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Abstract

Increasing Transparent Exopolymer Particle (TEP) formation during diatom blooms as a result of elevated temperature and
pCO2 have been suggested to result in enhanced aggregation and carbon flux, therewith potentially increasing the
sequestration of carbon by the ocean. We present experimental results on TEP and aggregate formation by Thalassiosira
weissflogii (diatom) in the presence or absence of bacteria under two temperature and three pCO2 scenarios. During the
aggregation phase of the experiment TEP formation was elevated at the higher temperature (20uC vs. 15uC), as predicted.
However, in contrast to expectations based on the established relationship between TEP and aggregation, aggregation
rates and sinking velocity of aggregates were depressed in warmer treatments, especially under ocean acidification
conditions. If our experimental findings can be extrapolated to natural conditions, they would imply a reduction in carbon
flux and potentially reduced carbon sequestration after diatom blooms in the future ocean.
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Introduction

Globally, gravitational sinking of marine snow (.0.5 mm)

contributes significantly to the biological carbon pump, leading to

carbon sequestration into the deep ocean. Large sedimentation

events are frequently associated with diatom blooms, because most

bloom- forming diatoms form marine snow-sized aggregates.

Coagulation of diatoms is impacted by diatom species [1], bacteria

species and activities [2–4], and extrapolymeric substances (EPS)

[5,6], especially transparent exopolymer particles (TEP) [7–9] and

may be described using aggregation theory [10–12].

Atmospheric pCO2 values are expected to rise to a global

average of 750 ppm (IPCC scenario IS92a, IPCC 2007) and

perhaps even beyond 1000 ppm by the end of this century [13].

Increasing atmospheric CO2 concentrations do not solely result in

higher sea-surface temperatures due to intensified radiative

forcing, but also lead to ocean acidification [14]. The term ocean

acidification describes the increase in dissolved inorganic carbon

(DIC) and the concomitant decrease in pH in surface waters [15].

Changing oceanic conditions due to globally rising temperatures

and ocean acidification may influence the functioning of the

biological pump and its specific responses to these changes are

currently under intense investigation [16].

The potential increase in TEP concentration as a result of

elevated temperature and pCO2 has been suggested to result in

enhanced aggregation and flux [17,18], although this finding has

also been challenged [19]. Reduced production of coccoliths under

ocean acidification conditions is thought to reduce sedimentation

of carbon due to a reduction in ballasting [20–24]. Coagulation of

organic matter with lithogenic minerals has not been found to be

impacted by ocean acidification [25].

Here, the combined effects of changed carbonate chemistry and

temperature on the coagulation of axenic and xenic cultures of the

diatom Thalassiosira weissflogii were investigated. Xenic cultures

contained the marine gammaproteobacterium Marinobacter
adhaerens HP15, which has been shown to promote TEP

production and induce aggregation of the diatom Thalassiosira
weissflogii [2]. Aggregation, TEP concentration and sinking

velocities of aggregates were monitored during the four-day

aggregation experiments.

Materials and Methods

Experimental design and set up
The combined impact of temperature, ocean acidification and

bacterial activity on the formation of TEP and aggregates by the

diatom Thalassiosira weissflogii was tested in a full factorial design.

The established bilateral model system between the diatom T.
weissflogii and the marine bacterium M. adhaerens HP15 [26,27]

was used to investigate the bacterial contribution to TEP
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formation and aggregation under the different environmental

conditions. Three different carbonate chemistry regimes were

selected to reflect: (i) the present-day conditions, with the partial

pressure of CO2 (pCO2) ranging between 300–350 matm (termed

Ambient) and (ii) two future ocean scenarios with pCO2 ranging

from 750–850 matm (designated Future 1) and 1000–1250 matm

(referred to as Future 2). For each carbonate chemistry regime,

two temperatures were chosen, 15uC and 20uC (Table 1).

