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Abstract

Robustness and evolvability are highly intertwined properties of biological systems. The relationship between these
properties determines how biological systems are able to withstand mutations and show variation in response to them.
Computational studies have explored the relationship between these two properties using neutral networks of RNA
sequences (genotype) and their secondary structures (phenotype) as a model system. However, these studies have assumed
every mutation to a sequence to be equally likely; the differences in the likelihood of the occurrence of various mutations,
and the consequence of probabilistic nature of the mutations in such a system have previously been ignored. Associating
probabilities to mutations essentially results in the weighting of genotype space. We here perform a comparative analysis of
weighted and unweighted neutral networks of RNA sequences, and subsequently explore the relationship between
robustness and evolvability. We show that assuming an equal likelihood for all mutations (as in an unweighted network),
underestimates robustness and overestimates evolvability of a system. In spite of discarding this assumption, we observe
that a negative correlation between sequence (genotype) robustness and sequence evolvability persists, and also that
structure (phenotype) robustness promotes structure evolvability, as observed in earlier studies using unweighted
networks. We also study the effects of base composition bias on robustness and evolvability. Particularly, we explore the
association between robustness and evolvability in a sequence space that is AU-rich – sequences with an AU content of 80%
or higher, compared to a normal (unbiased) sequence space. We find that evolvability of both sequences and structures in
an AU-rich space is lesser compared to the normal space, and robustness higher. We also observe that AU-rich populations
evolving on neutral networks of phenotypes, can access less phenotypic variation compared to normal populations
evolving on neutral networks.
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Introduction

Biological systems display resilience to perturbations, which are

often mutations. Mutations occur at the level of genotype and the

resultant changes are observed at the level of phenotype.

Depending on the level of complexity, the definitions of genotype

and phenotype change. For instance, the amino acid sequence of a

protein could be its genotype while phenotype can be defined by

its structure, whereas in a metabolic pathway, changes at the

enzymatic level (genotype) are reflected in the metabolic capabil-

ities of an organism (phenotype). The resilience of biological

systems, or their robustness, is highly intertwined with their

evolvability, the ability of a system to show variation in its

behaviour in response to mutations. These definitions of robust-

ness and evolvability seem to entail a fundamental paradoxical

relationship — if a system is highly robust to mutations, then

mutations cannot lead to variation, which means less evolvability.

However, Wagner [1] showed that robustness and evolvability are

not universal properties of a system but can only be clearly defined

in the context of a genotype or phenotype, and in doing so, the

apparent inherent paradoxical relationship between robustness

and evolvability can be resolved. The biological system of choice in

the study was the genotype network of RNA sequences and their

secondary structures [1]. The genotype space is given by the set of

RNA sequences, and two sequences (genotypes) are connected, or

are neighbours, if they differ by a single point mutation, i.e. they

differ by a single nucleotide. The phenotype space is given by the

set of secondary structures corresponding to the genotypes

(sequences). Neutral neighbours are genotypes that are neighbours

and have the same phenotype. The set of genotypes that are

connected and have the same phenotype comprise a neutral
network. For such a system, the relationship between robustness

and evolvability has been explored and it is observed that genotype

robustness and evolvability display an inverse relationship,

whereas phenotype robustness and evolvability, on the contrary,

show a positive correlation. A major assumption in this and many

similar studies [2,3] is that every mutation is equally likely. In

other words, every neighbour of a node in the genotype space can

be reached with equal likelihood.
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The mutations in question in this system are single nucleotide

changes, which are either transitions or transversions. Transitions

are intra-purine or intra-pyrimidine conversions (viz. A,-.G and

C,-.T), while transversions are conversions from purines to

pyrimidines and vice-versa (viz. A,-.C, A,-.T, G,-.C,

G,-.T). Transitions, although fewer in number, have a higher

incidence compared to transversions [4], and their relative rates of

occurrence are given by the transition–transversion ratio, which is

denoted by the term kappa (k). In the genotype space of RNA

sequences, an edge corresponds to a single point mutation and

hence, depending on the type of mutation, each mutation can be

associated with a probability of occurrence, which can be inferred

from the transition–transversion ratio. Associating probabilities to

the edges essentially results in ‘weighting’ of the space, such that

some edges have higher weights (mutations that are more

probable) compared to others. Contemporary studies explore the

relationship between robustness and evolvability assuming an

equal likelihood for the occurrence of all types of mutations [1–3].

A theoretical framework that incorporates mutational probabilities

according to observed transition–transversion ratios allows a more

accurate portrayal of biological reality. In this study, we choose

neutral networks of RNA sequences as the biological system and

examine how the estimation of the system properties such as

robustness and evolvability change upon weighting the genotype

space. We subsequently explore the relationship between robust-

ness and evolvability of the system.

Results

The genotype space is given by the set of all possible sequences.

For sequences of length n, the genotype space consists of 4n

sequences. The phenotype space which is the set of secondary

structures of the genotypes roughly corresponds to 1.8n structures

[5,6]. Neutral neighbours are genotypes which differ by a single

nucleotide and have the same phenotype. Therefore, a neutral

network of a phenotype is given by the set of connected sequences

(genotypes) which form the same structure (phenotype) [7]. The 1-

neighbourhood of a neutral network is the set of all genotypes that

are a single mutation away from the genotypes that form the

neutral network.

