1371/journal.pone.0112871.g002
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transcription factors. The ceAHA-1/ceAHR-1 dimer binds the

TTGCGTG sequence and regulates a subset of genes involved in

neuronal development [23,95]; the ceAHA-1/ceCKY-1 dimer

regulates gene expression in the pharynx by binding to the

TGCGTG sequence [95,96]; finally, the ceAHA-1/ceHIF-1

dimer binds to the sequence CACGTA, to modulate the

transcription of genes involved in iron homeostasis [97] and to

the TACGTG sequence, to modulate the response to hypoxia

[41,95]. There is currently no evidence that links ceAHA-1 to the

circadian clock of C. elegans; however, given the fact that this

protein has bHLH DNA binding domains and PAS protein

interaction domains, it would not be surprising if ceAHA-1, acting

as a homodimer or as a heterodimer in association with another

protein, could play the role of the mammalian CLK/BMAL or

insect CLK/CYC heterodimers. Several ceAHA-1-containing

dimers regulating the transcription of genes involved in different

functions in the nematode have been reported; moreover, the

bioinformatics analysis found ceAHA-1a as the most similar

protein to the known positive elements. However, there is no

experimental evidence that corroborates the existence of ceAHA-1

homodimers in C. elegans. In this regard, more experiments will

be necessary to study the possible role of ceAHA-1 in the

molecular basis of the C. elegans’ circadian clock.

Recently, a global transcriptomic study of nematodes kept

under light:dark and temperature (warm:cold) 24 hour cycles did

not find significant cycles in the mRNA of these possible core clock

genes homologs [24]. It is important to know that this study was

performed using microarrays and hence it is not possible to

discriminate between the different isoforms of lin-42 and aha-1,

among others. Also, the study was performed analyzing the gene

expression levels of whole nematode populations in different

timepoints, which could have generated a high level of noise and

hence, loss of detection sensibility and the masking of positive

results due to the contribution of non-rhythmic tissues. This could

have negatively affected the detection of core clock homologs as it

is known that in all eukaryotes studied so far, the expression of the

core clock genes is rhythmic in certain cells and tissues (and may

even change their respective phases in different tissues) and suffer

quick dampening in the absence of environmental cues. One such

example is the period gene of D. melanogaster. period rhythms

were initially described in the heads of adult flies and even though

the mRNA in the rest of the fly tissues also shows circadian

fluctuations in per (with similar phase and amplitude), rhythms

from whole body RNA extractions are much noisier. In particular,

the per rhythm is absent in ovaries, which represents around 70%

of the total RNA of female flies. The non-rhythmic per mRNA of

the ovary represents 26% of the total per mRNA and generates

low overall per rhythms in studies performed with whole female or

whole mixed sex flies. Also, per rhythms are far more robust in the

head under constant conditions than in the rest of the body, and it

is a fact that the amplitude of per oscillations decreases well over

70% in peripheral clocks after 3 days in constant conditions,

whereas they only diminish 30% in head neurons [98,99]. This

observation could be valid for some of the genes analyzed in Van

der Linden et al [24]. For example, aha-1 and atf-2 were scored as

cycling under LD conditions (pF24,0.02) but were not robust

enough in constant conditions. However, it is also possible that the

Figure 3. Core clock proteins phylogenetic analysis. A) Phylogenetic tree of the conserved proteins mmBMAL, dmCYCLE and its homolog
ceAHA-1. B) Phylogenetic tree of the conserved PERIOD proteins. A zoomed in view of the branches corresponding to the Chordata (A and B) and
Nematoda (A) phylum are shown in the insets.
doi:10.1371/journal.pone.0112871.g003
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possible homologs to core clock genes do not have a circadian

expression and C. elegans may have a novel circadian clock.

Every approach pursued so far to try to discover the molecular

basis that dictates the workings of the C. elegans clock were based

on the widely studied and well understood classic models of

Drosophila melanogaster and Mus musculus. But even if all clocks

described to date are based in a transcriptional translational

feedback loop (TTFL), with the exception of the aforementioned

redox driven oscillators, the proteins that make up the mechanism

of these clocks are not conserved in all the studied model

organisms. One example is the filamentous fungi Neurospora

crassa that has served for nearly half a century as a durable model

organism for uncovering the basic circadian physiology and

molecular biology. In the molecular clock of this organism, the

proteins that serve as the core clock of the TTFL, WC, FRQ,

FRH and VIVIV, are not conserved in insects or mammals. The

molecular clock of Neurospora crassa took years of exhaustive

research to be discovered. This was done through genetic screens

of mutant phenotypes and homology based sequence searches that

allowed, for example, the identification of shared PAS domains

between WC1/2 and PER/CLOCK.

Table 7. Organisms used in this work.