An axenic diatom culture of Thalassiosira weissflogii (CCMP

1336) and the bacterium M. adhaerens HP15 were used for

experiments. M. adhaerens HP15 was isolated from marine

particles collected from the surface waters of the German Bight

(Grossart et al. 2004). M. adhaerens HP15 attaches preferentially

to T.weissflogii cells and impacts TEP production and aggregation

[2].

Due to logistical reasons, the experiment was run in two

sections. First the six treatments at 15uC, and a few days later the

six treatments at 20uC were incubated in duplicate rolling tanks

and in darkness at three rotations per minute (rpm). Solid body

rotation was established in roller tanks (1.15-L Plexiglas cylinders

with a diameter of 14 cm and a depth of 7.47 cm) within 2–

3 hours, which assured that aggregates remained suspended, never

contacting container walls [28]. Incubation in roller tanks in the

dark mimicked sinking of aggregates through the water column to

depth. The experiment was terminated after 96 hrs. Prior to the

experiment, the diatom and bacterial cultures were separately

acclimatized to the respective temperature and carbonate chem-

istry regimes for more than 8 generations to avoid a stress reaction

to changed environmental conditions.

During the acclimatization phase diatoms were grown at 50 mE

s21 for a 12-hr light period, in a semi-continuous batch approach,

to ensure continuous exponential growth and restrict changes in

the carbonate system. Diatom numbers and total alkalinity (TA),

pH and DIC were monitored daily during this phase and cultures

diluted (factor 2–6) before a cell concentration of 60, 000 cells

mL21 was reached or the pH changed by more than 0.25 units.

M. adhaerens HP15 was acclimatized to the respective temper-

ature and pCO2 conditions overnight in sterile culture flasks with

aeration of approximately 250 rpm.

After the acclimatization phase, triplicate roller tanks were filled

bubble-free under sterile conditions with diatom cells at a final

concentration of 36103 cells mL21 and bacterial cells at a final

concentration of 36105 cells mL21. Diatom blooms in coastal and

upwelling areas regularly reach cell concentrations of 104 cells

mL21, when small diatoms dominate and may reach 105 cells

mL21, for example in the upwelling area of the Benguela current

or off the California coast [29,30]. The chosen diatom concen-

tration is thus still ecologically relevant while providing enough

cells to allow rapid aggregation and provide enough aggregates for

the required measurements. Prior to inoculation with the diatom

culture, the bacterial cells were washed twice in sterile seawater to

minimize carry-over of nutrients or bacterial growth-derived

matter into the ASW media. One replicate roller tank per

treatment was sacrificed at the beginning and two replicates per

treatment at the end of the experiment. TEP concentration, and

aggregate size, number, and sinking velocity, as well as the

carbonate system parameters (TA, pH and DIC) were analyzed at

both time points. Values are given as averages 6 standard

deviation of the duplicate tanks, with standard deviations

calculated using error propagation, where appropriate.

Aggregates were defined as particles $0.5 mm. During

sampling, aggregates, when present, were first removed using a

cut-off pipette [31], their sinking velocities determined and all

aggregates of one tank combined in a known volume of artificial

seawater, creating aggregate slurry. The surrounding seawater

(SSW), which remained in the tank after the manual removal of

the aggregates, was sampled thereafter. TEP was measured in

aggregate slurries and in the SSW; the carbonate system

parameters were determined in the SSW.

Cultures and media
Autoclaving of natural seawater (collected off Santa Barbara 34u

239 N 119u 509 W) for media preparation was not an option since

the carbonate chemistry of seawater is severely impacted by de-

gassing. The pH of freshly collected natural seawater from the

Santa Barbara Channel increased from 7.58 to 8.67 during

autoclaving. Stirring the autoclaved seawater while leaving the

beaker open to the atmosphere only reduced the pH to 7.89

Table 1. Design of multifactorial experiment with 12 treatments testing aggregation of the diatom T. weissflogii in the presence or
absence of bacteria at two temperatures and three pCO2 scenarios.

Treat. # Temp. 6C pCO2 Bact.