Genotype and phenotype robustness and evolvability
In order to define robustness and evolvability, we build upon the

definitions put forth by Wagner [1]. Assigning probabilities or

weights to the edges of the neutral network will change the

associated probabilities of mutation; hence, the changes need to be

reflected in the definitions of robustness and evolvability. In order

to incorporate this weighting of the genotype space, we modified

the definitions as follows:

Genotype robustness and evolvability. Previously, geno-

type robustness RG was the fraction of neutral neighbours of a

given genotype G. Assigning a probability to each edge (mutation)

in the neutral network will mean evolving to different neutral

neighbours will have different probabilities. To account for this,

we define genotype robustness RG as the probability of reaching a

neutral neighbour via a single mutation. Genotype evolvability EG

of a sequence G with phenotype P was originally considered as the

fraction of unique phenotypes (structures different from P) in the

1-neighbourhood of the genotype [1]. Instead, we define EG as the

summation of the mean probabilities of evolving to a structure

different from P, in the 1-neighbourhood of G. If we consider all

mutations to be equally likely, this definition reduces to the earlier

definition of genotype evolvability (refer Text S1 for a more

elaborate discussion).

Phenotype robustness and evolvability. Phenotype ro-

bustness RP was earlier defined [1] as the fraction of neutral

neighbours of a genotype averaged over all the genotypes G with a

given phenotype P. This essentially is the mean genotype

robustness of all the genotypes G with a given phenotype P. As

we have changed the definition of genotype robustness, this

change will also be reflected in the definition of phenotype

robustness. For a given phenotype, the number of unique

structures in its 1-neighbourhood was considered as a measure

of phenotype evolvability EP. Here, we consider the mean

probability of evolving from the given phenotype P to a different

phenotype summed over all observed different phenotypes in the

1-neighbourhood, as the definition of phenotype evolvability (refer

Text S1 for details).

Weighting the network changes robustness and
evolvability

We estimated the genotype robustness and evolvability for this

genotype space of 106 sequences. The genotype space is weighted

using three different values of transition–transversion ratio (k) vis-

à-vis 0.5, 2.5 and 10. The transition–transversion ratio observed

across genomes, usually lies in the range 2.1 to 2.8 [8,9]. In our

study, we consider a value of k= 2.5 and in addition, we also

consider an extreme value of k= 10. We perform a comparative

analysis of the results observed for these weighted networks

(k= 2.5 and k= 10) with the results of an unweighted network

(k= 0.5).

We computed the genotype robustness and evolvability using

the above definitions and found that as the value of k increases,

there is an increase in the value of average value of genotype

robustness for the set of 106 sequences. On the other hand, the

average sequence evolvability decreases with increase in k
(Table 1).

High sequence robustness corresponds to low sequence
evolvability

Upon calculating the values of sequence robustness and

evolvability, we computed the correlation between these values

using Spearman’s rank correlation test. We observed that a strong

negative correlation persists even upon increasing the value of k
(Figure 1, Figure S1). This result is in agreement with previous

studies where negative correlation was observed between genotype

robustness and evolvability for an ‘unweighted’ genotype space

[1]. We observed that for the genotype space we considered, the

average robustness of the genotypes increases while the average

evolvability decreases, thus strengthening the inverse relationship

between the two. Further, the magnitude of negative correlation

increases as the k value increases.

High structure robustness corresponds to high structure
evolvability

Since neutral networks of phenotypes are vast in size, it is not

possible to exactly determine the values of phenotype robustness

and evolvability as defined in the previous section. This is because

identifying all genotypes that form a given phenotype is not

feasible, even for phenotypes that occur only once in the genotype

space [1]. Hence, we adopted a random sampling approach,

whereby we inversely folded a set of sequences for each structure

(phenotype) and for this set we computed the structure (phenotype)

robustness RP and evolvability EP. However, in order to account

for the size of the neutral network of the phenotype, the

evolvability of the phenotype was multiplied by the frequency of

occurrence of the phenotype, which is a proxy for the size of the
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neutral network [1]. Hence, this final entity was considered as the

phenotype evolvability EP.

On calculating the phenotype robustness and evolvability for

2.56104 phenotypes, we observed that phenotype robustness for a

given phenotype increases with increasing k value, while an

opposite trend is seen for phenotype evolvability (Table 2). We

subsequently obtained the correlation between these values using

the Spearman’s rank correlation test. We observed a positive

correlation in all the cases, with a decrease in the correlation as the

k value increased (Figure 2, Figure S2).