Nematoda Tax. ID Chordata Tax. ID Arthropoda Tax. ID

Caenorhabditis elegans 6239 Mus musculus 10090 Drosophila melanogaster 7227

Ascaris suum 6253 Bos Taurus 9913 Acyrthosiphon pisum 7029

Brugia malayi 6279 Canis lupus familiaris 9615 Anopheles gambiae 7165

Bursaphelenchus xylophilus 6326 Cavia porcellus 10141 Apis mellifera 7460

Caenorhabditis angaria 860376 Equus caballus 9796 Danaus plexippus 13037

Caenorhabditis brenneri 135651 Homo sapiens 9606 Nasonia vitripennis 7425

Caenorhabditis briggsae 6238 Loxodonta africana 9785 Tribolium castaneum 7070

Caenorhabditis japonica 281687 Macaca mulatta 9544

Caenorhabditis remanei 31234 Monodelphis domestica 13616

Caenorhabditis sp11. 886184 Ontolemur garnettii 30611

Caenorhabditis sp7. 870436 Rattus norvegicus 10116

Caenorhabditis sp9. 870437 Sus scrofa 9823

Pristionchus pacificus 54126

Cyanobacteria Tax. ID Ascomycota Tax. ID Tracheophyta Tax. ID

Synechococcus elongatus 32046 Neurospora crassa 5141 Arabidopsis thaliana 3702

Acaryochloris marina 155978 Ajellomyces dermatitidis 5039 Brachypodium distachyon 15368

Arthrospira maxima 129910 Arthrobotrys oligospora 13349 Brassica rapa 3711

Arthrospira platensis 118562 Aspergillus terreus 33178 Castanea sativa 21020

Crocosphaera watsonii 263511 Beauveria bassiana 176275 Glycine max 3847

Cyanothece sp. 43988 Chaetomium thermophilum 209285 Hordeum vulgare 4513

Leptolyngbya boryana 1184 Claviceps purpurea 5111 Ipomoea nil 35883

Lyngbya aestuarii 118322 Colletotrichum higginsianum 80884 Lemna gibba 4470

Microcoleus chthonoplastes 64178 Cordyceps militaris 73501 Medicago truncatula 3880

Microcystis sp. 1127 Exophiala dermatitidis 5970 Mesembryanthemum crystallinum 3544

Moorea producens 1155739 Fusarium oxysporum 5507 Oryza sativa Japonica 39947

Oscillatoria sp. 1159 Gibberella zeae 5518 Phaseolus vulgaris 3885

Planktothrix rubescens 59512 Glomerella graminicola 31870 Populus nigra 3691

Leptosphaeria maculans 5022 Ricinus communis 3988

Metarhizium acridum 92637 Thellungiella halophila 98038

Myceliophthora thermophila 78579 Triticum aestivum 4565

Nectria haematococca 140110 Vitis vinifera 29760

Paracoccidioides brasiliensis 121759 Zea mays 4577

Podospora anserina 5145

Sordaria macrospora 5147

Talaromyces stipitatus 28564

Thielavia terrestris 35720

Trichoderma reesei 51453

Verticillium dahliae 27337

List of organisms from the six different phylum used in this work and their respective taxonomy IDs.
doi:10.1371/journal.pone.0112871.t007
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On the other hand, the lack of robust circadian rhythms in the

expression of the principal candidate homolog genes does not

mean that the gene products could not be rhythmic through

posttranscriptional regulation mechanisms. In this sense, there are

cases of circadian rhythms that respond to the PTFL (post-

translational feedback loop) model, that are sustained even in the

absence of transcription and translation. One such example is seen

in the cyanobacteria Synechococcus elongatus, where one of the

clock components goes through rhythmic cycles of phosphoryla-

tion [100]. Another example of a PTFL mechanism that has

gained momentum is based on the superoxidation and reduction

of peroxirredoxin (PRX), a family of proteins involved in

preventing damage from reactive oxygen species [101]. PRXs

are highly conserved in a great number of organisms and though

this mechanism was first discovered in mammalian red blood cells

and in the unicellular green alga Ostreococcus tauri [10,11], there

is evidence that the rhythm in the oxidative state of these proteins

is conserved in all the model organisms from cyanobacteria to

plants, fungi, fruit flies and mice. Hence, PRXs have been

proposed as universal markers for circadian rhythms [12].

Superoxidation of PRXs is dependent on the redox state of the

cell and was shown to be rhythmic even in the complete absence of

transcription and of some clock genes necessary to TTFL function.

