
RESEARCH ARTICLE

Inhibition of Aurora Kinase B Is Important
for Biologic Activity of the Dual Inhibitors
of BCR-ABL and Aurora Kinases R763/
AS703569 and PHA-739358 in BCR-ABL
Transformed Cells
Anna L. Illert1*", Anna K. Seitz2", Christoph Rummelt1, Stefanie Kreutmair1,
Richard A. Engh3, Samantha Goodstal4, Christian Peschel2, Justus Duyster1{,
Nikolas von Bubnoff1{

1. Clinic for Internal Medicine 1, Hematology, Oncology and Stem Cell Transplantation, Freiburg University
Medical Center, 79106 Freiburg, Germany, 2. Department of Internal Medicine III, Technical University of
Munich, 81675 Munich, Germany, 3. The Norwegian Structural Biology Centre, Departments of Chemistry and
Pharmacy, University of Tromsø, Tromsø, Norway, 4. EMD-Serono Research and Development Institute, Inc.,
Billerica, Massachusetts, United States of America

*Lena.Illert@uniklinik-freiburg.de

" ALI and AKS are joint first authors on this work.

{ JD and NvB are joint last authors on this work.

Abstract

ABL tyrosine kinase inhibitors (TKI) like Imatinib, Dasatinib and Nilotinib are the gold

standard in conventional treatment of CML. However, the emergence of resistance

remains amajor problem. Alternative therapeutic strategies of ABLTKI-resistant CML

are urgently needed. We asked whether dual inhibition of BCR-ABL and Aurora

kinases A-C could overcome resistance mediated by ABL kinase mutations. We

therefore tested the dual ABL and Aurora kinase inhibitors PHA-739358 and R763/

AS703569 in Ba/F3- cells ectopically expressing wild type (wt) or TKI-resistant BCR-

ABL mutants. We show that both compounds exhibited strong anti-proliferative and

pro-apoptotic activity in ABL TKI resistant cell lines including cells expressing the

strongly resistant T315I mutation. Cell cycle analysis indicated polyploidisation, a

consequence of continued cell cycle progression in the absence of cell division by

Aurora kinase inhibition. Experiments using drug resistant variants of Aurora B

indicated that PHA-739358 acts on both, BCR-ABL and Aurora Kinase B, whereas

Aurora kinase B inhibition might be sufficient for the anti-proliferative activity

observed with R763/AS703569. Taken together, our data demonstrate that dual ABL

and Aurora kinase inhibition might be used to overcome ABL TKI resistant CML.
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Développement de Rennes, France

Received: July 6, 2014

Accepted: October 6, 2014

Published: November 26, 2014

Copyright: � 2014 Illert et al. This is an open-
access article distributed under the terms of the
Creative Commons Attribution License, which
permits unrestricted use, distribution, and repro-
duction in any medium, provided the original author
and source are credited.

Data Availability: The authors confirm that all data
underlying the findings are fully available without
restriction. All relevant data are within the paper
and its Supporting Information files.

Funding: This work was supported by a grant to
JD and NVB from the Bundesministerium für
Bildung und Forschung (NGFNplus), and from the
Wilhelm-Sander Stiftung, by a grant to JD from the
Deutsche Forschungsgemeinschaft (SFB 684/A11),
and by a grant to NVB by the Gertrud-und-Erwin-
Ruppert-Stiftung München. The funders had no
role in study design, data collection and analysis,
decision to publish, or preparation of the manu-
script.

Competing Interests: SG is an employee of EMD
Serono. This does not alter the authors’ adherence
to PLOS ONE policies on sharing data and
materials. The other authors declare no conflicts of
interest, including any outside financial interests.

PLOS ONE | DOI:10.1371/journal.pone.0112318 November 26, 2014 1 / 27

http://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0112318&domain=pdf


Introduction

Chronic myeloid leukemia (CML) is a neoplastic disease of hematopoietic stem

cells triggered by the oncogene BCR-ABL. This fusion gene is the result of a

reciprocal translocation between chromosomes 9 and 22 and characterized by

constitutively activation of the BCR-ABL tyrosine kinase [1–3]. Since 2002, the

treatment of CML was revolutionized by the introduction of the ATP-competitive

inhibitor imatinib mesylate (IM, Gleevec), a BCR-ABL tyrosine kinase inhibitor

(TKI) with strong activity against the tyrosine kinases PDGFR, cKit and Abl. [4–

7]. The clinical use of Imatinib resulted in a significantly improved prognosis,

response rate, overall survival, and patient outcome in CML patients compared to

previous therapeutic regimens [8–10] and made it the gold standard in

conventional treatment of CML [11]. However, some CML patients in chronic

phase and a substantial proportion in accelerated phase and blast crisis are either

initially refractory to IM or loose IM sensitivity over time and experience relapse

