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Abstract

Background: Syndromic surveillance promotes the early detection of diseases outbreaks. Although syndromic surveillance
has increased in developing countries, performance on outbreak detection, particularly in cases of multi-stream surveillance,
has scarcely been evaluated in rural areas.

Objective: This study introduces a temporal simulation model based on healthcare-seeking behaviors to evaluate the
performance of multi-stream syndromic surveillance for influenza-like illness.

Methods: Data were obtained in six towns of rural Hubei Province, China, from April 2012 to June 2013. A Susceptible-
Exposed-Infectious-Recovered model generated 27 scenarios of simulated influenza A (H1N1) outbreaks, which were
converted into corresponding simulated syndromic datasets through the healthcare-behaviors model. We then
superimposed converted syndromic datasets onto the baselines obtained to create the testing datasets. Outbreak
performance of single-stream surveillance of clinic visit, frequency of over the counter drug purchases, school absenteeism,
and multi-stream surveillance of their combinations were evaluated using receiver operating characteristic curves and
activity monitoring operation curves.

Results: In the six towns examined, clinic visit surveillance and school absenteeism surveillance exhibited superior
performances of outbreak detection than over the counter drug purchase frequency surveillance; the performance of multi-
stream surveillance was preferable to signal-stream surveillance, particularly at low specificity (Sp ,90%).

Conclusions: The temporal simulation model based on healthcare-seeking behaviors offers an accessible method for
evaluating the performance of multi-stream surveillance.
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Introduction

Syndromic surveillance collects information about health-

related events prior to official diagnosis, and promotes early

detection of outbreaks [1]. Such surveillance is commonplace in

developed countries [2–5]. It is often conducted by collecting

information through multiple data streams that contribute to

detection effectively. Although developing countries and rural

areas have attempted to create surveillance systems, their

performance on outbreak detection has rarely been evaluated

[6]. Of particular interest is the performance of different data

streams used in surveillance system.

In outbreak detection, data streams determine whether the

detection is valid and timely, and therefore worth investigating.
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Various data streams exist, including clinic visit, sales of over-the-

counter (OTC) drugs, school/work absence, calls to help lines,

environmental data, ambulance dispatch data, and others [7–11].

To optimize detection performance, policy makers must know

which data streams are superior, and whether they are more

efficient when used in parallel.

Most syndromic surveillance studies have evaluated outbreak

detection performance by comparing surveillance signals with a

gold standard of surveillance data, such as laboratory pathogen

surveillance or conventional confirmed case surveillance [12]. In

resource-poor settings, however, governments cannot afford

expensive surveillance. In rural China, village clinics are equipped

with simple instruments, and are unable to administer laboratory

tests for disease confirmation. Furthermore, the Chinese Informa-

tion System for Diseases Control and Prevention (CISDCP), a

conventional routine reporting system for selected infectious

diseases, cannot monitor village populations in a timely manner

because the hierarchical nature of the system dictates that villages

must first send cases to township staff to be recorded in the system.

Thus, it is difficult to assess the performance of syndromic

surveillance using limited ‘‘gold standard’’ data in rural areas.

An alternative approach is to use simulated data for assessment.

Many studies have evaluated the performance of single-stream

surveillance through simulated outbreaks. Multi-stream surveil-

lance, however, has seldom been evaluated, because simulated

outbreak data cannot be superimposed directly onto different

syndromic data baselines (which represent different health-related

events, such as visiting clinics, OTC drug purchasing, or absence

due to illness). Simulated outbreak data must first be converted

into corresponding simulated syndromic data prior to superimpo-

sition.

Because all syndromic data streams are associated with one

another, we proposed a simulation method based on the

healthcare-seeking behaviors that can capture the inner linkages

between outbreak data and various syndromic data. Thus, a

discrete probability distribution of healthcare-seeking behaviors of

symptomatic individuals may be used to convert simulated

outbreak data into multiple simulated syndromic data [13,14].

Methods

We introduced an evaluation method based on the healthcare-

seeking behaviors model for multi-stream syndromic surveillance

(Figure 1). We designated influenza A (H1N1) as the hypothetical

disease because it is highly infectious and received high attention

from public health agencies worldwide since the 2009 influenza A

(H1N1) pandemic.

Figure 1. Schematic diagram of multi-stream evaluation based on healthcare-seeking behaviors model for performance on
outbreak detection. First, simulated outbreak datasets are generated by the SEIR model. Second, the simulated outbreak datasets are converted
into three kinds of syndromic datasets according to a discrete distribution probability of healthcare-seeking behaviors. Third, the converted
syndromic datasets are superimposed onto corresponding syndromic baseline datasets to create testing datasets. Next, detection algorithms can be
performed on testing datasets to detect simulated outbreaks. Last, relevant indicators can be devised to evaluate the detection performance. OTC:
over-the-counter; ROC: receiver operating characteristic; SEIR: Susceptible – Exposed – Infectious – Recovered model; AMOC: activity monitoring
operation curves.
doi:10.1371/journal.pone.0112255.g001
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Simulated outbreaks model
We generated simulated influenza outbreak data based on the

Susceptible – Exposed – Infectious – Recovered (SEIR) model.