Table 1. Mean genotype robustness and evolvability of 106 sequences (genotypes).

k Mean genotype robustness Mean genotype evolvability Spearman rank correlation

r p

0.5 0.42 0.28 20.747 ,10217

2.5 0.48 0.25 20.756 ,10217

10 0.50 0.24 20.758 ,10217

The genotype space was weighted using three different values of k. We observed that with increasing k, the mean genotype robustness increases while mean genotype
evolvability decreases. In a pair-wise Wilcoxon signed rank test for all pairs of datasets, the p-values were less than 10217. Spearman rank correlation values mentioned
are between genotype robustness and genotype evolvability.
doi:10.1371/journal.pone.0112792.t001

Figure 1. High genotype robustness corresponds to low genotype evolvability. The data shown are based on 106 sequences, whose
structures range over three orders of frequency. The genotype space was weighted using k= 0.5 and 2.5. Length of the error bars correspond to one
standard error of the mean, calculated for 18 bins of data grouped according to RG. Refer Figure S1 for data corresponding to k= 10.
doi:10.1371/journal.pone.0112792.g001
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More robust phenotypes can access more variation via
population evolution

Starting from a given genotype (sequence), evolution on the

corresponding phenotype’s neutral network leads to variation, in

the form of new accessible phenotypes, the extent of which is

governed by the robustness and evolvability of the phenotype. We

performed a comparative analysis using two phenotypes of

different frequencies, and hence robustness [1], and observed the

variation that these phenotypes can access through evolution on

their respective neutral networks. We inversely folded 20

sequences each, for two different structures with frequencies

1023 and 1026, using the Vienna RNA package [10]. For each of

these 40 sequences, we established a population of 100 identical

sequences. The populations subsequently underwent rounds of

mutations at the rate of m = 1 (one nucleotide per sequence per

generation) while ensuring that mutations were neutral. We

ensured neutrality by eliminating non-neutral mutants and

replacing them with randomly sampled neutral mutants in the

population.

At the end of each generation, we calculated the total number of

unique structures found in the 1-neighbourhood of the entire

Figure 2. High phenotype robustness corresponds to high phenotype evolvability. The data shown are based on 2.56104 structures,
whose frequency spans three orders of magnitude, and for 100 inversely folded sequences for each structure. The neutral networks corresponding to
these structures was weighted using k= 0.5 and 2.5. Length of the error bars correspond to one standard error of the mean, calculated for 9 bins of
data grouped according to RP. Refer Figure S2 for data corresponding to k= 10.
doi:10.1371/journal.pone.0112792.g002

Table 2. Mean phenotype robustness and evolvability of 2.56104 structures (phenotypes).

k Mean phenotype robustness Mean phenotype evolvability (*1024) Spearman rank correlation

r p

0.5 0.32 4.40 0.68 ,10217

2.5 0.39 3.96 0.49 ,10217

10 0.42 3.73 0.39 ,10217

The neutral networks of these phenotypes were weighted using three different values of k. We observed that with increasing k, the mean phenotype robustness
increases while mean phenotype evolvability decreases (in a pair-wise Wilcoxon signed rank test for all pairs of data sets, the p-values were less than 10217). Spearman
rank correlation values mentioned are between phenotype robustness and phenotype evolvability.
doi:10.1371/journal.pone.0112792.t002
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population. We also calculated the cumulative number of novel

phenotypes that are accessible in the 1-neighbourhood of the

population. For this purpose, at the end of each generation, we

counted the number of phenotypes that are observed in the 1-

neighbourhood of the population, particularly counting those that

were not observed in previous generations. This yielded the

number of novel phenotypes encountered in that generation. The

cumulative number of the novel phenotypes encountered was

considered as a measure of the total variation that had been

rendered accessible over the generations.

We performed the above analysis for the three values of k and

found that more robust phenotypes can access more variation even

in short time scales such as 10 generations. Also, the cumulative

novel phenotypes observed at the end of each generation was

consistently higher for the more robust phenotype (Figure 3,

Figure S3).

In order to understand if the observed trend was unique to the

structures that we used, we performed population evolution at the

rate of Nm = 100 for 103 structures whose frequencies vary over

three orders of magnitude. We observe that there is a weak but

significant positive correlation between structure frequency and

accessible variation in terms of cumulative novel phenotypes

encountered at the end of 10 generations. This means that

populations evolving on more frequent (and hence robust)

phenotypes have more access to phenotypic variation. The degree

of weighting does not affect the nature of this relationship but we

observe that there is a decrease in the accessibility to variation as

we increase the degree of weighting (k) of the genotype space (see

Table S1).

We also analysed the evolutionary dynamics of populations

evolving at the rate of Nm = 1. For this purpose, we took a seed

population of N = 10 and performed mutations at the rate m = 0.1

(one nucleotide per 10 sequences per generation). The dynamics of

population evolution changes significantly with a decrease in the

value of Nm [11–13] and hence we tried to observe the effects of

this change. We found that, even for Nm = 1, at the end of the

100th generation, the more robust phenotype typically has a more

diverse 1-neighbourhood. Also, the cumulative novel phenotypes

Figure 3. Populations evolving at the rate Nm = 100. (a), (b) The more robust phenotype has higher structural diversity in its 1-neighbourhood.
We observe that the number of unique phenotypes encountered in the 1-neighbourhood by both the phenotypes is higher for k= 0.5 than k= 2.5.
(c), (d) More robust phenotypes evolving on larger neutral networks have greater access to variation. We observe that the cumulative novel
phenotypes encountered by both phenotypes are higher for k= 0.5 than k= 2.5. Data shown are for a population of 100 identical sequences for each
of 40 inversely folded sequences from the two phenotypes. Mutations occur at the rate of m = 1 (one nucleotide per sequence per generation). The
neutral networks of these phenotypes are weighted using k= 0.5 and 2.5. Refer Figure S3 for data corresponding to k= 10.
doi:10.1371/journal.pone.0112792.g003
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encountered at the end of the 10th generation is higher for the

robust phenotype (Figure 4). We also performed the analysis for

103 structures whose populations were evolving at the rate of

Nm = 1. Here again, we observe that there is a weak but significant

positive correlation between structure frequency and accessible

variation in terms of cumulative novel phenotypes encountered at

the end of 100 generations (see Table S2). Therefore, even for low

rates of evolution such as Nm = 1 populations evolving on more

frequent (and hence robust) phenotypes have more access to

phenotypic variation. Similar to the results observed for Nm = 100,

we find that degree of weighting does not affect the nature of this

relationship, but there is a decrease in the accessibility to variation

as we increase the degree of weighting (k) of the genotype space.

