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Abstract

The changes in the mechanical integrity of the cervix during pregnancy have implications for a successful delivery. Cervical
collagens are known to remodel extensively in mice with progressing gestation leading to a soft cervix at term. During this
process, mature crosslinked collagens are hypothesized to be replaced with immature less crosslinked collagens to facilitate
cervical softening and ripening. To determine the mechanical role of collagen crosslinks during normal mouse cervical
remodeling, tensile load-to-break tests were conducted for the following time points: nonpregnant (NP), gestation day (d) 6,
12, 15, 18 and 24 hr postpartum (PP) of the 19-day gestation period. Immature crosslinks (HLNL and DHLNL) and mature
crosslinks (DPD and PYD) were measured using ultra performance liquid chromatography-electrospray ionization tandem
mass spectrometry (UPLC-ESI-MS/MS). There were no significant changes in the total immature crosslink density (HLNL+
DHLNL mol per collagen mol) throughout normal mouse gestation (range: 0.31–0.49). Total mature crosslink density (PYD+
DPD mol per collagen mol) decreased significantly in early softening from d6 to d15 (d6: 0.17, d12: 0.097, d15: 0.026) and did
not decrease with further gestation. The maturity ratio (total mature to total immature crosslinks) significantly decreased in
early softening from d6 to d15 (d6: 0.2, d15: 0.074). All of the measured crosslinks correlated significantly with a measure of
tissue stiffness and strength, with the exception of the immature crosslink HLNL. This data provides quantitative evidence to
support the hypothesis that as mature crosslinked collagens decline, they are replaced by immature collagens to facilitate
increased tissue compliance in the early softening period from d6 to d15.
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Introduction

During pregnancy, the cervix is the mechanical barrier that

must remain closed until term, and must dramatically remodel

into a compliant structure to allow for a successful term delivery.

Abnormal cervical remodeling remains a significant clinical

dilemma in obstetrics. Premature cervical remodeling is known

to be a significant risk factor for preterm birth (PTB) [1]. Thus, in

an effort to decrease the PTB rate attributable to premature

cervical remodeling and to understand why some cervices fail to

ripen at term, it is imperative that we first delineate the

biochemical and mechanical properties involved in the spectrum

of normal cervical remodeling.

In this study, we seek to understand the changes in collagen

crosslinks with progressing gestation and how they relate to tensile

mechanical properties of the cervix. The objectives of this study

are: to identify and quantify the types of collagen crosslinks in the

cervix and to determine the correlation between crosslinks and

tensile mechanical properties of the tissue over the course of mouse

pregnancy. We hypothesize that mature collagen crosslinks will

decrease as mature collagen fibers are broken down in normal

gestation to facilitate cervical remodeling. Additionally, we

hypothesize that new collagens are synthesized during normal

remodeling and thus the level of immature collagen crosslinks will

increase in early pregnancy [2,3]. We also hypothesize that

samples with increased crosslink density, especially mature

trivalent crosslinks, will have higher mechanical stiffness and

strength [4,5].

The cervix is known to be a highly collagenous structure.

Fibrous collagens (types I and III) are the most abundant proteins

in the extracellular matrix (ECM) and act as the structural support

for the tissue. In a normal 19-day mouse gestation, the cervical
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ECM and tissue mechanical properties have been shown to

change in four overlapping stages: softening, ripening, dilation,

and repair [6,7]. In early pregnancy (gestation day 1–12) the

cervix progressively softens with measurable changes in tissue

compliance by gestation day 12 (d12). During this softening phase,

the cervical collagen solubility gradually increases [2] reaching

maximum solubility around d12. From d12 to d18 the cervix

continues to soften [8]. Before delivery on d19, the cervix

dramatically softens, termed ripening, as the collagen fibers

become highly dispersed as collagen fibril diameter and inter-

fibrillar spacing increases [3]. At d19, the cervix reaches its

maximum tissue distensibility and dilates concurrently with uterine

contractions for delivery. In postpartum, the cervix undergoes a

repair process in which the cervical mechanical properties and

collagen fibers eventually return to its nonpregnant state.