This model imitates four main health states in disease progression.

First, individuals begin in the susceptible state (S) and progress to

the exposed state (E) at rate b when in contact with infected

individuals. Second, following an incubation period, exposed

individuals move to the infectious state (I) at rate v. Finally, at the

end of the infectious period, infected individuals enter the recovery

state (R) at rate c [15,16]. This process may be modeled using the

following equations:

N(t)~S(t)zE(t)zI(t)zR(t)

dS

dt
~{bS(t)I(t)=N(t)

dE

dt
~bS(t)I(t)=N(t){vE(t)

dI

dt
~vE(t){cI(t)

dR

dt
~cI(t)

8>>>>>>>>>>>><
>>>>>>>>>>>>:

where N(t) is the total population at time t. S(t), E(t), I(t), and R(t)

are the numbers of individuals at time t in each of the four states.

Ratios of 1/v and 1/c are the mean incubation and infectious

periods, respectively. b is the transmission rate, which reflects the

diffusion intensity of a disease; it is usually measured by the

reproductive number (R0), which refers to the number of

secondary cases for each primary case: R0 = b/c.

To simulate influenza A (H1N1) outbreak data, we defined the

values of R0, 1/v, and 1/c. Previous studies [15,17,18] estimated

R0 for influenza A (H1N1) to be in the range of about 1.0–3.0.

Thus we defined R0 at the three levels in our study as 1.5, 2.0, and

2.5. We defined 1/v as 1, 2, and 3, and 1/c as 3, 5, and 7,

according to the natural progression of influenza A (H1N1) [19–

22]. We then varied a single parameter and held all others fixed,

resulting in 27 scenarios of simulated outbreaks (Table 1). Xu et al.

reported that the Chinese population has a very low pre-existing

immunity to influenza A (H1N1) virus [23]; thus, we assumed that

all populations in our target sites were susceptible at the beginning

of the outbreaks. In the process of simulating, we assumed equal

infectiousness among populations and did not take mortality, or

possible interventions (hospitalizations or treatments) into consid-

eration.

Healthcare-seeking behaviors model
To superimpose the simulated outbreak data onto syndromic

baselines, we needed to convert them into the corresponding

syndromic data using the healthcare-seeking behaviors model.

This model simulated the occurrence and timing of three types of

healthcare-seeking behaviors following syndrome onset: visiting

clinics, OTC drug purchasing, and school absenteeism.

Figure 2 illustrates the principle of converting simulated

outbreak data into syndromic data (clinic visit data are used as

an example): ai is the probability of patients visiting doctors at day

i; ni is the number of new outbreak cases at day i. As the figure

shows, the number of new cases at day 1 is n1. Of these, a1n1 cases

will visit doctors in clinics on that day; a2n1 cases will visit doctors

on the second day; a3n1 will do so on the third day (light blue

pillars), etc. On day 2, there are n2 new cases, of which a1n2 cases

will visit doctors in clinics on that day; a2n2 cases will do so on the

second day; a3n2 will do so on the third day (green pillars), etc. As

a result, the sum of the visiting volume on day 1 is a1n1; on day 2,

it is a2n1 + a1n2; on day 3, it is a3n1 + a2n2 + a1n3; etc. Thus, we

formulated the relationship between outbreak data and visiting

volume data as follows:

Ni|j~

n1 0 0 0 . . . 0

n2 n1 0 0 . . . 0

n3 n2 n1 0 . . . 0

n4 n3 n2 n1 . . . 0

..

. ..
. ..

. ..
.

. . . ..
.

ni ni{1 ni{2 ni{3 . . . ni{jz1

2
6666666664

3
7777777775
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..

.
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Vi|1~Ni|jAj|1

~

a1n1z0z0z0z � � �z0

a1n2za2n1z0z0z � � �z0

a1n3za2n2za3n1z0z � � � 0

a1n4za2n3za3n2za4n1z � � � 0

..

.
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2
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3
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where Ni6j is a matrix of the time-series data of new outbreak

cases, and ni is the count of new cases at day i. The matrix Aj61

represents the discrete probability distribution of visiting clinics for

each day following the onset of symptoms, and ai is the probability

of patients visiting doctors at day i. Vi61 is the converted time-

series data for visiting volume.

Similarly, the converted data of OTC drug purchase frequency

(Oi61) can be formulated as follows:

Oi|1~Ni|jBj|1, and Bj|1~

b1

b2

b3

b4

..

.

bj

2
66666664

3
77777775

where Bj61 is the discrete probability distribution of OTC drug

purchasing for each day following the onset of symptoms.

