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Abstract

Toxic liver injury causes necrosis and fibrosis, which may lead to cirrhosis and liver failure. Despite recent progress in
understanding the mechanism of liver fibrosis, our knowledge of the molecular-level details of this disease is still
incomplete. The elucidation of networks and pathways associated with liver fibrosis can provide insight into the underlying
molecular mechanisms of the disease, as well as identify potential diagnostic or prognostic biomarkers. Towards this end,
we analyzed rat gene expression data from a range of chemical exposures that produced observable periportal liver fibrosis
as documented in DrugMatrix, a publicly available toxicogenomics database. We identified genes relevant to liver fibrosis
using standard differential expression and co-expression analyses, and then used these genes in pathway enrichment and
protein-protein interaction (PPI) network analyses. We identified a PPI network module associated with liver fibrosis that
includes known liver fibrosis-relevant genes, such as tissue inhibitor of metalloproteinase-1, galectin-3, connective tissue
growth factor, and lipocalin-2. We also identified several new genes, such as perilipin-3, legumain, and myocilin, which were
associated with liver fibrosis. We further analyzed the expression pattern of the genes in the PPI network module across a
wide range of 640 chemical exposure conditions in DrugMatrix and identified early indications of liver fibrosis for carbon
tetrachloride and lipopolysaccharide exposures. Although it is well known that carbon tetrachloride and lipopolysaccharide
can cause liver fibrosis, our network analysis was able to link these compounds to potential fibrotic damage before
histopathological changes associated with liver fibrosis appeared. These results demonstrated that our approach is capable
of identifying early-stage indicators of liver fibrosis and underscore its potential to aid in predictive toxicity, biomarker
identification, and to generally identify disease-relevant pathways.
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Introduction

Exposure to toxic chemicals can lead to liver injury through a

variety of mechanisms, such as oxidative stress, the immune

response, activation of apoptotic pathways, and necrosis [1]. Liver

fibrosis is a common pathologic feature observed in a wide

spectrum of liver injuries [2,3] and is marked by inflammation and

excessive accumulation of extracellular matrix (ECM) components

[4]. Liver fibrosis results in scar formation and, if unresolved, leads

to cirrhosis, portal hypertension, and liver failure [4]. Liver fibrosis

typically starts with apoptosis or necrosis of hepatocytes, which

causes reactive oxygen species generation. This process leads to

the release of inflammatory mediators and ultimately results in

activation of hepatic stellate cells [3], the main ECM-producing

cells in the liver. This activation of hepatic stellate cells is the key

pathogenic mechanism of liver fibrosis [3–6]. Activated hepatic

stellate cells lead to further inflammation and ECM generation,

which results in the replacement of liver parenchymal cells with

ECM [5]. Despite recent progress, our understanding of the

molecular mediators of liver fibrosis remains incomplete, and we

are still in the process of identifying such mediators [7,8].

Although fibrotic damage is reversible, there are no approved

drugs or treatments for liver fibrosis. Key in understanding damage

and control of fibrosis is accurate diagnosis or early indicators of

damage. The gold standard for diagnosing fibrosis is currently via

liver biopsy. This invasive method has many limitations, such as

inter- and intra-observer variations and sampling variability [9].

Thus, there is a need to identify sensitive, specific, and non-invasive

biomarkers of liver fibrosis. Identification of such biomarkers will

improve diagnosis and allow better clinical management of the

disease. In the military, this capability would aid in field assessment

and potentially enable timely evacuation or guide return-to-duty
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decisions. Elucidation of the pathways and networks associated with

liver fibrosis will provide insight into the molecular mechanisms of

this disease and, importantly, help us to identify mechanism-based

biomarkers of liver damage.

Computational systems biology approaches are now routinely

used to analyze gene expression data and to gain insight into the

molecular mechanisms of many diseases [10–15]. Pathway

enrichment analysis provides a biological interpretation of gene

lists obtained from microarray data using manually curated

pathway databases, such as the Kyoto Encyclopedia of Genes

and Genomes (KEGG) and Reactome [16,17]. The BioSystems

database [18,19] provides an integrated resource of pathways from

several major pathway databases, including KEGG and Reac-

tome. Huang et al. [20] have summarized the various tools and

statistical methods available for pathway enrichment analysis and

their utility in elucidating the mechanisms of diseases [21–23]. In

literature related to liver fibrosis, the work of Affo et al. [24]

utilizes KEGG pathway analysis in identifying the role of focal

adhesion and cytokine-cytokine receptor interaction pathways in

alcoholic hepatitis. Although widely used, pathway analysis has

Figure 1. Workflow used in this study to identify pathways and networks associated with liver fibrosis.
doi:10.1371/journal.pone.0112193.g001
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some limitations [25]. Foremost, pathway analysis relies exclu-