Enzymatic intermolecular crosslinks are known to stabilize

collagen molecules and help organize them into hierarchical

structures. In connective tissues, there are two pathways for

enzymatic collagen crosslinks: allysine and hydroxyallysine path-

ways which generally occur in loose and stiff connective tissues

respectively. Pyridionline crosslinks are derived from the hydro-

xyallysine crosslink pathway and have been shown to occur in

other connective tissues [9]. In this crosslink pathway, crosslinks

are initially formed between a telopeptide residue and a helical

residue to produce immature (divalent) crosslinks including

dehydro-dihydroxylysinonorleucine (deH-DHLNL) and dehydro-

hydroxylysinonorleucine (deH-HLNL) [10]. These immature

crosslinks react with another telopeptide residue to form mature

(trivalent) crosslinks between three collagen molecules to form

deoxypyridinoline (DPD) and pyridinoline (PYD). In this study, we

use ultra performance liquid chromatography-electrospray ioniza-

tion tandem mass spectrometry (UPLC-ESI-MS/MS) to measure

DHLNL (reduced form of deH-DHLNL), HLNL (reduced form of

deH-HLNL), pyridinoline (PYD, also known as hydroxylysyl-

pyridinoline) and deoxy-pyridinoline (DPD, also known as lysyl-

pyridinoline), hydroxyproline (OHP) for total collagen content at

different gestation time points in a normal mouse pregnancy. We

have previously shown that PYD values remain elevated in a

mouse model with a parturition defect due to disrupted cervical

remodeling [11], and we have shown that DHLNL, PYD, and

DPD crosslinks exist in nonpregnant human cervical tissue [12].

Biochemical studies show that the extractability of collagen in

weak acids increase significantly with progression of pregnancy in

the mouse without significant changes in the total collagen content

per dry weight [2]. We have demonstrated similar results on

human nonpregnant and term pregnant tissue samples [13–15].

Since weak acids are able to solubilize collagens with reduced

crosslinks [16], tissues with high extractability indicate less

crosslinked collagens. Histological studies on cervical tissue show

changes in collagen ultrastructure from aligned fiber arrangements

with defined directionality in nonpregnant tissue to dispersed

fibers with less defined orientations in pregnant tissue in both

humans [13,17] and mice [18]. These results together suggest that

in normal cervical remodeling, older more crosslinked collagens

are simultaneously broken down and replaced by new less

crosslinked collagen, leading to an overall softer tissue without

changes in the overall collagen content.

The breakdown of mature crosslinked collagens in the mouse

cervix have been evaluated quantitatively in a study by Akins et al.

[3], where they showed that the mature crosslinks PYD and DPD

decreased significantly with pregnancy. These results directly

indicate the breakdown of older collagens during cervical

remodeling. Immature crosslinks and the ratio between mature

to immature crosslinks give a measure of collagen production and

collagen maturity [10]. Immature crosslinks have also been tied to

physiological function in other tissues such as bone [19], and have

not been previously quantified for in the mouse cervix. A study in

developing embryonic tendon demonstrated that inhibiting the

formation of crosslinks through a disruption of the enzyme lysyl

oxidase (LOX) led to a reduced elastic modulus in the tissue [4]. In

the cervix, LOX activity has been shown to decrease in early

pregnancy [20]. Taken together, these evidence demonstrate the

importance of measuring both immature and mature collagen

crosslinks as well as corresponding cervical mechanical properties.

Therefore, in this paper we report the amount and types of

collagen crosslink in mouse cervical tissue, the maturity of collagen

in the tissue at a given gestational age, and the role of crosslinks

with mechanical properties.

Materials and Methods

Mouse cervical samples
Animals were housed under a 12L:12D photoperiod (lights on

0600-1800) at 22oC. Mice used in the present studies were from

Black 6/129 SvEv strain. These mice were generated and

maintained as a breeder colony at the University of Texas

Southwestern Medical Center (Dallas, TX). Female mice were

housed overnight with males and checked in the morning for

vaginal plugs to obtain accurately timed pregnant mice. The day

of plug formation was counted as day 0, and birth occurred in the

early morning hours of d19. Samples were collected at midday

except for gestation day 18, which were collected in the evening of

d18, between 1800 and 2000. All mice in these studies were 3–6

months old and nulliparous. All studies were conducted on

approval by the University of Texas Southwestern Medical Center

Institutional Animal Care and Research Advisory Committee.

Animals were anesthetized with Avertin and then sacrificed via

cervical dislocation. Reproductive tracts were collected from

nonpregnant, gestation day 6, 12, 15, 18, and 24 hr postpartum

mice and immediately frozen (n = 3 to 8 per gestation group).

Samples were shipped to Columbia University on dry ice and

stored at {80oC until testing.