[12–18]. Several mechanisms leading to IM resistance have been characterized

during the last years: most commonly, mutations in the BCR/ABL domain confer

IM resistance, either by altering IM binding characteristics or through indirect

modulation of kinase function, which are often associated with secondary

(acquired) resistance [19]. In this sense, kinase domain mutations are the most

frequently identified mechanism associated with relapse [20–26]. Substitution of

threonine with isoleucine at residue 315 (T315I gatekeeper mutation) is the most

prevalent mutation (14%) in IM- resistant patient [27] followed by the p-Loop

Mutation Y253F/H [17, 18]. Second-generation BCR-ABL TKIs nilotinib

(Tasigna) and dasatinib (Sprycel) showed significant activity in clinical trials in

patients resistant to imatinib therapy [28–35], except in those with the T315I

BCR-ABL gatekeeper mutation [20, 26, 36, 37]. However, the prognosis of

Imatinib refractory or intolerant chronic myelogenous leukemia and advanced

Ph+ acute lymphoblastic leukemia is still poor and new therapies are urgently

needed for those patients. Aurora kinase inhibitors (AKI) have recently emerged

as promising drugs in CML therapy, but it has not been entirely clear whether the

AKI apoptotic effect is due to BCR-ABL or Aurora kinase (A or B) inhibition and

whether dual inhibition of BCR-ABL and Aurora kinases could overcome

resistance mediated by ABL kinase mutations. Members of the Aurora kinase

family represent a new and promising target for anticancer therapeutics. Within

this family, Aurora kinases are highly homologous and conserved serine-threonine

protein kinases that play a key role in mitosis [38–42]. In mammalian cells Aurora

kinases are comprised of three family members: Aurora kinases A, B and C.

Aurora kinase A activity and protein expression increases from late G2-phase

through Mitosis and is required for centrosome-maturation and -separation,

mitotic entry, and spindle assembly [43]. Selective Aurora A inhibition due to

inhibition of Thr288 autoposphorylation leads to p53-dephosphorylation,

monopolar spindel formation with consecutive G2/M arrest and apoptosis [44–

47]. In contrast, Aurora kinase B is the catalytic part of the chromosomal

passenger complex (CPC) and critical not only for chromosomal condensation,
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segregation and bi-orientation but also for the spindle-assembly checkpoint and

final stages of cytokinesis [48–50]. Classically, selective Aurora B inhibition leads

to polyploidy and apoptosis [51–53] by inhibition of Histone-3 phosphorylation

at serine 10, a well-known down-stream-target of Aurora B. Expression of Aurora

C seems to be limited to the testis and its role has not been well defined yet. Both,

Aurora kinases A and B, have been linked to tumorigenesis with the frequent

finding of gene amplification and/or overexpression in several malignancies [54–

59] including CML, where it was shown that BCR-ABL regulates Aurora A [60]

and B inhibition (Figure S1). Furthermore, a functional cross-talk between Aurora

A and the p53- and p73-dependent apoptotic pathway in cancer cells was reported

[61].

The oncogenic role of Aurora kinases as well as their crucial role in cell cycle

division makes them an attractive potential target in anti-cancer therapy. A

growing number of Aurora kinase inhibitors have been developed during the past

years and entered successfully clinical phase I or II studies like MK-5108,

MLN8054, MLN8237, PHA-739358, AZD1152, AT92830, MSC1992371A, PF-

03814735 and R763/AS703569 [44, 45, 62–83].

Here we asked, whether dual inhibition of BCR-ABL and Aurora kinases could

overcome resistance mediated by ABL kinase mutations and therefore tested the

dual ABL and Aurora kinase inhibitors PHA-739358 and R763/AS703569 in BaF3-

cells expressing wild type (wt) or TKI-resistant BCR-ABL mutants. We show that

both compounds exhibited strong anti-proliferative and pro-apoptotic activity in

ABL TKI resistant cell lines including the T315I mutation. Furthermore, we were

able to identify a drug resistant Aurora B mutant that renders cells partially

resistant to PHA-739358 and R763/AS703569 in vitro with a cell-based screen of

resistance. With the help of this mutant, we could show, that Aurora B is an

important target with great potential in further anti-cancer drug development.

Materials and Methods

Inhibitors

PHA-739358 was kindly provided by Nerviano Medical Sciences, Milan, Italy. It

was dissolved at 20 mM in dimethyl sulfoxide (DMSO) and stored at 220 C̊.

Kinase inhibition profile and IC50s of PHA-739358 (Danusertib) are published by

Fancelli et al. [84, 85] R763/AS703569 was a kind gift from EMD-Serono

(Rockland, MA). A stock solution of R763/AS703569 (10 mmol/L; in DMSO) was

stored at 220 C̊. Kinase inhibition profile and IC50s of R763/AS703569 are

published by McLaughlin [86].

Cell culture, transfection and cell cycle synchronization

Parental Ba/F3 cells were obtained from DSMZ (Braunschweig, Germany). Ba/F3

cells were cultured under standard conditions in RPMI 1640 growth media

(Gibco, Karlsruhe, Germany) containing 10% fetal bovine serum, 200 U penicilin
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per mL, and 200 g streptomycin per mL (Gibco, Karlsruhe, Germany). IL3-

dependend Ba/F3 cells were supplemented with 2 ng/mL interleukin-3 (IL-3;

R&D, Wiesbaden, Germany). Ba/F3 p185wt cells were infected with retrovirus

(pBabe-puro, pBabe-AurA, pBabe-AurB) and puromycin-treated for selection.