1 15 Am Ax

2 15 Am HP

3 15 F1 Ax

4 15 F1 HP

5 15 F2 Ax

6 15 F2 HP

7 20 Am Ax

8 20 Am HP

9 20 F1 Ax

10 20 F1 HP

11 20 F2 Ax

12 20 F2 HP

Xenic treatments contained the bacterium M. adhaerens HP15. Each treatment was prepared in triplicate; one replicate was harvested initially (t = 0) and two after 96 hr.
incubation on roller tables in the dark. See text for specifics on pCO2 treatments. Ax = axenic, HP = M. adhaerens HP15 added, Am = Ambient, F1 = Future 1, F2 =
Future 2.
doi:10.1371/journal.pone.0112379.t001
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(Table 2). The repeated filtration of natural seawater through

0.2 mm pore-sized filters (Millipore, MA, USA) did not satisfac-

torily remove all bacterial contaminants. We therefore opted for

the use of artificial seawater (ASW) [32] for media preparation.

Using ASW imparts the added benefit of easily and precisely

manipulating DIC concentrations. ASW was prepared with a DIC

concentration of 2,050 mmol kg21 for ambient treatments and

supplemented with vitamins and trace metal solutions as in F/2

medium [33]. Macronutrients were added to a final concentration

of 59 mM nitrate, 3.6 mM phosphate and 53.5 mM silicic acid to

create ASW-media. The carbonate chemistry of future treatments

was adjusted as described below.

Diatom cells were counted in a Sedgwick-Rafter Cell S50 (SPI

Supplies, West Chester, PA, USA) using an inverted Axiovert 200

microscope (Zeiss, Jena, Germany). The axenicity of the diatom

culture was checked by epifluorescence microscopy [34] after

staining with the dye 49, 6-diamidino-2-phenylindol (DAPI) [35].

Carbonate chemistry perturbations and analysis
Since TEP production has been shown to be impacted by

bubbling [36–38], the carbonate system was chemically perturbed

as described in Passow [25,39]. Briefly, to mimic future ocean

conditions, appropriate amounts of 0.1 M HCl (mL kg21), 0.1 M

NaHCO3 (mL kg21) and 0.001 M Na2CO3 (mL kg21) were added

to change DIC and pH while keeping TA constant. Measurements

of pH and TA confirmed that our perturbations changed the

system as expected and reflected those anticipated in a future

ocean.

The carbonate system was monitored by measuring pH, TA

and DIC. Samples for pH were collected bubble-free in 20-mL

scintillation vials and the pH (total scale, pHT) was measured with

a spectrophotometer using the indicator dye m-cresol purple

(Sigma-Aldrich) within 2 hours of sampling. The measurement

temperature was held at 25uC and the absorbance measured at

730 nm, 578 nm and 434 nm before and after dye addition

[40,41]. The pH was calculated following the standard operating

procedure (SOP 7) [42]. Samples for TA and DIC measurements

were collected following SOP 1 [42]. TA and DIC samples were

poisoned with 0.02% saturated HgCl2 by volume and sent for

analysis to the Dickson Laboratory at the Scripps Institution of

Oceanography, UCSD.

The program CO2 Sys [43] was used to calculate the carbonate

system. The dissociation constants K1 and K2 from Roy [44] were

used since these have been described as the most appropriate for

ASW [15]. Any two of the main carbonate parameters (pH, TA,

DIC, pCO2) describe the carbonate system sufficiently and the

other parameters can be calculated from the measured ones. In 50

different samples, we measured three carbonate parameters (pH,

TA and DIC) to over-determine the carbonate system.

Quantification of TEP
TEP concentrations were measured colorimetrically by filtration

of samples onto 0.4-mm pore size polycarbonate filters (Millipore,

MA, USA) and subsequent staining with Alcian blue [45]. TEP

concentration was determined in quadruplicate and expressed as

Gum Xanthan equivalents per liter (GXeq L21).