sively on experimentally confirmed, curated data. Only a small

fraction of human genes map to curated pathway collections (e.g.,

KEGG [14]); thus, pathway analysis is inherently biased against

the discovery of new molecular mediators. For example, we found

that only 5,870 of the ,21,000 human genes mapped to the 229

KEGG pathways [26]. Moreover, the gene networks comprising

the pathway maps are not mutually exclusive, and the same gene

can occur in many pathways [25]. Integrated analyses of gene

expression data with protein-protein interaction (PPI) networks

enable us to partly overcome the limitations associated with

pathway analysis. The potential of this integrated approach has

been shown in identifying biomarkers for breast cancer [27] and in

understanding the molecular mechanisms of dilated cardiomyop-

athy [28], hepatitis C virus infection [29], and cancer and heart

disease [30–34]. However, to the best of our knowledge, no such

integrated analysis has been reported for liver fibrosis.

Thus, our goal in this study was to identify liver fibrosis-relevant

pathways and networks based on an integrated gene expression

and PPI network analysis. We analyzed the gene expression data

from a range of chemical exposure conditions that produced

periportal liver fibrosis in DrugMatrix, a publicly available

toxicogenomics database [35]. We carried out differential expres-

sion and co-expression analysis using rank product and hierarchi-

cal clustering, respectively, to identify genes associated with liver

fibrosis [36]. We then examined these genes in two separate

analyses. In the first analysis, we identified the KEGG pathways

associated with liver fibrosis. In the second analysis, we integrated

the gene expression data with the high-confidence human PPI

network to obtain liver fibrosis-relevant sub-networks [37]. We

identified a PPI network module associated with liver fibrosis that

includes known liver fibrosis-relevant genes like Timp1, Lgals3,

Ctgf, and Lcn2, along with several new genes. We further

analyzed the expression pattern of the genes in the PPI network

across a wide range of 640 chemical exposure conditions in

DrugMatrix and linked compounds such as carbon tetrachloride

to potential fibrotic damage before histopathological evidence of

liver fibrosis appeared. These results illustrate the potential of our

approach to aid in toxicity prediction and biomarker discovery.

Materials and Methods

Figure 1 shows the overall workflows used in this study to

identify liver fibrosis-relevant pathways and interaction networks.

We used two separate but complementary approaches to map the

overall gene transcriptional response to liver fibrosis via 1)

enrichment analysis of knowledge-based pathways association,

and 2) integration of gene expression data with PPI networks to

identify interaction networks. These fibrosis-relevant interaction

networks can be considered as de novo pathways.

Data collection and processing
We used DrugMatrix, a publicly available toxicogenomics

database [35,38], for our analyses. DrugMatrix is a large collection

of gene expression, hematology, histopathology, and clinical

chemistry data obtained from Sprague-Dawley rats after exposure

to a range of chemicals, including industrial chemicals, toxicants,

and drugs with multiple time intervals, dose ranges, and tissues for

each chemical [35]. A chemical exposure condition in DrugMatrix

data refers to exposure to a particular chemical at a particular dose

and time. We downloaded the DrugMatrix liver gene expression

data generated using Affymetrix GeneChip Rat Genome 230 2.0

Arrays from the National Institute of Environmental Health

Sciences (NIEHS) server (https://ntp.niehs.nih.gov/drugmatrix/

index.html). Of the 2,218 microarray CEL files in this database,

1,941 were chemical exposures and 277 were controls. We

performed background correction, quantile normalization, and

summarization using the robust multi-array average method in R/

BioConductor package affy [26,39–41]. We then used the

BioConductor package ArrayQualityMetrics to assess the quality

of the microarray data and removed 155 outlier arrays [42]. We

reprocessed the remaining arrays using the robust multi-array

average method and used this final normalized data for all our

analyses. With the BioConductor package genefilter, we carried

out non-specific filtering of the genes [43]. We removed probe sets

without Entrez ID or with low variance across chemical exposures

based on inter-quartile range. We additionally filtered probe sets

based on ‘‘Present’’ calls using the BioConductor package affy,

retaining only the probe sets for which at least 25% of the

chemical exposures had ‘‘Present’’ calls for all replicates within the

chemical exposure condition. After calculating the average

intensity between the replicates of a chemical exposure condition,

we computed log-ratios for each gene between treatments and

their corresponding controls. Our final log-ratio matrix contained

7,826 genes and 640 chemical exposure conditions.

Identifying genes relevant to liver fibrosis
The DrugMatrix database provides histopathology data associ-

ated with each chemical exposure condition. There were five

chemical exposure conditions that produced liver periportal

fibrosis with a histopathology score .1 (Figure S1). We carried

out a quality check by clustering the replicates of these five

chemical exposures, along with their respective controls. Ideally,

the chemical exposures and controls would have clustered

separately. But all replicates of 5-day exposures to Crotamiton-

750 mg/kg clustered with controls rather than with other

treatments (Figure S1). Hence, we excluded this condition from

the liver fibrosis-producing condition set. Table 1 lists the four

chemical exposure conditions that were used in this study as the

liver fibrosis-producing condition set. All replicates of the four

chemical exposure conditions had a histopathology score of 2. We

used the rank product method to identify differentially expressed

genes (DEG) [36]. Rank product is a non-parametric, permuta-

Table 1. Chemical exposure conditions that produced periportal liver fibrosis.