School absenteeism surveillance only concerns the school-aged

population. We assumed the homogenous population mixing in

our models, simplifying the process of disease transmission across

different population. Therefore, we used the proportion of school-

aged children within the population (p) to structure school-aged

infections in simulated outbreaks. The school absenteeism data

(Si61) can be formulated as follows:

Si|1~pNi|jCj|1, and Cj|1~

c1

c2

c3

c4

..

.

cj

2
66666664

3
77777775

where Cj61 is the discrete probability distribution of absence from

school for each day following the onset of symptoms, and p is the

proportion of school-aged children within population.

Because detailed data for our target population regarding the

probability of seeking care and the delay in seeking care were not
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available in the literature, a survey was conducted to obtain the

probability and time of these behaviors. We randomly sampled 10

households in each town and 5 households in each village within

the study areas. A total of 2,473 participants (including 171 school-

aged children) were sampled regarding whether and when they

visited doctors, purchased OTC drugs, or were absent from

school, once they had symptoms of influenza-like illness (fever +
cough or sore throat).

Baseline data
The Integrated Surveillance System (ISS), the first electronic

syndromic surveillance system for infectious diseases in rural

China, was employed for our field experiment in six towns in

Hubei province on April 1, 2012. The ISS collects daily syndromic

information from three data streams: chief complaints from health

clinics, medication sales from retail pharmacies, and primary

school absences. Chief complaints surveillance focuses on patients’

main symptoms and basic information including age, gender,

home address, and visiting time. Medication sale surveillance

concerns daily sales of 98 drugs. School absence surveillance

concerns the daily numbers of and reasons given for absence of

students from primary school. Further details of the ISS may be

found in previous studies [24,25].

We used ISS daily numbers of three syndromic data streams

(clinic visit, OTC drug purchase frequency, and primary school

absence) in six towns in Hubei, China (Longwang, Zhangjing,

Shiqiao, Zengji, Hougang, and Xiongkou; total population in the

target regions was 326,984, population density was about

326 persons/km2, sex ratio (male: female) was 1.03, and per

capita GDP was $1,691). The ISS routinely collected data from

152 health centers (6 township hospitals, 146 village clinics), 11

township drugstores, and 26 primary schools (6 township and 20

village schools). The clinic visit (CV) data stream recorded the

daily count of patients with symptoms of influenza-like illness. The

OTC drug purchase frequency (OTC) data stream recorded the

daily count of consumers who purchased three categories of drugs

related to respiratory symptoms: antipyretics, compound cold

medicine, and cough suppressants (a consumer could be recorded

for only one at a time, even though he/she may have purchased

multiple categories of drugs). The school absence (SA) data stream

recorded the daily number of absent students claiming to

experience influenza-like illness symptoms (weekends and vaca-

Table 1. Summary of simulated outbreaks with different parameters.

Outbreak R0 1/v 1/c Total cases Peak cases Time to peak (d) Duration (d)

1 1.5 3.0 3.0 34 NA NA 46

2 1.5 3.0 5.0 41 NA NA 57

3 1.5 3.0 7.0 46 NA NA 74

4 1.5 2.0 3.0 43 2 17 38

5 1.5 2.0 5.0 49 2 22 48

6 1.5 2.0 7.0 53 2 38 59

7 1.5 1.0 7.0 60 2 20 50

8 1.5 1.0 3.0 53 3 19 30

9 1.5 1.0 5.0 58 3 13 41

10 2.0 3.0 3.0 78 4 23 35

11 2.0 3.0 5.0 94 4 27 44

12 2.0 3.0 7.0 104 4 33 52

13 2.0 2.0 7.0 121 5 29 44

14 2.0 2.0 3.0 98 6 17 29

15 2.0 1.0 7.0 137 6 21 37

16 2.0 1.0 5.0 131 8 21 29

17 2.5 3.0 7.0 163 8 30 41

18 2.0 2.0 5.0 112 9 27 35

19 2.5 3.0 3.0 117 9 20 26

20 2.0 1.0 3.0 121 9 20 22

21 2.5 2.0 7.0 183 10 25 40

22 2.5 3.0 5.0 140 11 26 36

23 2.5 2.0 5.0 167 11 22 29

24 2.5 2.0 3.0 146 12 17 23

25 2.5 1.0 7.0 207 13 19 29

26 2.5 1.0 5.0 196 15 16 24

27 2.5 1.0 3.0 177 20 13 17

NA: the epidemics did not manifest an obvious peak due to the low transmissibility and long incubation duration of virus.
R0: the basic reproductive number.
1/v: the incubation period.
1/c: the infectious period.
doi:10.1371/journal.pone.0112255.t001
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tions excluded, because schools are closed). We used these three

data streams from April 1, 2012, to June 30, 2013 (no outbreak

took place during this period), to provide realistic baseline data.