Aggregate number, size and sinking velocity
The number of aggregates .0.5 mm was counted and the

sinking velocity of 10 to 20 aggregates per tank per treatment

measured by gently transferring individual aggregates from the

roller tanks to a tall 1 liter cylinder containing sterile ASW media

[28]. Prior to measuring sinking velocity of aggregates, the ASW

medium was incubated overnight at either 15uC or 20uC to ensure

that aggregates experienced no change in environmental condi-

tions during the sinking velocity determinations. The time taken

for each aggregate to sink 25 cm was recorded. The dimensions of

the aggregate axes (x, y, and z direction) were measured under a

dissecting microscope, using grid paper and the aggregated

volume was calculated by assuming an ellipsoid shape. The

equivalent spherical diameter (ESD) was calculated. Sinking

velocity could only be measured on 5–8 aggregates for some

treatments, because of the lack of aggregates. The slopes of the

sinking velocity vs. aggregate size relationships at 15uC and 20uC
were compared by calculating both pooled and unpooled error

variance and the appropriate t and p values.

No specific permissions were required to collect seawater samples

off Santa Barbara and no endangered or protected species were

used for our experiments. The data of this study is deposited at the

Oceanographic Data Repository BCO-DMO (Biological and

Chemical Oceanography Data Management Office; http://www.

bco-dmo.org/) in accordance with NSF guidelines. Doi: 10.1575/

1912/6845; http://hdl.handle.net/1912/6845.

Results

Over-determination of the carbonate chemistry
The pCO2 concentrations in samples where the carbonate

system was over-determined were calculated using all three

possible carbonate parameter combinations. The slight but

consistent discrepancy in the pCO2 concentrations depending on

the parameter combination used for calculation (Fig. 1) is well

known and has been described [39,46]. Results from over-

determined carbonate system parameters confirm that our

measurements were consistent and all treatments exposed to

targeted conditions.

Table 2. Effect of autoclaving on the carbonate chemistry of seawater.

Sample pH (total)

Fresh seawater before autoclaving 7.58

After autoclaving (with or without nutrients) 8.6660.01

after stirring for 24 hrs. 8.39

after stirring for 72 hrs. 7.94

after stirring for 96 hrs. 7.90

after stirring for 120 hrs. 7.89

doi:10.1371/journal.pone.0112379.t002
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Acclimatization phase
By frequent dilutions of the diatom cultures with media adjusted

to the appropriate pH and TA, it was possible to maintain the

carbonate system of the cultures within a narrow range during the

acclimatization phase. The average TA was 2332632 mmol kg21

and did not significantly vary statistically between any of the

treatments (p.0.05). The maximal temporal shift in pH experi-

enced in each pCO2 treatment due to growth of phytoplankton

was kept to ,0.3 pH units, usually ,0.2 units (Table 3). In coastal

upwelling systems or during phytoplankton blooms, in situ
variations in pH may easily be that large. For example, off

California daily ranges of pH are frequently 0.2 to 0.3 units

[47,48]. T. weissflogii were acclimatized 8 and 11 days, depending

on growth rate. Exponential growth rates were a significant

function of temperature, but not pCO2, although growth rates

were slightly decreased under Future 2 conditions at both

temperatures (Table 3).

Aggregation experiment
Carbonate system. The average TA was 235167 mmol

kg21 in all treatments. Initial Ambient pHT at in vitro temperature

was 8.1560.00 and 8.1460.00 in 15uC and 20uC treatments,

respectively. The initial pHT in Future 1 treatments were

0.3460.01 (15uC treatments) and 0.3560.01 (20uC treatments)

units lower than the respective Ambient treatments, while those of

Future 2 were 0.4760.05 (15uC treatments) and 0.5060.02 (20uC
treatments) units lower. The associated initial pCO2 values for

Ambient, Future 1 and Future 2 were 29461 matm; 72267 matm

and 10216123 matm in 15uC treatments and 30462 matm,

782614 matm and 1139655 matm in 20uC treatments (Fig. 2).

During the 96 hr. incubation in rolling tanks, the pHT dropped

between 0.06 and 0.22 units, with the largest temporal change in

the two Future treatments at 20uC, reflecting the combination of

higher respiration rates at higher temperatures and a weaker

buffering system under future carbonate chemistry conditions. The

simultaneous temporal change in pCO2 ranged from 54 to

840 matm, with the final pCO2 in the 20uC Future 2 treatment

reaching almost 2000 matm (Fig. 2).