For synchronisation in G0/1, cells were serum starved for 72 h in the presence of

0,5% FCS.

DNA constructs

BCR-ABL p185 was cloned as described previously [87]. Human Aurora A and B

wt cDNAs in pEGFP-C1 were obtained from E. Nigg (Martinsried, Germany).

Mutant forms of Aurora A and B were engineered in pEGFP-C1AurA/AurB using

the QuickChange Mutagenesis kit (Stratagene, Amsterdam, Netherlands),

subcloned in pCR-Blunt II-Topo or pCR-2.1-TOPO (Invitrogen, Karlsruhe,

Germany) and subsequently into pBabe-puro (Addagene, Cambridge, MA, USA).

All constructs were verified using automated sequencing.

Proliferation

Cell viability was assessed using a MTS (3-(4,5-dimethylthiazol-2-yl)-5-(3-

carboxymethoxyphenyl)-2-(4-sulphophenyl)-2H-tetrazoliumsalz)-based method

(CellTiter; Promega, Madison, WI). Briefly, 105 cells were seeded in triplicates in

96-well flat-bottom microtiter plates, treated as indicated and absorption

measured at 490 nM. The cellular IC50 value corresponds to the concentration of

50% growth inhibition. IC50 values were calculated by graphic exploration of the

dose-effect curve.

Cell cycle and apoptosis

For dynamic cell cycle analysis (BrdU-incorporation) cells were pulsed with 10

mM BrdU for 1 h and stained with anti-BrdU according to a standard protocol

(BD Biosciences). For static cell cycle analysis, cells were stained with propidium

iodide (25 mg/ml PI; 100 mg/ml RNAse in PBS; Sigma-Aldrich, Heidelberg,

Germany). Cell cycle distribution and apoptosis was determined by PI or two-

dimensional (fluorescein and PI) flow cytometry. Analysis of DNA content

occurred in the linear mode, apoptosis measuring in the logarithmic mode of the

FL2 channel. Results were quantified using FlowJo software (Tree Star Inc.,

Ashland, OR). Cells with DNA content ,2n were considered apoptotic (sub-G1).

Western blot

Cells were cultured for 2.5 h without (w.o.) or in the presence of inhibitor at the

indicated concentrations. After cell lysis, sonification, and measuring of the

protein concentration using BioRad Protein Assay (Biorad, Munich, Germany),

protein extracts were electrophoretically separated on SDS-PAGE gels and

immunoblotted with indicated antibodies. Anti-Aurora A, anti-Aurora B,
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Anti- pHistone-3 (Serine 10), and anti-b-Actin antibodies were obtained from

Sigma-Aldrich (Heidelberg, Germany), Anti-Flag (M2) antibody from Stratagene

(Heidelberg, Germany). Anti-Abl antibody (8E9) was purchased from BD

Biosciences (San Jose, CA), anti-STAT5 antibody (C-17) from Santa Cruz

Biotechnology Inc. (Heidelberg, Germany). Detection of phosphotyrosine was

performed using a mixture of the antibodys 4G10 (Millipore, Schwalbach,

Germany) and PY20 (BD Biosciences, San Jose, CA). pSTAT5 antibody was a kind

gift from T. Wheeler (Hamilton, New Zealand; Wheeler et al., 2001). Bands were

visualized using SuperSignal Chemoluminescence substrate (Pierce, Rockford,

USA).

Structural modeling

Graphical inspection and structural superposition was done with PyMOL

(DeLano W.L., The PyMOL Molecular Graphics System (2002), http://www.

pymol.org). Individual features of inhibitor interactions and geometries were

examined also using the electron density server and 3D-Ligand Interaction

analyzer, as linked in the PDB server pages.

Results

PHA-739358 and R763/AS703569 exert anti-proliferative effects in

BCR-ABL negative and positive Ba/F3 cells

To determine active concentrations of both inhibitors, we treated BCR-ABL

negative and positive Ba/F3 cells, including the IM-resistant BCR-ABL mutants

T315I, Y253F and F317L, with increasing concentrations of PHA-739358 and

R763/AS703569. PHA-739358 strongly inhibited cell proliferation in parental and

BCR-ABL expressing Ba/F3 cells in a dose-dependent manner. BCR-ABL

mutational status did not affect the anti-proliferative response to PHA-739358 or

R763/AS703569 (Figure 1A). Thus, sensitivity of individual BCR-ABL mutants to

PHA-739358 and R763/AS703569 did not correlate with the degree of resistance

to IM, and the highly imatinib resistant BCR-ABL/T315I mutation displayed

similar dose-response compared to BCR-ABL wt cells. Accordingly, IC50 values

were in a range of 150 nM for PHA-739358 and 10 nM for R763/AS703569,

independent of the BCR-ABL mutation status (Figure 1A). Thus, both inhibitors

exerted anti-proliferative effects in a dose-dependent manner and independent of

the BCR-ABL mutation status, with R763/AS703569 displaying significantly lower

IC50 values (Figure 1B).