The fact that oxidation rhythms of PRXs have been found in

organisms that possess functional TTFLs means that these

mechanisms are not mutually exclusive, and to date it is not clear

whether this system influences or regulates known TTFL-based

clocks. Moreover, it is also unclear whether the oscillation in the

oxidative state of the peroxirredoxin is itself part of the PTFL-

based clock, or rather an output of another oscillator yet to be

found. Recently, an oxidation rhythm of peroxirredoxin-2

(PRDX-2) has been found in C. elegans kept under constant

darkness and temperature. However, prdx-2 mRNA is not

rhythmic. This oxidation rhythm represents a phylogenetically

conserved molecular marker of the circadian clock in C. elegans
[102] and could be part of a still uncharacterized PTFL-based

clock. This does not exclude the possibility of C. elegans having a

classic TTFL clock and the bioinformatics evidence presented in

this work supports the existence of such clock and also of its

phylogenetic similarity to the mammalian and insect clock.

Many studies have experimentally shown the existence of

circadian rhythms in C. elegans at the molecular, physiological

and behavioral level. Taken together, the data is indicative of the

existence of a biological clock in C. elegans that responds to

environmental signals (light and temperature cues), but so far the

efforts have lacked an integrative analysis to allow for the

establishment of the mechanism behind the observations, and

the formulation of a model that explains how the circadian clock of

C. elegans works. This could be, in part, due to our own human

nature and our strictly scientific way of classifying and contrasting

new findings with previous theories. We must take careful

consideration in C. elegans unique characteristics, such as its lack

of eyes, soil-dwelling life, low or no contact with sunlight, which

make it very different from all the other model organisms studied

so far. Indeed, previous studies and the current bioinformatics

analysis should be complemented with experimental data from

more robust phenotype screenings or the use of high sensitivity

reporters that allow for real time and in vivo recording of all the

candidate genes found.

Materials and Methods

Protein databases
In this work we used the genomes and proteomes deposited in

WormBase WS230 (table 7). These include Caenorhabditis elegans
and 8 other members of the Caenorhabditis genus, and 2 other

species of the genera Ascaris and Brugia. The proteomes of all

these nematodes were extracted from their corresponding

WormBase files (http://www.wormbase.org/pub). We then cre-

ated an individual proteome database (IPD) with 11 individual

proteomic databases containing the annotated proteome of each

nematode. All of them were indexed using the formatdb routine

from the NCBI Blast standalone suite v2.2.28.

Construction of Hidden Markov Models
In order to find remote similarity between model organisms and

worm’s clock proteins, the proteins involved in the circadian clock

of the 5 better characterized chronobiology model organisms,

Drosophila melanogaster, Mus musculus, Synechococcus elongatus,
Neurospora crassa and Arabidopsis thaliana (table 8), were

considered. Ortholog proteins to each of the core clock proteins

of each model organisms were searched using the BlastP service of

NCBI (http://blast.ncbi.nlm.nih.gov/), using the default cut off E-

value. This search was restricted to the following phyla: 12

organisms with completely sequenced genomes belonging to

Chordata, 7 for Arthropoda, 13 for Cyanobacteria, 24 for

Ascomycota, and 18 for Tracheophyta (table 7). The set of positive

hits was then aligned using the Muscle routine of MEGA v5.2 suite

with default parameters [59]. Then, specific Hidden Markov

Model profiles (HMM profiles) were generated for each alignment

using the Hmmbuild routine from the HMMER3 software [28].

Search of the clock proteins in Caenorhabditis elegans
The HMM profiles described above were used as input to

search for similar proteins in Caenorhabditis elegans using the

HMMsearch routine from the same software. This resulted in 5

Table 8. List of circadian clock related proteins from the five model organisms used in this work.

Organism Proteins

Mus musculus PER1 - PER2 - PER3 - BMAL1 - BMAL2 – CLK - NPAS2 - CRY1 - CRY2 - RORA – RORB - NR1D1 - NR1D2 – DBP CSNK1a - CSNK1d - CSNK1e
- CCRN4L - DEC-1 -DEC-2 FBXL-3 -PPARGC1a - MEL1A - MEL1B - OPN4 - PKC2 VIP - VPAC2 - PRDX-2 – WD-REP

Drosophila melanogaster PER – TIM – CLK – CYC – CRY – VRI - PDP1E – CWO - CREB – DBT - CK2A - CK2B – SGG - PP1b - PP1-13C PP2a_MTS - PP2a_TWS -
PP2a_WBT_A - PP2a_WBT_B PRMT-5 – SLMB - RH1 - RH5 - RH6 – NMO – NOCTE - NORPA – TO – PDF – PDFR – SLO – NA – IR – JET -
CSN4 – PKA – EBONY – LRK - FER2 – JAFRAC - WDS

Arabidopsis thaliana CCA1 - COP1 - DET1 – GI – LHY – LUX - PRR5 - PRR7 - PRR9 - TOC1