TEP formation. TEP were inadvertently added to each

treatment with the diatom inoculum, and differences in initial

concentrations reflect differences in TEP concentrations after the

acclimatization phase. Initial TEP concentrations in the 12

Figure 1. Relationship between pCO2 determined from DIC and
pH or TA vs. pCO2 determined from pH and TA. Data stems from
50 random samples from the experiment, where the carbonate
chemistry was over-determined.
doi:10.1371/journal.pone.0112379.g001

Table 3. Exponential growth of T. weissflogii and pH range during the acclimatization phase.

Treatment m (d21) pHT No. of days acclimatized

15uC Ambient 0.51 7.93–8.21 11

Future 1 0.52 7.57–7.76 11

Future 2 0.49 7.45–7.66 11

20uC Ambient 0.86 8.04–8.23 8

Future 1 0.86 7.61–7.84 8

Future 2 0.82 7.46–7.67 8

doi:10.1371/journal.pone.0112379.t003

Figure 2. Initial and final pCO2 during the incubations at 156C
and 206C.
doi:10.1371/journal.pone.0112379.g002
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treatments ranged between 356 mg GXeq. L21 and 1148 mg

GXeq. L21, with significantly higher initial TEP concentrations in

the six treatments incubated at 15uC compared to those at 20uC
treatments (Mann-Whitney U-test, p,0.05).

During the 96 hr. incubation TEP remained about constant or

increased moderately in treatments at 15uC, whereas the increase

was appreciably higher in all treatments that were incubated at

20uC (Fig. 3). As a result, average TEP production of all 20uC
treatments was significantly higher than that in 15uC treatments

(Table 4), irrespective of pCO2 conditions or the presence of

bacteria (Mann-Whitney U-test, p,0.05). The presence of M.
adhaerens HP15 had no effect on the amount of TEP generated

during the experiment; TEP production averaged 565 mg GXeq

L21 with or without bacteria (Table 4). The pCO2 conditions also

did not influence TEP production significantly (Table 4; (Mann-

Whitney U-test, p.0.05), but variability was high: Within each

temperature the highest production of TEP was observed under

Future 1 conditions, suggesting the possibility of some, albeit non-

linear and complex impact of pCO2, on TEP production.

However, this could not be resolved with our experimental set-up.

Between 23 and 50% of all TEP was incorporated in aggregates

(Table 5). Although the fraction of TEP in aggregates was always

higher in the 20uC treatments compared to the 15uC treatments

(3469% vs. 2663%), this trend was too small compared to the

high variability to be statistically significant. The fraction of TEP

enclosed in aggregates was largest under Ambient conditions

(36610%) and smallest under Future 2 conditions (2563%). The

partitioning of TEP between the aggregated and un-aggregated

phase was independent of TEP concentration and the presence of

bacteria.

Aggregation
Between 2 and 36 aggregates formed in the tanks, with

significantly fewer aggregates in 20uC treatments compared to the

15uC treatments (Mann-Whitney U-test, p,0.05). Total aggregate

volume, which is a better indicator of aggregate formation because

it combines size and abundance of aggregates, was also

significantly smaller in 20uC treatments compared to 15uC
treatments. Total aggregate volume was high (.1 cm3) in all

treatments at 15uC, as well as in both ambient treatments at 20uC
(Fig. 4). In contrast, total aggregate volume was small (,0.7 cm3)

in all four future treatments at 20uC, independent of the presence

or absence of bacteria. Total aggregate volume was not a

significant function of total TEP concentration. Not only was the

relationship not significant, but higher TEP concentration tended

to result in a smaller total aggregate volume.