Generation of semi-synthetic testing data
Given the complexities of real data, a semi-synthetic approach is

preferable to a fully synthetic approach in assessment; the former

superimposes simulated outbreak cases onto a realistic baseline

and then uses this combination as testing data [13,26]. In other

words, the number of cases on the testing data at day t is the sum

of the cases of simulated outbreak data and realistic baseline data

at day t. Testing datasets can be calculated using the following

formulas:

TV (t)~V (t)zBV (t)

TO(t)~O(t)zBO(t)

TS(t)~S(t)zBS(t)

8><
>:

where TV(t), TO(t), and TS(t) are the numbers of cases on testing

datasets of clinic visit, OTC drug purchase frequency, and school

absence at day t, respectively. BV(t), BO(t), and BS(t) are the

numbers of cases on baseline datasets of each data stream at day t.

V(t), O(t), and S(t) are the numbers of cases on simulated datasets

of each data stream at day t.

Data obtained during April 1–9, 2012, provided background

counts for the detection algorithm. The superimposing process

began on April 10, 2012. To avoid bias due to seasonality and day-

of-the-week effects, this process was repeated every day from April

10, 2012, to June 30, 2013, for each of the three realistic

syndromic baselines [27]. This yielded 447 testing datasets per

scenario per data stream, for a total of 36,207 (447 * 27 * 3)

datasets for analysis (Figure 3).

Detection algorithm
Because the ISS system has only been in use in rural China

since 2012, we did not have long-term historical data as a

background for our algorithm. Thus, a non-historical model of the

Early Aberration Reporting System (EARS) was suitable for our

data, which collected ,2 years of background data [28]. The

EARS has been increasingly used as a standard syndromic

surveillance system in both the USA and China [29,30]. The

EARS models were intended to be used as the cumulative sum

method (CUSUM) consisting of three algorithms—C1, C2, and

C3—that show increasing sensitivities matching their intended

sensitivity levels (C3 being most sensitive). The statistic of CUSUM

value can be written as follows:

St~ max (0,Xt{(mtzst)=st)

Figure 2. Sketch diagram of conversion principle from simulated outbreak data to syndromic data. Clinic visits data were used as an
example; ai is the probability of patients visiting doctors at day i; ni is the number of new outbreak cases at day i. The number of new cases at day 1 is
n1. Of these, a1n1 cases will visit doctors in clinics on that day; a2n1 cases will visit doctors on the second day; a3n1 will do so on the third day (light
blue pillars), etc. On day 2, there are n2 new cases, of which a1n2 cases will visit doctors in clinics on that day; a2n2 cases will do so on the second day;
a3n2 will do so on the third day (green pillars), etc. As a result, the sum of the visiting volumes on day 1 is a1n1; on day 2, it is a2n1 + a1n2; on day 3, it is
a3n1 + a2n2 + a1n3; etc.
doi:10.1371/journal.pone.0112255.g002
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where Xt is the count of cases at day t, and mt and st are the

moving sample mean and standard deviation at baseline,

respectively. The C1 baseline is obtained from the previous 7

days in closest proximity to the current day (day t-7 through day t-

1). C2 uses a 7-day baseline on day t-9 through day t-3. C3 is the

sum of the C2 values for the past 3 days [31].

To obtain the receiver operating characteristic (ROC) curve

and activity monitoring operation curves (AMOC) [32], we set

seven thresholds for each algorithm (0.1, 0.5, 1.0, 1.5, 2.0, 2.5, and

3.0). These thresholds indicate the critical CUSUM value levels

when the number of current cases exceeds three deviations above

the baseline mean [33].

Surveillance strategies
We designed seven surveillance strategies according to combi-

nations of three data streams, with three single-stream surveillance

strategies: (1) Clinic Visit Only, (2) OTC drug purchase frequency

Only, (3) School Absence Only; and four multi-stream surveillance

strategies: (4) Clinic Visit + OTC Frequency, (5) Clinic Visit +
School Absence, (6) OTC Frequency + School Absence, (7) Clinic

Visit + OTC Frequency + School Absence. We defined the multi-

stream signal as the earliest signal generated in any sub-data

stream. The performance of different strategies was compared to

allow us to judge which strategy was the best and whether multi-

stream surveillance was more efficient for outbreak detection.

Performance evaluation
The metrics used to evaluate the performance were the receiver

operating characteristic (ROC) curve and activity monitoring

operation curves (AMOC); these could be draw by using the 7

thresholds mentioned above. ROC curves were plotted using 1-

specificity and sensitivity at each threshold. Similarly, AMOC was

plotted using 1-specificity and proportional timeliness (time to

detection divided by the outbreak duration). Proportional timeli-

ness enables the direct comparison of detection timeliness across

different outbreak scenarios. We calculated these indicators by

averaging the detection outcome across all 12,069 (447 * 27)

analysis runs in each surveillance strategy.