However, compared to the previous case (Nm = 100), we observed

a relatively smaller decrease in accessibility to variation with

increasing k.

Analysis of AU-rich sequence space
The variation in GC content between genomes is a central issue

in evolutionary genomics, and is understood to be influenced by

variation in selection, mutational bias, and biased recombination-

associated DNA repair [14]. A GC pair is bound by three

hydrogen bonds, while an AT pair is bound by two hydrogen

bonds thereby conferring higher stability to the DNA molecule.

The thermal adaptation hypothesis conjectures that as GC pairs in

DNA are more thermally stable than AT pairs, high GC content

may be a result of a selective pressure to survive in high

temperatures [15]. However, this hypothesis has been refuted,

after a comparative study of numerous prokaryotes showed that

there was no correlation between genomic GC content and growth

temperature [16]. However, it was shown in the same study that

there was a positive correlation between GC content of structured

RNAs (transfer RNAs, ribosomal RNAs) and growth tempera-

tures. GC pairs are much more stable than AU pairs, again owing

Figure 4. Populations evolving at the rate Nm = 1. Data shown are for populations of N = 10 identical sequences for each of the 40 inversely
folded sequences from the two phenotypes. These sequences are evolving at the rate of m = 0.1 (one nucleotide per 10 sequences per generation).
(a), (b) In populations evolving at the rate of Nm = 1, the number of unique phenotypes encountered by the more robust phenotype increases at a
faster pace compared to the less robust phenotype. The more robust phenotype can access a structurally more diverse 1-neighbourhood compared
to the less robust phenotype by the end of 100th generation. (c), (d) More robust phenotypes can access encounter more cumulative novel
phenotypes during evolution. We observe that even for low rates of evolution, such as Nm = 1, more robust phenotypes can access greater variation.
The neutral networks of the phenotypes are weighted using k= 0.5 and 2.5. We observe that both unique phenotypes in 1-neighborhood and
cumulative novel phenotypes decrease as we increase the value of k. We did not observe significant results for k= 10.
doi:10.1371/journal.pone.0112792.g004
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to the fact that GC pairs are bound by three hydrogen bonds,

compared to two bonds in AU pairs, thus explaining the GC bias

in RNA structures exhibiting more tolerance to high temperatures

[16].

In an RNA sequence space, we observe that sequences with

higher GC content have more negative Minimum Free Energy

(Figure 5), as expected. GC-rich sequences (GC content $80%),

are significantly more stable than normal unbiased sequences.

Despite this, we observe that GC-rich sequences have 1-

neighbourhoods that are more or less similar to 1-neighbourhoods

of normal unbiased sequences (Figure 6), in terms of structure

density. On the other hand, an AU-rich sequence space (sequences

of GC content #20%), is sparsely populated with RNA structures

– randomly chosen AU-rich sequences have a significantly lower

fraction of folded sequences in their 1-neighbourhoods compared

to randomly chosen normal unbiased sequences and GC-rich

sequences (Figure 6). Therefore, we restrict our analyses to AU-

rich sequence spaces, and try to understand whether base

composition bias has an effect on the robustness and evolvability

of genotype networks of RNA sequences.

AU-rich sequences are more robust and less evolvable
We computed the genotype robustness and evolvability for 106

AU-rich sequences, and found that AU-rich sequences on average

have higher robustness and lower evolvability in comparison to

106 normal sequences (Table 3, Figure 7). The genotype space

was weighted using k= 2.5.

Although we showed that AU-rich have fewer folded neigh-

bours in their 1-neighbourhoods compared to normal unbiased

sequences, we observe that their robustness is higher. Although

this seems counter-intuitive, the reason for this observation is that

there are more neutral neighbours than non-neutral neighbours

for AU-rich sequences, while this is not the case for normal

unbiased sequences (see Figure S4). Also, a majority of AU-rich

sequences have more neutral neighbours than normal sequences.