Sinking velocity
Measured sinking velocities of aggregates .0.5 mm ranged

between 8 and 110 m d21. Sinking velocity increased with the size

of aggregates (equivalent spherical diameter, ESD), but was

independent of pCO2 or bacterial presence (Fig. 5). The slope of

the velocity-size relationship depended on treatment (Table 6) and

the slope of the sinking velocity vs. size relationship was

significantly smaller (p,0.001, df = 111, slope-t-test) for the 20uC
treatments (y = 2.4(60.3)x+16.1(61.8), df = 44, r2 = 0.59) com-

pared to 15uC treatments (y = 6.3(60.4)x+19.7(62.8), df = 67,

r2 = 0.80) (Fig. 5). This resulted in relatively low sinking velocities,

especially of larger aggregates, in 20uC treatments: For example,

an aggregate with an ESD of 7 mm sank with 60 m d21 in 15uC
treatments and with 30 m d21 in 20uC treatments.

Discussion

TEP play a key role for aggregation and flux [49] and thus may

drive future changes in the functioning of the biological carbon

pump [16]. Specifically, it has been hypothesised that increased

TEP production under ocean acidification conditions would result

in increased aggregation and carbon flux, strengthening the pump

[17,18], although this has also been contested [19]. Under current

conditions TEP provide the matrix of marine snow [50], and drive

the aggregation of diatoms: Total aggregate volume has been

found to be a positive function of total TEP concentration

[2,9,51], except in the presence of certain minerals (e.g. illite)

which promote aggregation [25]. Different scenarios are possible

under future conditions of the ocean. Increased TEP production in

a future ocean does not necessarily result in increased aggregation,

because the stickiness of TEP may also change [19]. Moreover,

characteristics of TEP that may change under high pCO2 and

elevated temperatures would impact the packaging of aggregates,

and thus their sinking velocities; and consequently flux attenuation

and the biological pump. Our experiment, which investigated the

response of high temperature and high pCO2 on TEP formation,

aggregation and aggregate sinking velocity allowed us to investi-

gate if the relationships between TEP and aggregation, and that

between aggregate size and sinking velocity are likely to change in

a future ocean.

TEP formation
TEP production during the aggregation experiment was a

positive function of incubation temperature. Earlier work has also

found increased TEP production by diatoms at elevated temper-

atures [52,53], but a careful study investigating a larger range of

temperatures in eurythermal diatoms found a subsequent decrease

when temperatures were increased further [54], suggesting an

optimal type response curve. Increased production of TEP at

higher temperature is due to increased release of TEP precursors

by diatoms [55] and bacteria [56,57] at higher temperature.

The influence of pCO2 on TEP production was less clear: At

20uC TEP production peaked under Future 1 conditions, but at

15uC TEP production at Ambient and Future 1 was similar, and no

TEP was generated under the Future 2 scenario. As in our

experiment, the impact of pCO2 on TEP production by diatoms has

been found to be non-linear in other studies ([25] and references

within), with ambiguous results suggesting a complex relationship

between TEP-production and pCO2, possibly dependent on other

Figure 3. Production of Transparent Exopolymer Particles
(TEP) during the incubations in all treatments, calculated as
net change during the 96 hrs. experiment, and errors calcu-
lated using error propagation.
doi:10.1371/journal.pone.0112379.g003
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environmental conditions (light, temperature) or nutrient availabil-

ity. Significant differences in bacterial catabolism of TEP as a

function of environmental conditions would have resulted in

differences between treatments with and without M. adhaerens,
which we did not observe.

The addition of M. adhaerens HP15 had no systematic effect on

initial TEP concentration, likely because the added volume of

acclimatized M. adhaerens HP15 cultures was very small. Net

TEP production during the aggregation experiment was also not

influenced by M. adhaerens HP15. Heterotrophic bacteria are

known to generate TEP and other EPS, but also utilize it, and

their influence on TEP concentrations in the presence of diatoms

varies [4]. For example; TEP production by Thalassiosira rotula
was enhanced by bacteria during exponential phase but reduced

during stationary growth of the diatom [3]. Skeltonema costatum
exhibited a different lifestyle pattern with higher TEP production

in the axenic culture compared to the non-axenic one [3]. In an

earlier experiment, the presence of M. adhaerens HP15 resulted in

increased TEP production after 4 and 7 days at 18uC, but TEP

was only measured in the surrounding (aggregate-free) seawater

[2]. In the experiment presented here TEP concentration in the

surrounding seawater was also higher (,12%) in the presence of

M. adhaerens HP15, but total TEP concentration was not affected,

implying that TEP incorporated in aggregates decreased in the

presence of bacteria. Possibly the bacteria impact the fraction of

TEP included in aggregates, rather than TEP production per se.