Sensitivity (Se) was defined as the number of flagged aberrations

that correctly corresponded to simulated outbreaks (f), divided by

the total number of simulated outbreaks (s): Se(%)~(f=s)|100%.

Specificity (Sp) was defined as the total number of days that did

not contain simulated outbreaks and remained unflagged (d),

divided by the total number of days that did not contain simulated

outbreaks (D): Sp(%)~(d=D)|100%.

Proportional timeliness (Pt) was defined as the time to detection

(t, the number of days that occurred between the beginning of an

Figure 3. Generation of semi-synthetic testing datasets in six towns in Hubei, China, 2012/4/1–2013/6/30. A) Simulated Outbreak Data
(generated by SEIR model) and converted syndromic data (generated by healthcare-seeking behaviors model); B) Testing CV Data (simulated CV + CV
baseline); C) Testing OTC Frequency Data (simulated OTC + OTC baseline); D) Testing SA Data (simulated SA + SA baseline). The pink epidemic was
one of the simulated outbreaks generated by the SEIR model. This could be converted into simulated clinic visits (green), simulated OTC drug
purchase frequency (red), and simulated school absence (black), according to the healthcare-seeking behaviors model. The first simulated outbreak
was released on 2012/4/10. Simulated syndromic data were superimposed onto corresponding baselines on the same release period (see B, C, and D).
Every simulation released one outbreak to generate three testing datasets, including testing CV data, testing OTC data, and testing SA data. The
simulation was repeated day by day during the whole surveillance period (2012/4/10–2013/6/30). Testing SA data on vacation breaks were defaulted
as ‘‘0.’’ CV: clinic visits; OTC: over-the-counter; SA: school absence; SEIR: Susceptible – Exposed – Infectious – Recovered model.
doi:10.1371/journal.pone.0112255.g003
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outbreak and the first day the outbreak was flagged [28]), divided

by the outbreak duration (T): Pt(%)~(t=T)|100%.

To compare the overall performance of outbreak detection

between single-stream surveillance and multi-steam surveillance,

we calculated the overall sensitivity, specificity and proportional

timeliness by averaging these estimates across relevant surveillance

strategies:

Overall * Se(%)~(
P

f =
P

s)|100%

Overall * Sp(%)~(
P

d=
P

D)|100%

Overall * Pt(%)~(
P

t=
P

T)|100%

8>>>>><
>>>>>:

The overall estimates for single-stream surveillance were

calculated by averaging strategies of (1) Clinic Visit Only, (2)

OTC drug purchase frequency Only, and (3) School Absence

Only. The overall estimates for multi-stream surveillance were

calculated by averaging strategies of (4) Clinic Visit + OTC

Frequency, (5) Clinic Visit + School Absence, (6) OTC Frequency

+ School Absence, (7) Clinic Visit + OTC Frequency + School

Absence.

All simulations were generated using VBA programming

embedded in Microsoft Excel 2007; statistical analyses were

conducted using SPSS version 12.0 (SPSS Inc., Chicago, IL,

USA).

Ethics Statement
Written informed consent statements were obtained from the all

relevant participants including parents of children. All participants

and patients were anonymized and only aggregated data was used

for data analysis. The personal identification information did not

appear in the final database. The study was ethically approved by

the Institutional Review Board of Tongji Medical College.

Results

Realistic syndromic baseline
During the period lasting from April 1, 2012, to June 30, 2013,

the ISS recorded 16,956 visitors due to influenza-like syndrome

(37.2614.2 per day), 98,744 respiratory syndrome-related OTC

drug sales (216.5642.6 per day), and 715 student absences due to

influenza-like syndrome (2.762.6 per day; Table S1 in File S1).

The clinic visit data stream demonstrated higher levels of activity

in summer and winter, coinciding with the seasonal peaks of

respiratory diseases. Similar peaks occurred in the OTC drug

purchase frequency data stream, but were less obvious in summer.

Dips at the end of February 2013 in both clinic visit and OTC

drug purchases frequency coincided with the Chinese New Year,

in line with traditional Chinese avoidance of healthcare during this

period. The school absenteeism data stream did not demonstrate a

noticeable pattern because of the numerous vacation breaks

(Figure 4).

We also calculated Spearman’s rank correlation coefficients

between the different time series of data streams within three

periods separated by vacation breaks (Table 2). The clinic visit

stream correlated strongly with the OTC drug purchase frequency

stream in all periods (maximum r = 0.79, lag = 5,7 days in period

1; maximum r = 0.49, lag = 6,7 days in period 2; and maximum

r = 0.66, lag = 0 days in period 3). The clinic visit stream

correlation with the school absenteeism stream was high in period

1 (maximum r = 0.57, lag = 2,3 days) and period 2 (maximum

r = 0.33, lag = -3,-4 days), but not significant in period 3. The

OTC drug purchase frequency and school absenteeism streams

were significantly correlated in all periods (maximum r = 0.52, lag

= -2,-6 days in period 1; maximum r = 0.63, lag = -12,-13 days

in period 2; and maximum r = 0.28, lag = 3,6 days in period 3).