Upon calculating the values of sequence robustness and evolva-

bility, we computed the correlation between these values using

Spearman’s rank correlation test. We observed a strong negative

correlation between sequence robustness and evolvability for AU-

Figure 5. Minimum Free Energies of structures formed by RNA sequences of varied GC content. Data shown are for one million
sequences of varied GC-content in comparison to normal unbiased sequences. The MFEs were calculated using viennaRNAFold routine of Vienna
RNA package [10]. We observe that the Minimum Free Energies of sequences become less negative as their GC content decreases, reflecting a
decrease in thermal stability.
doi:10.1371/journal.pone.0112792.g005

Figure 6. Comparison of 1-neighbourhoods of sequences of
varied GC-content. Data shown are the histogram of fractions of
folded sequences in 1-neighbourhood for each of 1000 randomly
chosen normal, AU-rich (GC content #20%) and GC-rich (GC content $
80%) sequences. We observe that a majority of AU-rich sequences have
a lower fraction of folded neighbours, compared to normal sequences
and GC-rich sequences, in their 1-neighbourhood. The sequences were
folded using viennaRNAFold routine of Vienna RNA package [10].
doi:10.1371/journal.pone.0112792.g006
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rich sequences (see Figure S5), much like the relationship observed

for normal sequences.

Structure robustness is higher and evolvability is lower in
AU-rich space

For our phenotype robustness and evolvability analysis in

normal unbiased sequence space, we adopted a random sampling

approach, whereby we inversely folded a set of sequences for each

structure (phenotype). For this set of sequences, we computed the

structure (phenotype) robustness RP and evolvability EP. In order

to account for the size of the neutral network of the phenotype, the

evolvability of the phenotype was then multiplied by the frequency

of occurrence of the phenotype. In order to perform a comparative

analysis of phenotype robustness and evolvability in AU-rich space

and normal space, we need to be able to inversely fold AU-rich

sequences for a given structure. In order to do so, we developed a

two-step approach to inversely fold AU-rich sequences, which in

turn form an AU-rich neutral network (described in detail in

Methods)’.

Subsequently, we computed the phenotype robustness and

evolvability for AU-rich neutral networks of 2.56104 structures,

comparing the results with that of phenotype robustness and

evolvability of normal neutral networks of the structures obtained

previously. These networks were weighted using k= 2.5. We found

that AU-rich neutral networks of phenotypes, on an average, have

higher robustness, and lower evolvability in comparison to normal

neutral networks (Table 4, Figure 8).

On calculating the values of structure robustness and evolva-

bility, we computed the correlation between these values using

Spearman’s rank correlation test. We observed a positive

Figure 7. Comparison of genotype robustness and evolvability of normal and AU-rich sequences. (a) Histogram of genotype evolvability
of one million normal sequences and one million AU-rich sequences. We observed that a majority of AU-rich sequences have lesser genotype
evolvability in comparison to normal sequences. b) Histogram of genotype robustness of one million normal sequences and one million AU-rich
sequences. We observed that a majority of AU-rich sequences have higher genotype robustness in comparison to normal sequences. The genotype
space is weighted using k= 2.5.
doi:10.1371/journal.pone.0112792.g007

Table 3. Mean genotype robustness and evolvability of 106 AU-rich sequences and 106 normal sequences.

Sequence space Mean genotype robustness Mean genotype evolvability Spearman rank correlation

r p

Normal 0.48 0.25 20.758 ,10217

AU-rich 0.56 0.16 20.70 ,10217

The genotype space was weighted using k= 2.5. We observed that the mean genotype robustness is higher for AU-rich sequences, while mean genotype evolvability is
lesser, in comparison to normal space. In a pair-wise Wilcoxon signed rank test between the two datasets, the p-value was less than 1028. Spearman rank correlation
values mentioned are between genotype robustness and genotype evolvability.
doi:10.1371/journal.pone.0112792.t003
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correlation between structure robustness and evolvability for AU-

rich neutral networks of structures (see Figure S6), similar to the

relationship observed for normal neutral networks.

AU-rich populations evolving on phenotype’s neutral
network access lesser variation

We contrast the variation accessible to AU-rich populations

evolving on a structure’s neutral network compared to normal

populations evolving on the same neutral network. We note that

the populations evolve in different ‘regions’ of the neutral network

of the same structure – one region being typically AU-rich and the

other being unbiased. Also, in the course of evolving these

populations we did not restrict the access of the AU-rich

population to AU-rich sequences.

For a phenotype of high robustness (frequency = 1023), we

establish two different starting populations – an AU-rich starting

population and a normal starting population as follows: we

inversely folded 20 AU-rich sequences and 20 normal sequences,

and for each of these 40 sequences, we established a population of

100 identical sequences. We consequently evolved both popula-

tions at the rate of m = 1 (one nucleotide per sequence per

generation), under the same conditions employed in our previous

population evolution (Nm = 100) analysis.

We observe that in comparison to the normal starting

population, the AU-rich starting population can access lesser

variation in terms of unique phenotypes in the 1-neighbourhood

throughout the 10 generations of mutations. Also, the cumulative

number of novel phenotypes in the 1-neighbourhood was

consistently lesser for AU-rich starting populations (Figure 9).

Figure 8. Comparison of phenotype robustness and evolvability of normal and AU-rich sequences. (a) Histogram of phenotype
evolvability of AU-rich and normal neutral networks (NNs) of 2.56104 structures. We observe that AU-rich neutral networks, in general, have lesser
phenotype evolvability in comparison to normal neutral networks. (b) Histogram of phenotype robustness of AU-rich and normal neutral networks
(NNs) of 2.56104 structures. We observe that AU-rich neutral networks, in general, have higher phenotype robustness in comparison to normal
neutral networks. These neutral networks are weighted using k= 2.5.
doi:10.1371/journal.pone.0112792.g008

Table 4. Mean phenotype robustness and evolvability of AU-rich and normal neutral networks of 2.56104 structures.