Conceivably bacterial modification of TEP decreased its propen-

sity to aggregate, or bacterial activity dissociated TEP from

aggregates.

Aggregation
Ranges in size and total volume of aggregates in this experiment

were within the ranges found under similar conditions [58,59,60].

Aggregation, measured as total aggregated volume, was apprecia-

bly higher in all 15uC treatments compared to 20uC treatments.

This appears to contradict a study, which found increased

aggregation at higher temperatures using a natural diatom

population incubated 2.5uC and 8.5uC [53]. The formation of

micro-aggregates by the diatom Skeletonema sp. in a high

turbulence environment was also significantly reduced at 10uC
compared to 20uC, but a further increase to 30uC had no effect

[61]. However, the carbonate system was not perturbed in either

of these studies; and in our experiment the change in temperature

had no significant effect on aggregation if only the Ambient

treatments are considered. Our study emphasizes that the

simultaneous change in temperature and the carbonate system

influenced aggregation differently than that of temperature alone:

Total aggregate volume was greatly reduced at 20uC under both

future pCO2 scenarios, suggesting synergistic effects between

pCO2 and temperature.

Contrary to expectations, total aggregate volume was not a

function of TEP concentration. The lower aggregation in Future

20uC treatments suggests a decreased probability that colliding

particles remained attached, called stickiness, in Future 20uC
treatments. Aggregation rate is a function of collision rate and

stickiness. Collision rate in rolling tanks, where solid body rotation

is established, depends largely on particle abundance, size and

differential settling [11,62]. Because cell concentrations, sizes,

turbulence and shear, all of which promote collisions, were near

identical in all treatments, differences must be a function of TEP

Table 4. Comparison of average TEP production (mg GXeq. L21) and aggregation, as measured by total aggregate volume (Agg.
Vol.), combining treatments with the same temperature, carbonate conditions, or state of axenicity, respectively.

Treatment TEP production mg GXeq. L21 Total Agg. Vol. cm3 n

15uC 1666164* 2.0460.60* 6

20uC 9656311* 0.8260.73* 6

Am 4836335 2.0160.74 4

F1 8376605 1.2161.15 4

F2 3766458 1.0760.66 4

Ax 5656508 1.5660.95 6

HP 5656498 1.3060.92 6

N = number of treatments, each in duplicate.
*: averages significantly (p,0.05) different from each other, paired t-test.
doi:10.1371/journal.pone.0112379.t004

Table 5. TEP in Aggregates, absolute amount and fraction.

Treatment 156C 206C

GXeq. L21 % GXeq. L21 %

Am HP 410 31 432 36

Am Ax 280 26 659 50

F1 HP 319 26 471 28

F1 Ax 299 24 641 35

F2 HP 260 23 349 24

F2 Ax 260 25 381 29

doi:10.1371/journal.pone.0112379.t005
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or stickiness. As the four treatments with the highest total TEP

concentrations resulted in the lowest aggregation, it may be

deduced that the average stickiness of particles was lower in Future

20uC treatments compared to the others.