PHA-739358 and R763/AS703569 effectively inhibit BCR-ABL and

Aurora Kinases

It has been described that AKIs can influence BCR-ABL kinase activity by

inhibiting BCR-ABL autophosphorylation and phosphorylation of its downstream

target STAT5. Therefore we asked whether the anti-proliferative effect of

Role of Aurora B in BCR-ABL Induced Transformation

PLOS ONE | DOI:10.1371/journal.pone.0112318 November 26, 2014 5 / 27

http://www.pymol.org
http://www.pymol.org


PHA-739358 and R763/AS703569 is a result of BCR-ABL or Aurora kinase

inhibition. Treatment with PHA-739358 (Figure 2A) or R763/AS703569

(Figure 2B) resulted in strong inhibition of BCR-ABL kinase activity in BCR-ABL

positive Ba/F3 cells. Effective concentrations for inhibition of BCR-ABL kinase

Figure 1. Aurora Kinase inhibitors PHA-739358 and R763/AS703569 compromise cell proliferation and viability at different concentrations in BCR-
ABL negative and positive Ba/F3 cells independent of the BCR-ABL mutation status. (A) Dose-effect curves for treatment with the indicated
concentrations of PHA-739358 and R763/AS703569 in Ba/F3 and Ba/F3 p185 cells, including the IM-resistant mutants T315I, Y253F and F317L, after 48 h.
Effects on cell proliferation were assessed by MTTassay. Shown is one representative experiment of three experiments performed. The percentage of cell
growth was normalized to the growth of untreated control cells. (B) Bar graph quantifying cell proliferation after exposure to 200 nM PHA-739358 or 15 nM
R763/AS703569 for 48 h. Untreated and DMSO-treated cells were used as controls. Shown is one representative experiment of three experiments
performed. Values are expressed as mean of triplicates ¡ SD. The difference between Ba/F3 p185 wt and BCR-ABL mutants is statistically significant. (C)
IC50 values of BCR-ABL positive and negative Ba/F3 cells, calculated from the results after 48 h of incubation with PHA-739358 or R763/AS703569.

doi:10.1371/journal.pone.0112318.g001
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activity and signaling were around 1000 nM and above for PHA-739358 and in the

range of 500 nM for R763/AS703569. Inhibition of BCR-ABL phosphorylation

occurred at similar concentrations for Ba/F3 p185wt, p185/T315I and p185/Y53F cells.

Surprisingly, higher concentrations of R763/AS703569 but not of PHA-739358 were

required to inhibit BCR-ABL phosphorylation in cells expressing BCR-ABL/F317L.

Thus, for PHA-739358 cellular IC50 values were in the range of the concentrations

where inhibition of BCR-ABL occurred, whereas -in case of R763/AS703569- IC50

values were more than 50-times lower than the concentrations needed for BCR-ABL

kinase inhibition. Taken together, these data provide evidence, that BCR-ABL kinase

inhibition might be, at least in part, responsible for the anti-proliferative effect of PHA-

739358, but not for R763/AS703569.

To assess inhibitory activity of PHA-739358 and R763/AS703569 on Aurora

kinases, phosphorylation of Histone-3 (H3) on Serine-10, a bone-fide Aurora B

target [50, 52, 85, 88], was determined. BCR-ABL positive cells exposed to PHA-

739358 (Figure 3A) or R763/AS703569 (Figure 3B) showed a distinct reduction of

phosphorylation on H3-Ser10, however at different concentrations. While with

PHA-739358 Aurora kinase inhibition was observed at 500 nM, 20 times lower

concentrations of R763/AS703569 were sufficient to obtain the same effect on H3-

ser10 phosphorylation. Thus, low concentrations of R763/AS703569 needed to

suppress Histone-3 phosphorylation corresponded to the cellular IC50 value.

Taken together, anti-proliferative effects of PHA-739358 can be likewise attributed

to BCR-ABL and Aurora kinase inhibition, whereas the anti-proliferative activity

seen with R763/AS703569 is exclusively due to Aurora kinase inhibition.

PHA-739358 and R763/AS703569 induce cell division failures and

apoptosis in BCR-ABL negative and positive Ba/F3 cells

Aurora Kinases A and B play key roles in regulation of mitotic processes [38, 40].

Inhibition of these kinases leads to mitotic defects and prevents cytokinesis

[39, 89]. In order to determine which Aurora kinase is the relevant target for the

used inhibitors, static cell cycle analyses were performed by flow cytometry.