Generation of simulated outbreaks
Using the SEIR model, 27 scenarios of simulated outbreak were

generated using different combinations of parameters (Table 1

and Table S2 in File S1). The number of infected individuals

varied from 34 to 207. Outbreak 27 was the strongest, with a

maximum of 20 cases occurring on peak day. The lowest three

outbreaks were 1, 2, and 3 lasting for a long time without peaks;

these were also more likely to be sporadic outbreaks. Total cases

and peak cases rose in accordance with an increased value of R0,

whereas increasing R0 decreased peak time and total duration. A

decrease in the value of 1/v (i.e., a decrease in the incubation

period) raised the number of total cases and peak cases, and

decreased peak time and duration. In contrast, raising the value of

1/c (e.g., an increase in the infectious period) increased the

number of total cases and duration, but did not significantly

influence peak cases and peak time.

Healthcare-seeking behaviors pattern
The healthcare-seeking behavior questionnaires targeting an

influenza-like syndrome were completed and returned with an

overall response rate of 75.7% (n = 1,873 of 2,473; 53.0% male;

40.2 (17.9) years of age; 6.9% primary-school age population).

Table 3 shows the discrete probability distribution of healthcare-

seeking behaviors following the onset of syndrome. Of the total

population, 51.3% (960/1,873) participants replied that they

would visit a doctor, and 39.8% (746/1,873) would purchase

drugs. In the primary school-age population, 25.4% (33/130)

would miss school. Using these parameters, we converted 27

simulated outbreak datasets into 81 relevant syndromic datasets

(Table S3 in File S1).

Validity and timeliness of syndromic surveillance
Figure 5 shows the ROCs of all surveillance strategies. In single-

stream surveillance strategies (Figure 5-A, B, C), the clinic visit

stream manifested the highest validity, while the OTC drug

purchase frequency stream exhibited the lowest validity for all

algorithms. In multi-stream surveillance strategies (Figure 5-D, E,

F), all strategies exhibited similar performance for outbreak

detection. We also plotted the ROCs of overall single-stream

and multi-stream surveillance (Figure 5-G, H, I). According to the

comparison results, overall multi-stream surveillance had superior

sensitivity to overall single-stream surveillance, especially when

specificities were below 90% (namely 1-Sp.10%).

Figure 6 shows the AMOC curves of all surveillance strategies.

In single-stream surveillance (Figure 6-A, B, C), the school

absenteeism stream had a slightly superior timeliness than the

other two data streams for all algorithms; this, however, was not

obvious at a higher level of specificity. In multi-stream surveillance

(Figure 6-D, E, F), all strategies exhibited similar timeliness of

outbreak detection. By comparing overall single-stream and multi-

stream surveillance (Figure 6-G, H, I), we found that overall

multi–stream surveillance had superior timeliness to overall single-

stream surveillance when specificities were below 90% (namely 1-

Sp.10%). However, at a high level of specificity, there was little

difference in timeliness between single-stream and multi-stream

surveillance for all algorithms.

Meanwhile, comparing the positions of ROC and AMOC

curves between different detection algorithms, we found that the
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EARS , C1 model exhibited the best validity (ROC curves of C1

were closest to the top left origin) and timeliness (AMOC curves of

C1 were closest to the bottom left origin), while the EARS , C3

model was slightly inferior to the other two algorithms in our

study.

Discussion

We explored the performance of multi-stream syndromic

surveillance on outbreak detection in rural Hubei, China by using

simulation influenza A (H1N1) outbreaks based on the healthcare-

seeking behaviors model. Although several other studies have

previously evaluated the performance of syndromic surveillance

through simulation methods, most had done so by evaluating a

single data stream [2,14,27,31]. One study considered concurrent

surveillance of two data streams [34]; however, only a simple and

fixed probability of healthcare-seeking was used, and did not factor

in the time individuals sought care. In fact, all syndromic data

streams were associated with each other. A simulation based on

the healthcare-seeking behaviors model, which assessed individu-

als’ healthcare-seeking behavior patterns following the onset of

symptoms, is a useful framework for simulating associated

syndromic datasets.

Results from our study areas showed that clinic visit surveillance

exhibited the most favorable validity, similar to findings of

previous studies [35,36]. The clinic visit data stream, which

collects individual medical details including demographic charac-

teristics and chief complaints, makes it easy to screen out visitors

using precise symptoms related to specific diseases. Detail

individual chief complaints can help to exclude those visitors

who did not have symptom related to the target diseases. This

decreases the non-specific noise bias of baseline datasets.