Mechanical Testing
To investigate the correlation between intermolecular collagen

crosslinks and cervical mechanical properties, tensile tests were

conducted on samples from each of the designated gestational age

groups. For mechanical testing, the vaginal tissue was left attached

to the cervix for consistency purposes. Here, the load is carried by

the cervix because the vaginal wall was split perpendicular to the

loading axis (Fig. 1E). Frozen samples were thawed in phosphate

buffered saline (PBS) and cervical tissue was detached from the

uterus at the junction of the uterine horns (Fig. 1A). Two surgical

sutures (Perma-Hand Silk 2-0, Ethicon) presoaked in PBS were

passed through the cervical canal and the undeformed width and

length were measured (Fig. 1B,C). Sutures were attached to

custom tensile grips on a universal testing machine (Model 5948

MicroTester, Instron, 50N load cell) and immersed in PBS

(Fig. 1B,C) throughout testing. After adding a small preload

(v0:5% of maximum load) samples were pulled in tension at

0.1 mm/s until break, while recording force [N] and displacement

[mm]. Stress was calculated using the dimensions obtained before

testing and loading curves (cervical opening [mm] vs stress [kPa])

were generated. These loading curves were assessed to determine

the initial slope [kPa/mm], final slope [kPa/mm] and breaking

strength [kPa] (Fig. 1D). After mechanical testing, samples were

stored at {80oC until processing for crosslink analysis.

Cervical Collagen Crosslinks and Mechanical Properties in Pregnancy
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Sample Preparation for Collagen Crosslink Analysis
Vaginal tissues surrounding the cervix were carefully removed

from mechanically tested samples (n = 3 to 8 per gestational

group). All samples were flash frozen in liquid nitrogen, lyophilized

and weighed to determine its dry weight. Sodium borohydride

(NaBH4) was added to each sample as a reduction step for the

divalent crosslinks (HLNL and DHLNL). Samples were treated

with acetic acid and brought to pH 4 to stop the reduction

reaction, washed with distilled water, and hydrolyzed under

vacuum at 6N hydrochloric acid (HCl) for 18–24 hours at 110oC.

The hydrolysate from each sample was resuspended in hepta-

fluorobutyric acid (HFBA) and lyophilized overnight. The

reduced, hydrolyzed, lyophilized samples were resuspended in

20ml of distilled water and transferred to the Biomarkers Core Lab

of the Irving Institute for Clinical and Translational Research for

ultra performance liquid chromatography-electrospray ionization

tandem mass spectrometry (UPLC-ESI-MS/MS) analysis [21].

Ultra Performance Liquid Chromatogrphy-Electrospray
Ionization Tandem Mass Spectrometry (UPLC-ESI-MS/MS)

The immature crosslinks dihydroxylysionorleucine (DHLNL)

and hydroxylysinonorleucine (HLNL), the trivalent mature cross-

links pyridinoline (PYD) and deoxypyridinoline (DPD), as well as

hydroxyproline (OHP) to determine total collagen were quantified

in the prepared samples by ultra performance liquid chromatog-

raphy-electrospray ionization tandem mass spectrometry (UPLC-

ESI-MS/MS) using a method adapted from [21–24] and as

previously described [11]. The method, which consists of two

sequential UPLC-ESI-MS/MS assays, is able measure PYD,

DPD, DHLNL, HLNL, and OHP in a single sample. The sample

pretreatment without a reduction step precluded the measurement

of the divalent crosslink DHLNL and HLNL.

In short, calibration standards pyridinoline (PYD), deoxypyr-

idinoline (DPD) and internal standard actetylated pyridinoline

(AcPYD) were purchased from Quidel Corp. (San Diego, CA,

USA). Dihydroxylysinonorleucine (DHLNL) was purchased from

Santa Cruz Biotechnology (Santa Cruz, CA, USA). Hydroxylysi-

nonorleucine (HLNL) was obtained as a kind gift from Professor

Simon P. Robins from the Rowett Institute of Nutrition and

Health, University of Aberdeen, Scotland, United Kingdom.

Hydroxyproline (OHP) was purchased from Sigma-Aldrich.

Deuterated hydroxyproline (hydroxyproline-D3) was purchased

from C/D/N Isotopes Inc (Pointe-Claire, Quebec, Canada).