Sequence space Mean phenotype robustness Mean phenotype evolvability (*1024) Spearman rank correlation

r p

Normal 0.39 3.96 0.49 ,10217

AU-rich 0.44 1.76 0.69 ,10217

These networks were weighted using k= 2.5. We observed that the mean phenotype robustness is higher for AU-rich neutral networks, while mean phenotype
evolvability is lesser, in comparison to normal neutral networks. In a pair-wise Wilcoxon signed rank test between the two datasets, the p-value was less than 1028.
Spearman rank correlation values mentioned are between genotype robustness and genotype evolvability.
doi:10.1371/journal.pone.0112792.t004
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We confirmed that this observation was not unique to the structure

that was used, by repeating the analysis for 103 structures. We also

find that, similar to normal populations, there is a weak but

significant correlation between variation accessible to AU-rich

populations evolving on a structure’s neutral network and the

structure frequency, hence robustness (see Table S3).

We observed similar results for a comparative analysis of AU-

rich and normal populations evolving on a structure’s neutral

network at the rate of Nm = 1 (see Figure S7), wherein AU-rich

populations can access lesser variation compared to normal

populations. We observed a weak but significant correlation

between variation accessible and structure frequency (see Table

S4). Therefore, the variation accessible to AU-rich populations

evolving at fast evolutionary rates such as Nm = 100, as well as

slower rates such as Nm = 1, is lesser compared to a normal

population evolving on the same structure’s neutral network.

Discussion

In this study, we discard a widely considered assumption on the

organisation of genotypes spaces, namely, an equal likelihood for

all mutations, and revisit the fundamental relationships between

robustness and evolvability upon weighting of the genotype space.

Herein, we see that assuming equally likely mutations essentially

overestimates evolvability and underestimates robustness. We see

that the robustness of a given genotype/phenotype is higher for a

weighted neutral network than for an unweighted neutral network

of the same genotype/phenotype. We observe an opposite trend in

the case of evolvability, as with increasing transition-transversion

ratio (k), evolvability decreases for both genotypes and phenotypes.

Notwithstanding the changes in these values and hence properties

of the system, we see that fundamental relationships between

genotype robustness and evolvability and phenotype robustness

and evolvability are maintained, even upon weighting of the

network. We observe that high sequence robustness corresponds to

low sequence evolvability, whereas high phenotype robustness

correlates to a high phenotype evolvability, as also seen in previous

studies [1]. It follows that a more robust phenotype can thus access

more variation by evolving on its neutral network. Even after

evolution on the neutral network for short time scales (10

generations), we find that the 1-neighbourhood of a more robust

phenotype is more diverse. We also observe that in such short time

scales, the cumulative number of different phenotypes that can

potentially be accessed, is greater for a more robust phenotype, in

accordance with earlier work by Wagner [1]. However, we

observe that the extent of this accessible variation is overestimated

if we ignore the weighting of the network.

We further analysed the effects of base composition bias in RNA

sequences on robustness and evolvability. Specifically, we analysed

RNAs that have very high AU content; AU-rich sequences

essentially form an ‘extreme’ section of the RNA sequence space.

Such RNA sequence elements (AU-rich elements or AREs) are

usually found in 39 untranslated region of many messenger RNAs

that code for proto-oncogenes, nuclear transcription factors and

cytokine [17]. AREs are one of the most common determinants of

RNA stability in mammalian cells, and usually target the mRNA

Figure 9. Population evolution on a highly robust phenotype’s neutral network with AU-rich and normal starting populations. We
observe that AU-rich starting population can access lesser variation: lesser number of cumulative novel phenotypes and unique phenotypes in 1-
neighbourhood during 10 generations of mutations. Data shown are for a population of 100 identical sequences for each of 20 inversely folded
normal sequences and 20 inversely folded AU-rich sequences for the phenotype. Mutations occur at the rate of m = 1 (one nucleotide per sequence
per generation), thereby leading to a rate of evolution of Nm = 100.
doi:10.1371/journal.pone.0112792.g009
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for degradation [18]. From our comparative analyses of AU-rich

sequence spaces and normal unbiased sequence spaces, we observe

that AU-rich genotypes have higher robustness and lesser

evolvability. At the phenotype level, we observe that AU-rich

neutral networks of phenotypes have higher robustness and lesser

evolvability than neutral networks of the same phenotype in

normal space. These changes in the values of robustness and

evolvability however do not affect the relationship between the

properties — genotype robustness and genotype evolvability are

negatively correlated in AU-rich spaces, an observation that also

holds in normal space. Similarly, phenotype robustness positively

correlates to phenotype evolvability in AU-rich spaces, a trend also

observed in normal spaces. During evolution on a phenotype’s

neutral network, phenotypes access lesser variation with a starting

population of AU-rich sequences, compared to a starting

population of normal sequences. Both structural diversity of 1-

neighbourhood and cumulative number of different phenotypes

potentially accessible during evolution are lesser when the starting

population comprises of AU-rich sequences. This is indicative of

the restrictive nature of the AU-rich space.