Exposure to PHA-739358 at 500 nM or above induced endoreduplication and

generated polyploid cells with 8n and up to 16n DNA-content with subsequent

apoptosis (Figure 4A). We observed this effect not only in BCR-ABL positive cells

but also in parental, BCR-ABL negative cells. As expected, treatment with lower

concentrations of PHA-739358 did not change cell cycle profiles because of

insufficient Aurora kinase inhibition. R763/AS703569 abolished cell division in

BCR-ABL negative and positive Ba/F3 cells, resulting in accumulation of cells with

DNA content >4n (Figure 4B). Polyploidisation already became apparent at very

Figure 2. PHA-739358 and R763/AS703569 reduce BCR-ABL kinase activity at comparable concentrations
and independent of the BCR-ABL mutation status. Ba/F3 p185 wt and IM-resistant T315I, Y253F, and F317L
mutants cells were exposed to increasing concentrations of PHA-739358 (A) or R763/AS703569 (B) for 2.5 h and
assessed for phosphorylation status of BCR-ABL and its downstream target STAT5 by western blot analysis.
Untreated and DMSO treated cells were used as a controls.

doi:10.1371/journal.pone.0112318.g002
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low concentrations (10 nM R763/AS703569) and increased at higher concentra-

tions. Interestingly, a significant sub-G1 DNA content became apparent with

PHA-739358 at concentrations were inhibition of both Aurora as well as BCR-

ABL kinase was observed.

Identification of drug resistant Aurora kinase mutants

Our previous results hint to Aurora B as a relevant in-vitro target of PHA-739358 and

R763/AS703569. To confirm this assumption, we generated point mutations in

Aurora A and B with diminished inhibitor binding, while Aurora kinase activity was

not affected. Therefore, we performed in-silico modeling of the Inhibitor/Aurora

kinase-complex (Figure 5A, B). This analysis revealed two different positions in

Aurora A and B (Figure 5D): L210 in Aurora A, corresponding to L154 in Aurora B,

constitutes the gate keeper residue in a small hydrophobic pocket at the back of the

ATP-binding side, that can be utilized by small molecule ATP competitors but not by

ATP itself [90]. Studies from other protein kinases, where the corresponding

gatekeeper residues were mutated to bulkier residues resulted in abolished inhibitor

binding [91–93]. G216 in Aurora A (G160 in Aurora B) maps to the bottom of the

kinase hinge loop. Mutation of this residue into a bulkier amino acid was therefore

expected to create direct steric disablement to inhibitor binding without interfering

ATP binding. To follow our assumptions we introduced these mutations in Aurora A

(L210M, G216V) or Aurora B (L154M, G160V) by site-directed mutagenesis and

stably expressed them by transfecting Ba/F3 p185wt cells with pBabe-puro based

retroviruses encoding one of these constructs. Recombinant Flag-tagged Aurora A

and B constructs were expressed at equivalent levels, similar to the endogenous

proteins (Figure 5C).

Aurora B G160V mutant confers resistance to both inhibitors and

partially rescues Aurora B associated cell cycle functions

To investigate AKI resistance of the newly engineered Aurora kinase mutants,

phosphorylation of Histone-3 was examined after exposure to PHA-739358 or

R763/AS703569 (Figure 6 A, B). Interestingly, only AurB G160V expressing cells

showed a remarkable resistance to both compounds. Expression of AurA L210M,

AurA G216V, AurB L154M and several others Aurora mutations had no or

marginal effects (Figure S2). In addition, co-expression of Aurora constructs did

not affect BCR-ABL kinase inhibition (Figure S3).

To assess whether expression of the drug-resistant AurB G160V mutant

reverted in-vitro effects of PHA-739358 and R763/AS703569, we performed

Figure 3. Inhibition of Aurora kinase activity occurs at different concentrations of PHA-739358 and
R763/AS703569. Ba/F3 p185 wt, p185/T315I, p185/Y253F and p185/F317L cells were treated with indicated
concentrations of PHA-739358 (A) or R763/AS703569 (B) for 2.5 h. Aurora Kinase activity assessed by
phosphorylation status of Histone-H3 at Serine-10 was analyzed using immunoblotting. Control cells were left
untreated or exposed to DMSO.

doi:10.1371/journal.pone.0112318.g003
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proliferation assays and cell cycle analyses. Indeed, AurB 160V attenuated responses to

PHA-739358 and R763/AS703569 (Figure 7A, B) and increased IC50 values for both

drugs in p185 wt cells. Interestingly, cell cycle analysis revealed polyploidisation up to

16n in the presence of PHA-739358 or R763/AS703569 not only in control cells but also

in G160V expressing cells. Nevertheless, distinct polyploidisation also became apparent

with delay in the AurB G160V mutant: a considerable 8n population was observed after

24 h exposure to PHA-739358 or AS70356 in AurB G160V cells, whereas it was already

recognized 8 h after PHA-739358 and 4 h after AS70356 treatment in p185wt cells

(Figure 8 A, B). The apoptotic sub-G1 fraction increased over time, with the highest

value in control cells 48 h after PHA-739358 treatment.