Heptafluorobutyric acid (HFBA) grade water and acetonitrile and

other common chemicals were purchased from Fisher Scientific

(Pittsburgh, PA, USA) or Sigma-Aldrich (St. Louis, MO, USA). All

assays were carried out on a Waters Xevo TQ MS ACQUITY

UPLC system (Waters, Milford, MA, USA). The system was

controlled by MassLynx Software 4.1. The sample hydrolysate was

reconstituted in 20mL of 2% HFBA solution containing 2mM
AcPYD as internal standard and throughly vortexed. The sample

was centrifuged at 12,000 g for 15 min at 4oC and clear aqueous

phase was transferred to an Agilent clear screw top micro sampling

LC/MS vial (P/N 5184-3550. Agilent Tech, Santa Clara, CA,

USA) for UPLC/MS/MS assay of collagen crosslinks [22,23]. The

sample was maintained at 4oC in the autosampler and a volume of

5mL was loaded onto a ACQUITY UPLC HHS C18 column

(2.1 mm inner diameter 6100 mm with 1.8mm particles, Waters,

P/N 186003533), and a 2.165 mm guard column with the same

packing material (Waters, P/N 186003981). The column was

maintained at 40oC. The flow rate was 500mL=min in a binary

gradient mode with the following mobile phase gradient: initiated

with 90% phase A (water containing 0.12% HFBA) and 10%

mobile phase B (acetonitrile containing 0.06% HFBA). The

gradient of acetonitrile was increased linearly to 35% over 4 min,

then to 95% in 0.2 minute and maintained for 1 more minute.

The column was subsequently conditioned by using the initial

gradient for 1 minute after which the next sample was injected.

After injection, 5mL from the remaining sample was transferred to

another LC/MS vial and diluted with 995mL of water containing

5mM of hydroxyproline-D3 as internal standand for hydroxypro-

line assay [24]. The sample was vortexed well and 5mL was

injected to a Waters ACQUITY UPLC BEH Phenyl column

(3 mm inner diameter6100 mm with 1:7mm particles, Waters, P/

N 186004673), preceded by a 2.165 mm guard column contain-

ing the same packing (Waters, P/N 186003979). The column was

maintained at 40oC. The flow rate was 500mL=min in a binary

gradient mode with the following mobile phase gradient: initiated

with 99% phase A (water containing 0.1% formic acid) and 1%

mobile phase B (acetonitrile containing 0.1% formic acid). The

gradient of acetonitrile was increased linearly to 50% over 5 min,

then to 95% in 0.2 minute and maintained for 1 more minute.

The column was then conditioned by using the initial gradient for

Figure 1. Mechanical testing of cervical samples. A) Diagram of a mouse reproductive tract. Mechanically tested samples were cut at the
cutline indicated with the vaginal wall attached. Camera images of sutured cervical samples for tensile testing demonstrating measured geometry B)
looking at external os of cervix with width measurement and C) looking along the length of the cervix and length measurement. D) Diagram
demonstrating mechanical property parameters calculated for each sample. x indicates the breaking point where the sudden drop in load indicated
failed sample. E) Diagram demonstrating circumferentially oriented fibers and loading direction parallel to fibers. F) Table of sample dimensions for
each gestation group. *, **, *** represents statically significant difference compared to NP, d6, and d12 respectively. {represents statically significant
difference compared to all other groups.
doi:10.1371/journal.pone.0112391.g001
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1 minute and the next sample was injected. Positive ESI-MS/MS

with multiple reaction monitoring (MRM) mode was performed in

all the assays using the following parameters: capillary voltage

4 kV, source temperature 150oC, desolvation temperature 500oC,

desolvation gas flow 1000 L/hr. Optimized MRM parameters are

listed in Table 1.

Calculation of Collagen Crosslink Densities and Collagen
Content

Total collagen content for each sample was determined by

assuming 14% OHP content per collagen by weight [21] then

normalized by tissue dry weight [mg/mg]. Collagen crosslink

densities of the tissue were calculated by dividing the concentra-

tion of HLNL, DHLNL, DPD, and PYD by the concentration of

collagen on a mole to mole basis [mol/mol]. The density of total

immature crosslinks were determined by adding HLNL and

DHLNL densities. The density of total mature crosslinks were

determined by adding DPD and PYD densities. The maturity ratio

was determined by calculating the ratio between total mature

(DPD+PYD) to total immature (HLNL+DHLNL) crosslinks.

Statistics
Differences in the collagen crosslink densities and mechanical

properties between gestation groups were analyzed using one way

analysis of variance (ANOVA). In order to determine differences

between any two groups, Tukey’s honestly significant difference

criterion was used with MATLAB’s Statistics Toolbox (v8.1.0.604,

Natick, MA). To determine the significance of the correlation

between crosslink densities and mechanical properties, a simple

linear regression was fit to the data with crosslink density as the

explanatory variable. Significant differences and correlations were

determined for p-values less than 0.05 for all statistical analysis.

Results

Tensile mechanical properties
The tensile mechanical response of the cervix changed

drastically from a stiff structure into a soft structure as pregnancy

progressed (Fig. 2A), which is consistent with previous studies [8].