Aggregation was not impacted by the presence or absence of M.
adhaerens HP15. The impact of heterotrophic bacteria on

aggregation can be extremely varied: Bacteria may increase

aggregation and stability of aggregates [63], or diatom aggregation

may be reduced due to hydrolysis of diatom surface mucus by

attached bacteria [3,64]. Moreover, the role of heterotrophic

bacteria for diatom aggregation varies appreciably between algae

species and environmental conditions: The presence of bacteria

was demonstrated to be a prerequisite for aggregate formation for

T. weissflogii, but not for Navicula sp. [65]. A different study

revealed that whether coagulation of T. rotula was promoted or

reduced in the presence of bacteria depended on light conditions

[3]. Earlier work has revealed that the presence of M. adhaerens
HP15 greatly increased total aggregate volume of T. weissflogii

[2]. In those experiments, total aggregate volume in the presence

of bacteria was 2–3 times higher (10 cm3) than in our study,

whereas almost no aggregates formed in the axenic cultures. In the

present experiment total aggregate volume was independent of the

presence of M. adhaerens HP15, and total aggregate volume was

comparably small. The observed differences in TEP production

and aggregation between both experiments were possibly caused

by differences in EPS due to experimental (start conditions, time in

rolling tank) or cell physiological differences. Composition of

extracellular substances released by diatoms varies with growth

stage and environmental conditions [66]. Variation in EPS

chemistry and tertiary structure between diatom and bacteria

EPS are known to result in differences in TEP formation [67,68],

and EPS other than TEP can lead to the formation of aggregates

[69]. Moreover, T.weissflogii may also aggregate by direct cell to

cell attachment [1], and the factors that determine which

aggregation process dominates await exploration. The observed

discrepancies between similar experiments highlight the complex-

ity (non-linearity) of the bacteria- diatom interactions and

aggregation processes under different environmental conditions.

Sinking velocities of aggregates
The sinking velocity to size relationship of aggregates differed

appreciably between treatments, implying differences in aggregate

content (excess density) and packaging (porosity) [70]. Sinking

velocities of large aggregates formed in 20uC treatments were

significantly smaller than those of comparable size formed in 15uC
treatments. Sinking velocity is a function of the viscosity of seawater,

but this effect should increase sinking velocity at higher tempera-

tures, rather than decrease it [71]. TEP content of aggregates was

smaller in the 15uC treatments compared to the 20uC future

treatments, as both total TEP concentration and fraction of TEP in

aggregates were smaller in 15uC treatments. TEP are positively

buoyant and a high proportion of TEP in aggregates reduces their

sinking velocity [19,72,73]. Differences in chemical composition or

quantity of EPS may easily explain differences in packaging and

thus sinking velocities. Additionally, differences in the cellular silica

content, the biochemical composition of organic matter, or the size

Figure 4. Total aggregate volume after the incubations in all
treatments; error bars represent the range of replicates.
doi:10.1371/journal.pone.0112379.g004

Figure 5. Sinking velocity vs. size (equivalent spherical diameter) of aggregates .0.5 mm that formed in the different treatments.
Lines represent the regression of aggregates incubated at 15uC and 20uC, respectively.
doi:10.1371/journal.pone.0112379.g005
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of cells [74–78] may explain reduced sinking velocity of aggregates

consisting of cells grown at higher temperature. Future experiments

will need to address these factors.

Conclusions

The respective roles of TEP, bacteria and diatoms for the

formation of diatom aggregates, and the influence of temperature

and pCO2 on coagulation, are complex and not well understood.

Differences in environmental conditions and in physiological

growth stage of the organisms as well as species specific life strategy

differences all contribute to a high variability in the characteristics

of the EPS that is produced by diatoms and bacteria or hydrolyzed

by bacteria. Our results clearly indicate that the known

relationship between TEP and aggregation, and between aggre-

gate size and sinking velocity do not hold under different

temperature and pCO2 scenarios. In contrast to theoretical

predictions [17,18], higher pCO2 combined with elevated

temperatures resulted in increased TEP production, but decreased

aggregation and decreased sinking velocity of aggregates, suggest-

ing decreased carbon flux at 1000 m (sequestration flux). Our

results thus refute, at least in a general sense, the hypothesis that

elevated temperature and ocean acidification as expected in the

future ocean will result in increased carbon flux and thus in a

negative feed-back to the biological carbon pump [17,18]. More

generally, these results provide an example that established

relationships, like that between TEP concentration, aggregation

and flux, may not extend to future conditions, and care must be

taken, when basing predictions on such empirical relationships.
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