To determine whether the observed effects were a consequence of Aurora B

overexpression or resulted from resistance due to the AurB G160V mutant,

dynamic 2-dimensional cell cycle analyses were performed. To this end, indicated

cell lines were first synchronized in G0 by serum deprivation for 72 h and then

reactivated by addition of 20% FCS in the presence of PHA-739358 or R763/

AS703569 for indicated timepoints. Treatment with PHA-739358 or R763/

AS703569 for 63 h resulted in a distinct G1-accumulation (2n peak) in AurB

G160V expressing cells but not in the control cells, indicating normal cell cycle

function in cells harboring the AurB G160V mutation (Figure 9A). Next, dynamic

cell cycle experiments were performed, and DNA synthesis was monitored by a

BrdU pulse after 62 h for 1 h. In control cells, R763/AS703569 reduced the

proportion of cells in S-Phase reduplicating their 2n DNA-content in favor of cells

reduplicating their 4n or 8n DNA-content (Figure 9B, left upper panel). Hence,

cells exited mitosis without dividing, returned to G1 with a 4n DNA-content, kept

on DNA-reduplicating and finally lost proliferative potential. Despite polyploi-

disation, expression of the AurB G160V mutation restored the proportion of cells

in S-Phase reduplicating their 2n DNA-content, constrained endoreduplication

and consequently partially rescued a normal cell cycle, demonstrating regenera-

tion of Aurora B Kinase activity (Figure 9B, right upper panel). Surprisingly,

PHA-739358 treatment of AurB G160V cells was not able to partially override

polyploidisation and endoreduplication (Figure 9B, lower panels).

Discussion

Imatinib has become the gold standard in the treatment of CML with excellent

and durable responses and minimal side effects [9, 10, 27, 94]. However, around

25% of patients treated with Imatinib do not respond to treatment or relapse after

Figure 4. Suppression of Aurora B kinase activity by PHA-739358 or R763/AS703569 inhibits cell
division and induces apoptosis in BCR-ABL negative and positive Ba/F3 cells. Ba/F3 and Ba/F3 p185
cells comprising the T315I, Y253F, and F317L mutations were exposed to the indicated concentration of PHA-
739358 (A) or R763/AS703569 (B). After 24 h analysis of DNA content and apoptotic fraction of PI-stained
cells were assessed by flow cytometry. Untreated cells served as control. Apoptosis was measured as the
percentage of cells of sub-G1 DNA content in the FL2 channel in a logarithmic scale.

doi:10.1371/journal.pone.0112318.g004
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initial response to Imatinib [95, 96]. 2nd generation ABL-kinase inhibitors such as

Nilotinib, Dasatinib, and Bosutinib proved to be effective against a variety of

Imatinib-resistant BCR-ABL mutations, but are ineffective against the BCR-ABL

T315I mutation [97–99]. Since PHA-739358 and R763/AS703569 are active

against Aurora kinases as well as BCR-ABL [84, 85, 100–102], we intended to

dissect the significance of aurora kinase versus BCR-ABL inhibition for anti-

proliferative and pro-apoptotic activity of AKIs in BCR-ABL transformed cells

harboring known BCR-ABL resistance mutations as well as mutations in Aurora

B. It has already been shown, that AKIs like VX-680 are active in patients with

BCR-ABL T315I leukemia [103, 104]. Within our study, we could show that

Aurora kinases are a valuable potential therapeutic target for kinase inhibitor

resistant CML. Both AKIs used in this study display a significant, dose-dependent

inhibition of proliferation and induction of apoptosis in BCR-ABL-negative and -

positive Ba/F3-cells, including those expressing clinically highly relevant BCR-ABL

mutations T315I, Y253F, and F317L. The BCR-ABL mutational status did not

affect the anti-proliferative activity of both compounds, and sensitivity to PHA-

739358 and R763/AS703569 did not correlate with the degree of imatinib

resistance. Both agents have already shown clinical activity in phase-1 trials in

patients with advanced solid tumors and hematological malignancies, including

patients with CML or Ph+ALL, resistant to ABL kinase inhibitor treatment and

patients harboring the T315I mutation [102, 105–109]. Crystal structure analysis

of ABL T315I kinase domain in complex with PHA-739358 provided a possible

structural explanation for its activity against ABL T315I. While mutation of

threonine to the bulkier AA isoleucine caused a steric hindrance and therewith

prevented binding of imatinib, PHA-739358 bound the active confirmation of the

kinase domain in the ATP-binding pocket and lacked steric hindrance imposed by

this substitution [100, 110]. Interestingly, kinase assays with PHA-739358 showed

even a higher affinity for the T315I mutation [100]. In our studies, we found no

compelling difference in activity of PHA-739358 or R763/AS703569 in Ba/F3 cells

expressing BCR-ABL wild-type or T315I: both inhibitors exerted anti-proliferative

and pro-apoptotic activity in all cell lines tested, but at different concentrations.