Neurospora crassa FRH – FRQ - FWD-1 – VVD - WC-1 - WC-2

Synechococcus elongatus KAI-A - KAI-B - KAI-C

doi:10.1371/journal.pone.0112871.t008

Circadian Clock Proteins in Nematoda

PLOS ONE | www.plosone.org 13 November 2014 | Volume 9 | Issue 11 | e112871

ftp://www.wormbase.org/pub
http://blast.ncbi.nlm.nih.gov/


databases (one for each Phylum) containing the best hits for each

HMM profile. Each protein of the collection of best hits resulted

by the HMMsearch routine in Caenorhabditis elegans was further

analyzed by InterProScan (http://www.ebi.ac.uk/Tools/pfa/

iprscan/). Those proteins that contained the same domains as

the query protein from each model organism were kept as accepted
hits [103]. The default HMMsearch 3.0 inclusion threshold value

for the full sequence length was used (0.01).

Search of the clock orthologous proteins in the others
worms

The accepted hits from Caenorhabditis elegans were then used as

queries to perform local homology searches (BlastP software)

against the IPDs of the other members of the phylum Nematoda.

The default standalone blastP cut off E-value was used (1E210).

This resulted in a collection of the best hits for each clock protein

from all the nematode proteomes. This list was again further

refined by comparing the domains found in each protein and that

of the accepted hit in C. elegans to obtain a list of those proteins

conserved in the phylum. Finally the best hit for each worm was

used as query against Caenorhabditis elegans IPD in order to find

the reciprocity with an ad hoc reciprocal best hit (RBH) routine

based in BlastP. The default standalone blastP cut off E-value was

used (1E210).

Analysis of genetic circadian regulatory elements
All C. elegans’ orthologs that corresponded to accepted clock

prototypes were analyzed at the promoter level to search for

known circadian regulatory elements with the next IUPAC

syntaxis: E-box (CACGTG), D-box (TTATGYAA); RRE

(WAWNTRGGTCA), GRE (ACANNNTGTTCT), PPRE

(TGACCY), CREB (TGACGTMA), HSE (NGAANN-

GAANNTTCN), and CBP (TKGNGAAK) [78–80,104]. Geno-

mic sequences 3000 bp upstream of the ATG (translation start site)

were downloaded for each putative clock gene with de WormMart

tool [105]. Regulatory elements analysis was then performed with

the jPREdictor v1.with default parameters [106].

Phylogenetic analysis
A phylogenetic tree of the phylum Nematoda was built using

Cytochrome B sequences, as previously described [107]. The sets

of orthologous proteins were aligned by the Muscle routine from

MEGA v5.2suite. The phylogenetic trees were constructed using

the neighbor-joining method, the Poisson model for amino acid

substitutions, a Pairwise Deletion for the Gaps/Missing Data
Treatment and a Gamma distributed rate among sites was

calculated for each alignment. The percentage of replicate trees

where the taxa was grouped in the bootstrap test (1000 replicates) is

shown at the side of each branch. The net distance between taxa
was determined by the Poisson correction model.

Supporting Information

Figure S1 Phylogenetic tree of the core clock protein
TIMELESS. The phylogenetic trees were constructed using the

neighbor-joining method, the Poisson model for amino acid

substitutions, a Pairwise Deletion for the Gaps/Missing Data
Treatment and a Gamma distributed rate among sites was

calculated for each alignment. The percentage of replicate trees

where the taxa was grouped in the bootstrap test (1000 replicates) is

shown at the side of each branch. The net distance between taxa
was determined by the Poisson correction model.

(TIF)

Figure S2 Similar proteins are found among mammals,
insects and nematodes. The figure shows the seven C. elegans’
proteins that are conserved among the clocks of mammals and

insects, depicted in a: A) mammalian like clock model; and, B)

insect (Drosophila) like clock model.

(TIF)

Table S1 Conserved mammalian C. elegans’ hits in all
nematode species. This table shows the 12 mammalian protein

hits that are conserved in all other nematode species. C. elegans’
best hit for each mammalian protein is used as a query to search

each proteome. The database, protein hit, percentage of identity,

alignment length, E value and bit score are detailed in the table.

(XLSX)

Table S2 Conserved insect C. elegans’ hits in all
nematode species. This table shows the 32 insect protein hits

that are conserved in all other nematode species. C. elegans’ best

hit for each insect protein is used as a query to search each

proteome. The database, protein hit, percentage of identity,

alignment length, E value and bit score are detailed in the table.

(XLSX)

Table S3 Promoter elements analysis. This table shows the

occurrence of putative circadian promoter elements in the genes of

the conserved mammal/insect components, similar to insect

components and similar to mammal components.

(XLSX)

Table S4 Comparison between BlastP and HMM search
strategies. The table highlights the proteins that have been

identified by the HMM search which were not found by the

classical blastP approach.

(XLSX)

File S1 HMM profiles used in this work and
HMMsearch results.
(ZIP)
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