On average, initial stiffness (slope of the line fit to the initial linear

region of loading curve) decreased gradually without significant

difference between groups. The final stiffness (slope of the line fit to

the linear region of the loading curve before breaking) and the

ultimate stress (maximum stress sustained by the tissue before

breaking) increased significantly from NP to d6, decreased

significantly from d6 to d12 and continued to decrease until d18

(Fig. 2).

Collagen crosslink densities
Immature crosslinks remained unchanged while mature cross-

links decreased during the early softening stage (d6 to d12 to d15).

Total immature crosslink density (HLNL+DHLNL) increased

from NP to d6, but not significantly (NP: 0.31 to d6: 0.51) and they

decreased between d12 and d15, but not significantly (d12: 0.59 vs

d15: 0.36). At d15, d18, and PP the density values (range: 0.36–

0.49) were not significantly different from NP levels (0.31)

(Fig. 3A). Total mature crosslink density (DPD+PYD) increased

from NP to d6, but not significantly (NP: 0.069, d6: 0.17) and

decreased significantly from d6 (0.17) to d12 (0.097) to d15 (0.026).

Total mature crosslink density levels at d15, and d18 (range:

0.026–0.028) were significantly lower than NP levels (0.069)

(Fig. 3B).

There were no significant differences in the maturity ratio

between NP (0.18) and d6 (0.20) (Fig. 3C). There was a significant

drop in maturity ratio from d12 (0.16) to d15 (0.074), indicating a

shift to less crosslinked, immature collagens by d15 (Fig. 3C). The

maturity ratios from d15 and d18 were significantly lower

compared to NP levels. There were no significant differences in

the collagen content between all gestation groups (Fig. 3D).

To determine the contribution of HLNL, DHLNL, DPD, and

PYD to the total immature and total mature crosslinks in

pregnancy, respectively, we calculated the ratio of HLNL and

DHLNL to total immature crosslink density and ratio of DPD and

PYD to total mature crosslink density (Fig. 4A,B). The contribu-

tion of HLNL and DHLNL on the total immature crosslink

density reversed in pregnancy, while PYD and DPD ratios

remained steady throughout gestation. There was a shift from

DHLNL dominance in NP and d6 samples of total immature

crosslink density (HLNL: 22–24% vs DHLNL: 76–78%) to even

ratios of HLNL and DHLNL at d12, HLNL dominance in d15

(HLNL: 60% vs DHLNL: 40%), back to even ratios in d18 and

PP. For the mature crosslinks, PYD remained dominant over DPD

throughout pregnancy (DPD: 4–9% vs PYD: 91%–96%).

Relationships between collagen crosslink densities and
mechanical properties

Collagen crosslink densities (DHLNL, DPD, PYD) and maturity

ratio correlated significantly with tissue tensile mechanical

properties. We fit a simple linear regression model to the data

with the crosslink density as the explanatory variable. For

immature crosslinks, there was no significant correlation between

Table 1. Optimized MRM conditions.

Compound MRM transition (m/z) Cone voltage (V) Collision Energy (eV)

Hydroxyproline 132.09w86.07 20 14

Hydroxyproline-D3 135.11w71.04 20 28

HLNL 292.2w84.0 26 28

DHLNL 308.2w128.1 31 22

PEN 379.2w135.0 40 40

DPD 413.2w267.1 44 28

PYD 429.2w267.1 44 28

AcPYD (IS) 471.2w267.1 44 28

doi:10.1371/journal.pone.0112391.t001

Cervical Collagen Crosslinks and Mechanical Properties in Pregnancy
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HLNL crosslink density with initial and final stiffness (Fig. 5A,B

pw0:05). HLNL crosslink density was negatively correlated to

ultimate strength (Fig. 5C p~0:041). DHLNL crosslink density

was significantly and positively correlated to final stiffness and

ultimate strength (Fig. 5E,F, pv0:002). For mature crosslinks,

both DPD and PYD density showed significant positive correla-

Figure 2. Cervix mechanical stiffness and strength decreases with advancing gestation. A) Representative cervical opening vs stress
curves for normal cervix with progressing gestation and postpartum with each color representing each gestation day group. Legend: NP - blue, d6 -
green, d12 - cyan, d15- magenta, d18 - black, PP - red; n = 3 for each group. B) Table of mechanical properties calculated from mechanical tests with
average values + standard deviation. * and ** represents statically significant difference compared to NP and d6 respectively. {represents statically
significant difference compared to all other groups.
doi:10.1371/journal.pone.0112391.g002