Previous studies indicated nanomolar activity of the used AKIs in this study in

preclinical models of solid tumors and hematologic malignancies including BCR-

ABL transformed cell lines [101, 111–114]. In our experiments, cellular IC50-

values of PHA-739358 were in the range of 150 nM, whereas IC50- values of R763/

AS703569 is 15-times lower concentrations in BCR-ABL transformed cell lines. In

Figure 5. Characterization of Aurora model system. Crystal structure was analyzed in order to identify residues, whose specific mutation should abolish
inhibitor binding while keeping Aurora kinase activity. (A) Superimposition of the CK2 crystal structure (green) with Aurora A (pink) - PHA-739358 (yellow)
complex crystal structure, showing the position of the point mutation L210 and G216. (B) Xenpus laevis Aurora B (green) and INCENP (turquoise) in
complex with AS7035369, showing the position of the point mutation L154 and G160. (C) Ba/F3 p185 wt cells were transfected with Babe-puro based
retrovirus encoding AurA L210M, AurA G216V, AurB L154M, or AurB G160V point mutations. Empty pBabe-vector was used as control. Selection was
accomplished with puromycin. Western blot analysis showing flag-tagged Aurora A and B expression similar to endogenous Aurora A/B protein levels. (D)
Amino acid sequence alignment of human Aurora kinase A and B. Mutated residues are framed. It is of note that the point mutations L210M and G216V in
Aurora A accord with L154M and G160V in Aurora B.

doi:10.1371/journal.pone.0112318.g005
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Figure 6. Aurora B G160Vmutant confers resistance to PHA-739358 and R763/AS703569.Western blot analysis probed to investigate the resistant potential of
Aurora A and B kinase mutants by detecting phospho-Histone-3 (serine 10) after 2.5 h exposure to increasing concentrations of PHA-739358 (A) or AS703569 (B).
Untreated and DMSO treated cells were used as control. For comparison untransfected Ba/F3 p185 wt cells were also included into the experiment.

doi:10.1371/journal.pone.0112318.g006
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addition, biologic activities of R763/AS-703569 occur at similar concentrations in

the context of different transforming oncogenes (i.e. Myc, BCR-ABL etc. [111]

and this work), indicating that Aurora kinases are the primary target in this

models. Previous studies with VX-680 already showed [60, 115], that BCR-ABL

inhibitory VX-680 concentrations do not appear to be necessary to induce anti-

CML activity in human Ph+ cell lines suggesting that the activity of VX-680 in

CML is mediated at least partly by Aurora- and not by ABL- inhibition. In

accordance, we observed anti-proliferative activity of R763/AS703569 at

concentrations where inhibition of Aurora kinases but not BCR-ABL kinase

occurred. Suppression of phospho-H3, a bone-fide Aurora B target, required

R763/AS703569 IC50-concentrations, whereas BCR-ABL-inhibition was observed

at much higher concentrations. The sufficiency of exclusive Aurora kinase

inhibition was confirmed by cell cycle analysis, where treatment with lower, BCR-

ABL not inhibiting R763/AS703569 concentrations, resulted in endoreduplication

and polyploid cell (.4n) accumulation as a consequence of continued cell cycle

progression in the absence of cell division. In vitro experiments with PHA-739358

revealed equivalent biologic results, although higher concentrations of PHA-

739358 were used, that inhibit Aurora kinases as well as BCR-ABL. However,

Figure 7. Drug-resistant Aurora B G160V mutant partly overcomes the anti-proliferative effect of PHA-739358 and R763/AS703569. (A) MTT assay
showing the anti-proliferative effect after treatment with increasing concentrations of PHA-739358 (upper panel) or R763/AS703569 (lower panel) for 48 h.
Percentage of cell growth was normalized to the growth of untreated control cells. Shown is one representative experiment of three experiments performed.
(B) Bar graph quantifying cell proliferation after exposure to 200 nM PHA-739358 (upper panel) or 15 nM R763/AS703569 (lower panel) for 48 h. Untreated
and DMSO-treated cells were used as control. Shown is one representative experiment of three experiments performed. Values show mean of triplicates ¡

SD. Difference between Ba/F3 p185 wt and AurB G160V expressing Ba/F3 p185 wt cells is statistically significant.

doi:10.1371/journal.pone.0112318.g007
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Figure 8. Expression of the resistant Aurora B G160V mutant partly rescues cell division failures after exposure to PHA-739358 and R763/
AS703569. Ba/F3 p185 wt and Aur B G160V expressing Ba/F3 p185 wt cells were cultured in the presence of 500 nM PHA-739358 (A) or 50 nM R763/
AS703569 (B), harvested at the indicated time points and analysed by flow cytometry to determine DNA content of propodium iodide (PI) stained cells.

doi:10.1371/journal.pone.0112318.g008
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identical cell cycle aberrations could be detected by treatment of BCR-ABL-

negative cells with both AKIs arguing for an exclusive Aurora kinase-mediated

and BCR-ABL-inhibition independent effect. These data corroborate the

hypothesis that cytotoxicity of PHA-739358 and AS-703569 primarily depends on

inhibition of Aurora kinases associated in-vitro effects.