Overall, we observe two main contributions of our study: first,

we have shown that assuming an equal likelihood for all mutations

(as in an unweighted network), underestimates robustness and

overestimates evolvability of a system. Despite discarding this

assumption, we observe that the negative correlation between

genotype robustness and genotype evolvability is maintained, and

so is the positive correlation between structure (phenotype)

robustness and structure evolvability, as observed in earlier studies

using unweighted networks. Correspondingly, we also show that

populations evolving on neutral networks of phenotypes, weighted

or otherwise, can access more phenotypic variation in the case of

phenotypes with higher robustness. Secondly, our analyses also

shed light on the organisation of an extreme portion of the RNA

sequence space, rich in AU bases. Structures in this AU-rich space,

while very robust, are able to access lesser variation and are unable

to facilitate evolution as well as in the normal space. In principle, it

may be possible to exploit the relative robustness of AU-rich

sequences in designing more mutationally robust RNA molecules.

This is also supported by the availability of substantial evidence for

the high plasticity of AU-rich sequences, which is their ability to

fold into alternative secondary structures with a low energy cost

[19,20]. Previous efforts to understand the effect of compositional

bias on the designability of RNA secondary structures [21] and in

the adaptive dynamics of RNA populations [22], also show that

nucleotide composition affects the evolvability and occurrence of

specific structural motifs. Our framework can also be extended to

study the effects of mutational bias (towards AU) on robustness

and evolvability, considering there is significant evidence that

mutation is universally biased towards AT in bacteria [23]. In

sum, our approach presents a more extensive characterisation of

the RNA genotype space, and the relation between robustness and

evolvability in such spaces. It is possible to extend such analyses to

other levels of biological organisation, such as metabolic,

regulatory or signalling networks, where the importance of the

likelihood of different genotype changes may be even more

relevant.

Methods

Genotype and phenotype space
We chose RNA sequences of length 30 as our genotypes, the

same as used in the study by Wagner [1]. This length offers

computational tractability while not compromising on the

structural diversity of their corresponding phenotypes [1]. We

obtain the structure of a given sequence using the routine

viennaRNAFold, part of the Vienna RNA package [10]. The

resulting structure’s representation in the bracket notation allows

for ease of comparison between different structures.

Weighting the neutral network
The 1-neighbourhood of a genotype is the set of all sequences

which differ by a single nucleotide from the genotype. Thus, for

sequences of length 30, the 1-neighbourhood consists of 90

( = 3630) sequences. Weighting of the neutral network involves

assigning a probability to each of these (90) mutations based on the

value of k. The transition–transversion ratio (k) is defined as the

ratio of number of transitions and number of transversions. For a

given nucleotide (say, A), there are two transversions (A-.C and

A-.T) and one transition (A-.G) that are possible. Thus, for a

value of k= 0.5, all mutations (transitions and transversions), have

an equal probability. When k= 1.0, a transition mutation occurs

with twice (probability = 0.5) the probability of each transversion

mutation (probability = 0.25), and similarly k= 2.5 would mean

that transitions would occur with five times (probability = 0.71)

the probability of a transversion (probability = 0.145). This way,

all the 90 mutations are assigned probabilities and subsequently

normalised, such that the sum of their probabilities equals unity.

Choice of sequences and structures
In order to compute the correlation between genotype

robustness and evolvability, we first generated 106 random RNA

sequences of length 30, whose secondary structures were obtained

using the routine viennaRNAFold, part of the Vienna RNA

package [10]. The frequency of these structures spans over three

orders of magnitude. For this set of sequences, we calculated the

genotype robustness and evolvability using the definitions

discussed in the Results section and also elaborated in Text S1.

Subsequently, we calculated the correlation between the genotype

robustness and evolvability using Spearman’s rank correlation test.

For the purpose of calculating phenotype robustness and

evolvability, we randomly sampled 2.56104 structures whose

frequencies range over three orders of magnitude (1026 to 1023).

For each of these structures, we inversely folded 100 sequences

using the routine viennaRNAinverse, part of the Vienna RNA

package. We estimated the robustness and evolvability in this set of

sequences. This value of robustness is a measure of the average

robustness in the entire phenotypic space of the given structure.

However, it is not appropriate to consider the evolvability arising

out of this analysis as the average evolvability of the phenotypic

space [24,25]. This is because the structures in the 1-neighbour-

hood of this set of sequences are likely to be different from the set

of structures observed in the 1-neighbourhood of a different set of

sequences that fold into the same structure. Thus, in order to

estimate evolvability, we need to identify the unique structures

found in these different 1-neighbourhoods and then compute the

actual value of evolvability using the definitions provided in Text

S1. Owing to computational limitations, we instead consider the

product of evolvability in one set of inversely folded sequences and

the frequency of the structure in phenotype space as an estimate of

phenotype evolvability of the structure [1]. We employ a brute

force approach of sampling a large number of sequences (1012),

and estimate the frequency of a given structure as the fraction of

sequences in this sample that fold into the structure. We note that

this type of a sampling approach gives an acceptable measure of a

structure’s frequency, and hence persist with it in the face of better

and computationally more expensive algorithms that can precisely

estimate the frequency of structures [26]. Upon estimating

phenotype robustness and evolvability for these 2.56104 struc-
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tures, we obtained the correlation between them using Spearman’s

rank correlation test.