Consequently, the fluctuations of visit volume data in clinics could

largely be influenced by outbreaks, and allow for fine detection.

When compared to the CV stream, the SA stream collected rough

individual information of absence reasons that was obtained from

patients, and the OTC stream could never collect individual

information about reasons for medicine purchases due privacy

concerns.

Like some previous studies [12,37], we also found that SA

showed a satisfactory performance of outbreak detection. Primary

school-aged students who gather regularly in a relatively closed

Figure 4. Baselines of three surveillance streams in six towns in Hubei, China, 2012/4/1–2013/6/30. Gray bars show three periods
separated by vacation breaks. Circles point out dips during the Chinese New Year.
doi:10.1371/journal.pone.0112255.g004
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Table 3. Probability distribution of healthcare-seeking behaviors of residents after onset of influenza-like syndrome.

Time to seek healthcare Visiting doctors Purchasing drugs Absence from schools*

N ai(%) N bi(%) N ci(%)

1 day 537 28.7 428 22.9 20 15.4

2 days 343 18.3 274 14.6 8 6.2

3 days 70 3.7 38 2.0 5 3.8

4 days 8 0.4 6 0.3 0 0.0

5 days 1 0.1 0 0.0 0 0.0

6 days 1 0.1 0 0.0 0 0.0

No behavior 913 48.7 1127 60.2 97 74.6

Total 1873 100.0 1873 100.0 130 100.0

*Population absent from schools refers to school-aged children (5–14 years old). The ai, bi, and ci values are proportions of relevant healthcare behaviors at day i, which
are used as parameters in Aj61, Bj61, and Cj61 in the healthcare-seeking behaviors model.
doi:10.1371/journal.pone.0112255.t003

Figure 5. Comparison of validities for all surveillance strategies using EARS , 3Cs algorithms. CV: clinic visit surveillance; EARS: the Early
Aberration Reporting System; OTC: over-the-counter frequency surveillance; SA: school absence surveillance. Overall single-stream surveillance
contains strategies of CV, OTC, and SA; overall multi-stream surveillance contains strategies of CV + OTC, CV + SA, OTC + SA, and CV + OTC + SA.
doi:10.1371/journal.pone.0112255.g005

Evaluation of Multi-Stream Syndromic Surveillance

PLOS ONE | www.plosone.org 10 November 2014 | Volume 9 | Issue 11 | e112255



and crowded environment, allow for diseases to spread easily.

Therefore, school absenteeism surveillance may be more sensitive

to contagious diseases. Additionally, although only 25.4% of

primary school-aged students would miss school after the onset of

an influenza-like syndrome (Table 3), it still led to a drastic

fluctuation compared to the relatively low baseline data (Figure 3-

D), so that outbreaks could still be detected effectively. There are,

however, some disadvantages to school absenteeism surveillance,

such as limited coverage (only school-aged children), and

intermittent surveillance due to schools being closed on weekends,

and vacations.

In our study areas, the OTC drug purchase frequency

surveillance exhibited inferior performance of outbreak detection,

when compared to clinical visit and school absenteeism surveil-

lance. We surmise that this occurred due to the fact that drug sale

information is less specific to diseases (not all consumers buy drugs

for illnesses; and drug sale records contain no individual medical

information; moreover drugs may be preserved during a long

period of time and to be used later). Additionally, the OTC drug

purchase frequency baseline (an average of 216 persons per day)

was much higher, so that the extra sales volume resulting from

outbreaks was not apparent (Figure 3-C). Indeed, fluctuation of

surveillance data can generally be influenced by the baseline.

Outbreak is easier to detect when the incidence and variation of

the baseline count are low relative to outbreak cases. Researchers

have reported that outbreaks with a magnitude of less than 10% of

the baseline are difficult to detect when operating at a high

specificity [2]. Therefore, detection performance of OTC drug

purchase frequency surveillance was discounted by a dilution effect

resulting from a large degree of non-specific noises in the baseline

data.

Some modifications of OTC drug purchase frequency surveil-

lance in SSI are worth performing in the future, such as collecting

individual medical information as soon as possible and reducing

non-specific baseline counts through a more refined classification

of drug categories.

Our study also showed that multi–stream syndromic surveil-

lance could improve the performance of outbreak detection at a

low level of specificity; however, this improvement was not

manifested when the specificity level was above 90%. In fact,

multi–stream syndromic surveillance seems to improve detection

performance through the collection of a greater amount of pre-

clinical information, but does so at the cost of non-specific signals.

The more data streams are used, the more non-specific signals will

be captured; this may be a possible reason for the multi-stream

surveillance’s superior performance of outbreak detection at a

lower specificity. In practice, researchers usually increase the

algorithm threshold to get a high specificity for outbreak detection.