Figure 3. Collagen crosslinks increase in early pregnancy and decrease by late gestation, leading to decreased maturity ratios in
late pregnancy. Averaged crosslink density (normalized by collagen) measured with UPLC-ESI-MS/MS for all samples for A) total immature crosslink
density (HLNL+DHLNL) B) total mature crosslink density (DPD+PYD), C) maturity ratio (total immature crosslink density: total mature crosslink density),
and D) collagen content (per dry weight). * and ** represents statically significant difference compared to NP and d6 respectively. (One-way ANOVA
pv0:05). NP = nonpregnant, d6, d12, d15, d18 = gestation day 6, 12, 15, 18, PP = postpartum. Numbers on top or below boxes are median values
for each group.
doi:10.1371/journal.pone.0112391.g003

Cervical Collagen Crosslinks and Mechanical Properties in Pregnancy
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tions with final stiffness and ultimate strength with pv0:05. PYD

showed more significant correlations to both mechanical proper-

ties in comparison with DPD (Fig. 6B,C,E,F). Despite the lack of

correlation between HLNL and mechanical properties, the

maturity ratio showed significant correlation with mechanical

properties (Fig. 7). The correlation between maturity ratio and

final stiffness is summarized and presented a function of

progressing gestation in Fig. 8.

The significant correlations between crosslinks and mechanical

properties presented are in part due to the parallel occurrence of

decreasing collagen crosslinks and increasing tissue compliance

across the gestation timeline. In Fig. 9, we separated the scatter

plot shown in Fig. 7B of maturity ratio vs final stiffness between

NP, d6, d12, d15 (Fig. 9A) and d15, d18, and PP (Fig. 9B) and fit

separate linear regression models to each plot. Here we see that

maturity ratio is significantly and positively correlated to final

stiffness in early softening (NP, d6, d12, d15) but not in late

softening (d15, d18, PP) when separated into these two groups.

This stronger correlation in the early softening group suggests that

collagen crosslinks have a mechanical role in early softening, while

their role and interactions with other ECM components in late

softening still remain to be determined.

Discussion

The objectives of this study are to determine the changes in

immature and mature collagen crosslinks in a normal mouse

pregnancy and to determine its correlations to tissue mechanical

properties. Both total immature and total mature collagen

crosslink densities increase in early pregnancy (NP to d6) and

decrease significantly between d12 and d15 (Fig. 3,A-C). The

contributions of DHLNL and HLNL to the total immature

crosslink densities shift during pregnancy, with more DHLNL in

NP and d6 tissue, even levels in d12, more HLNL in d15 tissue,

and even levels in d18 and PP. PYD is dominant over DPD in

contributions to total mature crosslink density throughout

gestation (Fig. 4). An increase in all crosslinks (except for HLNL)

results in an increase in final stiffness and ultimate strength

(Fig. 5,6). Maturity ratio (DPD+PYD):(DHLNL+HLNL) corre-

lates significantly with mechanical properties (Fig. 7).

The crosslink density and collagen content results were in

agreement with data presented in [3], measured through high

performance liquid chromatography (HPLC) methods and color-

imetric assay respectively. The changes in the immature and

mature crosslinks during cervical remodeling lead to overall

decreases in both crosslink maturity ratios during pregnancy. This

shift in the maturity ratios is quantitative evidence to support our

hypothesis of collagen turnover during pregnancy from mature

highly crosslinked collagens to immature less crosslinked collagens

(Fig. 3E,F). The correlations between crosslink densities and

mechanical properties support our hypothesis that more cross-

linked collagen, especially mature crosslinks correlate with stiffer,

stronger tissue properties (Fig. 5,6, 9). Both the immature DHLNL

crosslink and mature PYD crosslink exhibit stronger correlations

with mechanical properties as evident by the smaller p-values

compared to the mature DPD crosslink. These results suggest that

DHLNL and PYD crosslinks play an important role in tissue

mechanical properties. Additionally, we found that DHLNL and

HLNL dominance on the total immature crosslinks changes

throughout gestation. Decreasing dominance of DHLNL density

levels correlated to increasing tissue compliance.