Analysis of AU-rich sequence space
We generated 106 random sequences of length 30, with an AU

content of at least 80% for our genotype level analysis. The

secondary structures of these sequences, the corresponding

Minimum Free Energies (MFEs) of the secondary structures were

computed using the viennaRNAFold routine of the Vienna RNA

package [10]. Genotype robustness and genotype evolvability of

these sequences were calculated according to definitions outlined

in Text S1.

Inversely folding AU-rich sequences
In order to perform phenotype level analysis in an AU-rich

space, we developed a custom approach to inversely fold AU-rich

sequences for a given RNA structure. This was necessitated by the

fact that there are no conventional algorithms that can generate a

set of AU-rich sequences which fold into a given RNA secondary

structure.

We employed a two-step approach to inversely fold AU-rich

sequences for a given RNA secondary structure. In the first step,

we used the viennaRNAinverse routine part of the Vienna RNA

package [10] to inversely fold a population of normal sequences

that fold into the given secondary structure. In the second step, we

performed a structure-preserving random walk from every

sequence in the population towards AU-rich spaces; at each step

of the walk, we only accept mutations that do not decrease the AU

content of the sequence. We terminate the random walk upon

encountering an AU-rich sequence (AU content of $80%) that

folds into the given secondary structure. Thus, for a given RNA

secondary structure, we were able to generate a population of AU-

rich sequences which fold into the secondary structure. This

population of AU-rich sequences was used for further robustness

and evolvability calculations.

Supporting Information

Figure S1 High genotype robustness corresponds to low
genotype evolvability. The data shown are based on 106

sequences, whose structures range over three orders of frequency.

The neutral network of these structures was weighted using k= 10.

Length of the error bars correspond to one standard error of the

mean, calculated for 18 bins of data grouped according to RG.

(EPS)

Figure S2 High phenotype robustness corresponds to
high phenotype evolvability. The data shown are based on

2.56104 structures, whose frequency spans three orders of

magnitude, and for 100 inversely folded sequences for each

structure. The neutral network of these structures was weighted

using k= 10. Length of the error bars correspond to one standard

error of the mean, calculated for 9 bins of data grouped according

to RP.

(EPS)

Figure S3 More robust phenotypes evolving on larger
neutral networks have greater access to variation and
have higher structural diversity in their 1-neighbour-
hood. Data shown are for a population of 100 identical sequences

for each of 40 inversely folded sequences from the two phenotypes.

Mutations occur at the rate of m = 1 (one nucleotide per sequence

per generation). The neutral networks of these phenotypes are

weighted using k= 10.

(EPS)

Figure S4 Number of unfolded, neutral and non-neutral
(folded) sequences in 1-neighbourhood for each of 1000
randomly chosen normal, AU-rich sequences. We observe

that a majority of AU-rich sequences have a higher number of

neutral neighbours than non-neutral neighbours, and also have

more neutral neighbours compared to normal sequences. This

contributes to the higher robustness of AU-rich sequences

compared to normal sequences. The sequences were folded using

viennaRNAFold routine of Vienna RNA package [10].

(EPS)

Figure S5 High genotype robustness corresponds to low
genotype evolvability. The data shown are based on 106

normal sequences and 106 AU-rich sequences, whose structures

range over three orders of frequency. The neutral network of these

structures was weighted using k= 2.5. Length of the error bars

correspond to one standard error of the mean, calculated for 18

bins of data grouped according to RG.

(EPS)

Figure S6 High phenotype robustness corresponds to
high phenotype evolvability. The data shown are based on

AU-rich neutral networks and normal neutral networks of 2.56104

structures, whose frequency spans three orders of magnitude. The

neutral network of these structures was weighted using k= 2.5.

Length of the error bars correspond to one standard error of the

mean, calculated for 9 bins of data grouped according to RP.

(EPS)

Figure S7 Population evolution (at the rate of Nm = 1) on
a highly robust (f = 1023) phenotype’s neutral network
with two different starting populations: AU-rich and
normal. We observe that AU-rich starting population can access

lesser variation: lesser number of cumulative novel phenotypes and

unique phenotypes in 1-neighbourhood during 10 generations of

mutations. Data shown are for a population of 10 identical

sequences for each of 20 inversely folded normal sequences and 20

inversely folded AU-rich sequences for the phenotype. Mutations

occur at the rate of m = 0.1 (one nucleotide per 10 sequences per

generation).

(EPS)

Table S1 Population evolution (at the rate of Nm = 100)
for 103 structures of varied robustness whose neutral
networks are weighted using k = 0.5 and k = 2.5.

(DOCX)

Table S2 Population evolution (at the rate of Nm = 1) for
103 structures of varied robustness whose neutral
networks are weighted using k = 0.5 and k = 2.5.

(DOCX)

Table S3 Population evolution (at the rate of Nm = 100)
for 103 structures of varied robustness with two
different starting populations: AU-rich and normal.

(DOCX)

Table S4 Number of cumulative novel phenotypes
encountered at the end of 100 generations of mutations
(at the rate of Nm = 1), for 103 structures with two
different starting populations: AU-rich and normal.

(DOCX)

Text S1 Detailed explanation of the various definitions
for genotype and phenotype robustness and evolvabil-
ities. (RG, EG, RP, EP).

(PDF)
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