The outbreaks that can be detected by a higher threshold,

however, usually have a stronger intensity, and a stronger outbreak

can, itself, give rise to drastic fluctuations in relevant syndromic

surveillance data streams. Therefore, in general, severe outbreaks

can be easily detected by both single-stream and multi-stream

surveillance. This bias inherent to stronger outbreaks that can be

detected at a high threshold may partly explain the similar

Figure 6. Comparison of timeliness for all surveillance strategies using EARS , 3Cs algorithm. CV: clinic visit surveillance; EARS: the Early
Aberration Reporting System; OTC: over-the-counter frequency surveillance; SA: school absence surveillance. Overall single-stream surveillance
contains strategies of CV, OTC, and SA; overall multi-stream surveillance contains strategies of CV + OTC, CV + SA, OTC + SA, and CV + OTC + SA.
doi:10.1371/journal.pone.0112255.g006
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outbreak detection performance exhibited by both single-stream

and multi-stream surveillance at a high specificity.

Like previous studies [28,33], our results also found that C1 had

the best timeliness of detection due to the fact that it used data

from 7 previous days of closest proximity to the current day (day t-

7 through day t-1) as baseline, while C2 and C3 used data from

day t-9 through day t-2 as baseline. Additionally, we found C1 was

also the superior model for validity of outbreak detection in our

study sites, although, the optimal model validity among C1, C2,

and C3 may vary across the size, distribution, and duration of

outbreaks [27].

Although outbreak simulation methods allowed for greater

flexibility and evaluated the performance of aberration detection

quantitatively, generalization from simulated outbreaks to real

outbreaks was far from straightforward [2]. Some limitations to

our simulation methods and assumptions should be addressed.

First, the dynamic model used to simulate the infectious disease

transmission in our study belongs to a deterministic model, which

is defined via a system of ordinary differential equations. An

attractive feature of this deterministic model is that it describes, in

a straightforward manner, how the number of infections evolves

through time. Nevertheless, disease transmission in real world is

stochastic and complex. Therefore, stochastic models may be more

appropriate than deterministic models with regard to fitting

models to data [38]. Some studies have reported relevant methods,

such as specifying probability distributions to the incubation and

infectious periods [16], and estimating the essential parameters

through the Markov chain Monte Carlo (MCMC) method [39] or

the sequential Bayesian method [40].

Second, the host population was homogeneously mixed,

meaning that simulated outbreaks did not account for the

heterogeneous nature of human contact. All individuals were

equally likely to come into contact with every other individual.

This ignored the actual diversity of diseases transmission across

different populations, such as transmissions in families, schools, or

social circles. In fact, in the healthcare-seeking behaviors model,

we also used a simple ‘p’ (the proportion of school-aged

population) to structure the simulated school-aged infections. This

likely underestimated the number of simulated school-aged

infections by ignoring the vulnerability of children to influenza,

as well as the fact that school children tend to spread diseases

within the school environment [41].

Third, we assumed that the entire population was susceptible at

the beginning of the simulation. On one hand, we thought this was

reasonable for a very low pre-existing immunity to influenza A

(H1N1) virus in Chinese population [23]; on the other hand, a

simulation based on an entirely susceptible population could

reflect emerging infectious diseases or bioterrorism, which are the

likely focus of syndromic surveillance.

Fourth, the simulated population was static. Natural population

change (birth rate and death rate) was ignored, because disease

outbreaks did not last for a longer period than usual.

Fifth, recall bias may existed in the questionnaire survey of

healthcare-seeking behaviors. Information about healthcare-seek-

ing behaviors was obtained from the memory of local residents by

asking them to remember how they sought health care during their

last influenza-like illness. For this reason, we did not take

syndrome severity stratification into consideration, since syndrome

severity could be biased largely towards inaccurate memories and

subjective judgments of residents who received the survey.

Sixth, for the parameters of the healthcare-seeking behaviors

model that were obtained from the local residents’ survey, the

results of our study are only suitable to the six towns in rural

Hubei, China. Although we could not extend them to other

regions or populations, our evaluation methods based on the

healthcare-seeking behaviors model may be applied anywhere.

Finally, this paper was merely a preliminary exploration on the

evaluation methods based on the healthcare-seeking behavior

model, assessing three data streams in rural Hubei, China. Other

data streams remain potential options for assessment using this

method as long as they provide information on relevant

parameters of healthcare-seeking behaviors, such as nurse hotline

calls or workplace absenteeism.

Overall, outbreak simulation based on the healthcare-seeking

behaviors model offers a method for evaluating detection

performance of multi-stream syndromic surveillance. In the six

towns within our study areas, clinic visit surveillance and school

absenteeism surveillance exhibited a satisfactory performance on

outbreak detection; multi-stream surveillance yielded superior

validity and timeliness than single-stream surveillance at low

specificity (Sp ,90%). We aim to explore other potential factors,

such as stratification by age, detection scales, and outbreak

intensity in future research.

Supporting Information
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