In the results presented here, we see stronger correlations

between crosslinks versus the final stiffness and ultimate strength

compared to the initial stiffness of the tissue. These correlations

suggest that crosslinks have a role in determining the stiffness and

strength of fully straightened collagen fibers in the cervix. These

results are consistent with findings from studies on other

collagenous tissues. One study on connective tissues in immature

bovine knee joint showed that PYD crosslink density played a

preferential role over collagen content in determining tensile

stiffness for certain tissues [5]. Another study on developing

embryonic tendon showed that inhibiting LOX mediated cross-

linking, which includes the crosslinks investigated in this study, led

to reduced tissue elastic modulus without affecting collagen

morphology or content [4]. Additionally, our results are in

agreement with molecular multi-scale models of crosslinked

collagen fibrils, which show that increasing collagen crosslink

densities lead to fibrils with greater mechanical strength and

stiffness in large deformation [25]. The correlations between

crosslinks and mechanical properties presented here along with

these studies suggest that intermolecular crosslinks are important

in determining tissue mechanical properties. However, the results

here suggest that the breakdown of crosslinks facilitate cervical

softening in the early softening stage (NP to d15), but not in the

Figure 4. Dominance of HLNL and DHLNL on total immature crosslink density reverse between d6 and d15. PYD remains dominant
over DPD on total mature crosslink density throughout gestation Ratios of individual crosslinks on total immature and mature crosslinks: A)
HLNL:(HLNL+DHLNL) and B) PYD:(DPD+PYD). *, **, and ** represents statically significant difference compared to NP, d6, and d12 respectively. (One-
way ANOVA pv0:05); n = 6 (mechanically tested (n = 3) and non-mechanically tested (n = 3)) are combined and averaged within each gestation day
group. NP = nonpregnant, d6, d12, d15, d18 = gestation day 6, 12, 15, 18, PP = postpartum. Numbers on top or below boxes are median values for
each group.
doi:10.1371/journal.pone.0112391.g004
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late softening stage (d15 to d18) nor ripening (Fig. 8). There are no

clear differences in any of the crosslinks or maturity ratios in late

softening between d15 and d18. Although the differences in the

mechanical parameters measured here are not significant between

d15 and d18, the loading curves (Fig. 2) and previous studies [8]

demonstrate that the tissue continues to increase in compliance in

this late softening period. These results give motivation to study

other matricellular proteins and ECM components that contribute

to the mechanical changes that occur during late softening and

ripening.

Clinical Implications and Future Studies
In this study, we established the evolution of immature and

mature crosslinks during normal cervical remodeling in mice. One

of the challenges in treating premature cervical remodeling in

human pregnancies is the fact that we still do not understand the

pathophysiology behind the condition. The data presented here

suggest that during the cervical softening phase in mice, shifts in

the collagen crosslinks occur before d15. As such, we are currently

evaluating if there are differences in the collagen crosslink profiles

between cervical tissue from women with a history of premature

cervical remodeling compared to women with normal cervical

remodeling. This study will help elucidate if collagen crosslinks

have a role in explaining the cervical changes that occur with this

condition. In addition, there are in-vivo tools currently in

development to diagnose premature cervical remodeling including

the collascope, which uses the fluorescence of PYD to measure its

concentration [26,27], second harmonic endoscope, which can

image the ultrastructure of collagen [17], and Raman spectrosco-

py, which has the potential to detect changes in different ECM

components including collagen crosslinks [28]. The data presented

here, together with future developments in these tools have the

potential to detect premature cervical remodeling earlier in

pregnancy so interventions to prevent premature birth may be

implemented. Additionally, crosslinking therapies have been

successful in treating other tissues such as keratoconus [29] and

proposed in tendon [30]. Once we establish the role of crosslinks in

women with cervical insufficiency, an application of these

therapies has a potential to lead to a reduction in the number of

preterm births due to cervical insufficiency. There is a key

relationship between cervical collagen changes and mechanical

Figure 5. DHLNL immature crosslink density correlates with mechanical properties, but not HLNL. Scatter plots showing correlation
between immature crosslink densities and mechanical properties. HLNL density on the horizontal axis versus: A) initial stiffness, B) final stiffness, and
C) ultimate stress. DHLNL density on the horizontal axis versus: D) initial stiffness, E) final stiffness, and F) ultimate stress. Colors represent gestation
groups: NP - blue, d6 - green, d12 - cyan, d15 - magenta, d18 - black, and PP - red. Red line represents simple linear regression line between crosslink
density and each mechanical property. Dotted lines represent 95% confidence interval. The p-values for regression listed for each correlation with
number of *’s representing significance.
doi:10.1371/journal.pone.0112391.g005
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properties in the early softening stage. If these changes can be

detected somehow in human pregnancy, this finding can lead to

the development of a biomarker for early cervical softening.