Both Aurora kinases A and B have been linked to tumorigenesis and previous

publication highlight the importance of Aurora A inhibition: Kelly et al. showed

preclinical activity of Alisertib, a selective Aurora A inhibitor as a single agent or

in combination with nilotinib [76] in CML cells bearing wild-type or T315I BCR-

ABL. Moreover, Yuan et al showed that CML resistance can be overcome with

specific Aurora A gene knockdown. Next to Aurora A knockdown, this study used

the AKI S1451, which spared Histone H3 Ser10 phosphorylation and polyploidy

[60], suggesting a specific Aurora A inhibition. It is worth noting, that it could be

recently shown, that BCR-ABL induces upregulation of both Aurora kinases A

and B via AKT in BCR-ABL positive cells [116], suggesting an impact of both

Aurora isoforms in CML cells. Moreover, Mancini et al demonstrated, that VX-

680 induced Gadd45a transcription and thereby recruitment of Oct-1 transcrip-

tion factor at critical promoter regions for gene transcription and covalent

modifications of histone H3 (S10 de-phosphorylation, K9 de-methylation and

K14 acetylation) [60]. Recent studies have revealed that dephosphorylation of

Histone-3 and accumulation of polyploid cells is based on suppression of Aurora

kinase B activity [50–52, 117–120]. Our experiments demonstrated the described

Aurora B inhibition phenotype upon PHA-739358 and R763/AS703569

treatment, suggesting that Aurora B may also be a relevant target for both

compounds. To confirm this hypothesis, we designed different Aurora B point

mutations in the ATP-binding site mediating resistance and were able to identify a

PHA-739358 and R763/AS703569 resistant mutant (Aurora B G160V). This

mutant shows significant resistance in vitro and in vivo and is able to attenuate

the anti-proliferative capacity of both inhibitors in BCR-ABL positive cells,

demonstrated by a significant increase of IC50- values and a delay in Histone-3

dephosphorylation. Cell cycle analysis detected active Aurora B kinase in the

presence of AKIs in Ba/F3 p185 wt Aurora B G160V cells. These findings further

substantiate Aurora B kinase inhibition as one cause of the anti-proliferative and

pro-apoptotic effects of PHA-739358 and R763/AS703569. Along this line,

development of drug resistance arising in cell-cycle kinases is conceivable. Taylor

et colleagues [121] reported about acquired point mutations in the Aurora B

kinase domain after prolonged exposure to ZM447439. Expression of these

mutant Aurora B alleles rendered cancer cell lines resistant to ZM447439 and

Figure 9. Aurora B G160V mutant constrains endoreduplication and rescues partly a normal cell cycle. Asynchronously growing Ba/F3 p185 wt cells
and Aurora B G160V expressing Ba/F3 p185 wt cells (AS) were serum starved for 72 h (SS), then reactivated with 20% serum and simultaneously treated
with 500 nM PHA-739358 or 50 nM R763/AS703569 for 63 h. (A) Time course for DNA synthesis after G0-release and exposure to 50 nM R763/AS703569.
(B) DNA synthesis was monitored by BRDU pulse for 1 h after 63 h of culture. Only in the presence of 50 nM R763/AS703569 (upper panel) and not of
500 nM PHA-739358 (lower pannel) Aurora B G160V mutant restores the 2n population (arrow), demonstrating regeneration of Aurora B kinase activity.

doi:10.1371/journal.pone.0112318.g009
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several other AKIs. However, kinase-independent mechanisms of AKI resistance

are also possible. In PHA-739358 resistant cells, overexpression of the Abcg2

efflux carrier could be identified as a potential mechanism of drug resistance

[122]. This knowledge should have important implications for future drug-

development, focusing on identifying compounds that target mutated Aurora

kinases.

Taken together, our data demonstrate that dual ABL and Aurora kinase

inhibition can be used to overcome ABL TKI resistant CML. Interestingly, cellular

effects of PHA-739358 and R763/AS703569 in BCR-ABL positive cells are

primarily mediated by functional inhibition of Aurora kinase B strongly

suggesting that Aurora kinases and not BCR-ABL is the biologically relevant target

in TKI-resistant Ph+ leukemia and that Aurora B may be an essential and

attractive target in CML cells.

Supporting Information

Figure S1. Expression of Aurora kinase A and B is regulated by BCR-ABL

activity. Ba/F3 p185 wt cells were treated with 2 mM Imatinib for 24 and

48 hours, harvested and determined by western blot analysis with the indicated

antibodies. GAPDH served as loading, PY as imatinib control.

doi:10.1371/journal.pone.0112318.s001 (JPG)

Figure S2. Characterization of further mutants provides no evidence of higher

resistance to PHA-739358 or R763/AS703569 than Aurora B G160V mutant.

doi:10.1371/journal.pone.0112318.s002 (TIFF)

Figure S3. Expression of Aurora kinase mutations in BCR-ABL positive cells

has no influence on the BCR-ABL kinase inhibition concentration of PHA-

739358 and R763/AS703569. Ba/F3 p185 wt cells and the indicated Aurora A and

B kinase mutants were treated with increasing concentrations of PHA-739358 (A)

or R763/AS703569 (B) for 2.5 h. Phosphorylation levels of BCR-ABL and its

downstream target STAT5 were determined by western blot analysis. Untreated

and DMSO treated cells served as a control.

doi:10.1371/journal.pone.0112318.s003 (JPG)
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