Limitations
The study outlined here is a necessary first step in determining

the evolutions of immature and mature crosslinks in normal mouse

cervical remodeling and in understanding the relationship between

crosslinks and mechanical properties. However, there are limita-

tions to the study. First, we calculated on average stiffer properties

for d6 compared to NP samples, which we did not expect. This

result could be due to differences in the estrus cycle of the NP

mice, which were not taken into account for this study. Further

studies utilizing larger sample sizes with cycled NP samples are

recommended to confirm statistical significance. Second, only

gestation time points on day 6, 12, 15, and 18 were investigated in

this study. The short gestation timeline for the mouse provokes the

relatively fast process of cervical remodeling in mice. Additional

gestational time points, especially between NP and d15 will help

understand the rate of collagen turnover during this period. Third,

all crosslink measurements presented here were mechanically

tested to break before processing for UPLC-ESI-MS/MS. Since

tissue samples were previously frozen at {80oC and not

metabolically active, we suspect that there are no mechanisms

that occur during mechanical testing that can alter the tissue

crosslink density. However, additional tests are needed to validate

this hypothesis and to confirm that mechanically testing and

breaking the tissue does not affect crosslinks measurements.

Fourth, the large spread in the crosslink data presented here are

most likely due to inconsistency in removing the vaginal wall from

mechanically tested samples. The removal of the vaginal wall from

the samples was made difficult due to the altered cervix/vaginal

structure after breaking the tissue with testing. Finally, the

mechanical test conducted in this study is a simple structural

tension test to measure the overall structural properties but not its

material properties (i.e., stress vs cervical opening instead of strain).

Figure 6. Both mature crosslink density correlate with mechanical properties. Scatter plots showing correlation between mature crosslink
densities and mechanical properties. DPD density on the horizontal axis versus: A) initial stiffness, B) final stiffness, and C) ultimate stress. PYD density
on the horizontal axis versus: D) initial stiffness, E) final stiffness, and F) ultimate stress. There was a stronger correlation for PYD crosslink density with
mechanical properties. Colors represent gestation groups: NP - blue, d6 - green, d12 - cyan, d15 - magenta, d18 - black, and PP - red. Red line
represents simple linear regression line between crosslink density and each mechanical property. Dotted lines represent 95% confidence interval. The
p-values for regression listed for each correlation with number of *’s representing significance.
doi:10.1371/journal.pone.0112391.g006
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Due to the small specimen dimensions and complicated geometry

of the cervix, the material properties are difficult to measure. The

non-rigid sutures used here to test the cervixes cause some lateral

deformation, especially at higher cervical openings. We are

currently improving our mechanical test techniques to minimize

lateral deformation and developing non-contact techniques based

on camera images to measure tissue deformation. Additionally,

statistically significant differences in the mechanical properties for

samples between d12 to PP cannot be detected with the structural

mechanical parameters presented here. Therefore, we are

currently improving advanced material modeling techniques to

quantify tissue softening in pregnancy.

Conclusions

In pregnancy, the cervix transforms from a strong closed

structure into a soft dilated structure for delivery. In order to

understand potential complications resulting from an acceleration

or a disruption in this transformation, we investigated the

evolution of immature and mature crosslinks in a normal mouse

pregnancy and its relationship to tissue mechanical properties. The

results presented here show that the maturity of the collagen

crosslinks in mouse cervical tissue shift from mature to immature

with progressing gestation, indicating a fast turnover of collagens

that occur during pregnancy. Additionally, the crosslinks and

Figure 7. Maturity ratio correlates with mechanical properties. Scatter plots showing correlation between maturity ratio (DHLNL+
HLNL):(DPD+PYD) and mechanical properties. Maturity ratio on the horizontal axis versus: A) initial stiffness, B) final stiffness, and C) ultimate stress.
Colors represent gestation groups: NP - blue, d6 - green, d12 - cyan, d15 - magenta, d18 - black, and PP - red. Red line represents simple linear
regression line between crosslink density and each mechanical property. Dotted lines represent 95% confidence interval. The p-values for regression
listed for each correlation with number of *’s representing significance.
doi:10.1371/journal.pone.0112391.g007

Figure 8. Evolution of collagen crosslinks correlate to mechanical properties in normal mouse gestation. Plot showing the changes in
both mature collagen crosslinks and mechanical properties (final stiffness) with progressing gestation. Blue circles represent total mature crosslinks
(on the left y-axis) and red x’s represent final stiffness (on the right y-axis) as a function of gestation on the x-axis.
doi:10.1371/journal.pone.0112391.g008
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maturity ratio correlate significantly with tissue mechanical

properties. These results demonstrate that in normal cervical

remodeling, crosslinks have a role in the early softening process

with a reduction in mature crosslinks leading to more compliant

and weaker tissue. However, crosslinks do not seem to have a role

in further increasing tissue compliance after d15.
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