Chemical Dose (mg/kg) Duration (days) Histopathology (severity score)

1-Naphthylisothiocyanate 30 7 2

1-Naphthylisothiocyanate 60 7 2

4,49-Methylenedianiline 81 5 2

N-Nitrosodimethylamine 10 5 2

doi:10.1371/journal.pone.0112193.t001
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tion-based method that has been widely used in many studies

[36,44,45]. With this method, the fold-change values were

converted into rank, and then the significance of the obtained

rank, including the false discovery rate (FDR) p-value, was

calculated. We used the BioConductor package RankProd for

this analysis [44]. This method produces separate lists of up-

regulated and down-regulated genes. We considered all genes with

an FDR ,0.05 to be significantly differentially expressed. We

carried out the rank product analysis separately for each of the

four chemical exposure conditions; the genes that were signifi-

cantly differentially expressed in at least two of the four chemical

exposure conditions that produced periportal liver fibrosis were

considered as fibrosis-relevant DEGs.

We carried out hierarchical clustering using the R package

hclust to identify co-expressed genes [21]. We clustered the genes

in the log-ratio matrix using their log2 ratio values across 640

chemical exposure conditions. We used the Pearson correlation

and the average linkage method to perform the clustering, and the

R package dynamicTreeCut for automated extraction of clusters

[46]. The dynamic tree cut algorithm implements an automated

iterative process to identify and split sub-clusters from a

dendrogram until the minimum cluster size threshold is reached

[46]. We used the cutreeDynamic function in this package with

minimum cluster size set to 16, method set to hybrid, and deepsplit
set to True.

We calculated cluster activation scores to identify liver fibrosis-

relevant clusters in order to identify clusters whose constituent

genes show altered gene expression (either up- or down-regulation)

in chemical exposure conditions that produce periportal liver

fibrosis. To calculate a cluster activation score, we first normalized

the log-ratio values of each gene across 640 chemical exposure

conditions by converting them into Z-scores. The Z-score of gene i
under chemical exposure condition j is given by

Zi,j~
Xi,j{mi

si

, ð1Þ

where Xi,j is the log-ratio value for gene i under chemical exposure

condition j, mi is the average log ratio for gene i across all 640

chemical exposure conditions, and si is the standard deviation of

the log ratio for gene i across all 640 chemical exposure conditions.

Next, we obtained the cluster activation scores for liver fibrosis by

averaging the Z-scores of all genes within a cluster and across all

chemical exposure conditions that produced periportal liver

fibrosis. The activation score Ac of cluster c in liver fibrosis is

given by

Ac~
1

NcNf

XNc

i[c

XNf

j

Z
i,j

, ð2Þ

where Nc is the number of genes associated with cluster c, Nf is

the number of chemical exposure conditions that produce

periportal liver fibrosis, and Zi,j is the Z-score of gene i under

chemical exposure conditions that produce periportal liver fibrosis

j. We used an absolute cluster activation score cutoff of 2,

corresponding to the 95th percentile of the probability density

distribution, and selected genes in clusters above this threshold as

liver fibrosis-relevant co-expressed genes.

In general, to find disease-relevant genes, either differential

expression or co-expression analysis is commonly used. Utilization

of both approaches together will allow us to overcome the

limitation associated with each approach. Hence, we combined

the gene list from both approaches, i.e., differential expression and

co-expression, to form the liver fibrosis-relevant gene set.

Pathway enrichment analysis
We used the Database for Annotation, Visualization, and

Integrated Discovery (DAVID) tool to perform KEGG pathway

enrichment analysis [47]. The pathways below a Benjamini-

Hochberg FDR ,0.05 were considered to be significantly

enriched. We used the liver fibrosis-relevant gene set, i.e., the

combined list of genes determined by differential expression and

co-expression analysis to be relevant to liver fibrosis, for the

pathway enrichment analysis. Then we separately used the up-

regulated genes and down-regulated genes in this set and carried

out pathway enrichment analysis.

PPI network analysis
Yu et al. [37] used the interaction detection based on shuffling

(IDBOS) approach to generate a high-confidence PPI network and

showed that the resulting high-confidence PPIs reduce the noise

inherent in aggregated PPIs. In their work, they created

experimentally derived high-confidence PPI networks for both

rats and humans [37]. The rat high-confidence PPI network

contained 1,001 nodes, whereas the human high-confidence PPI

network consisted of 14,230 nodes. We chose to use the human

high-confidence PPI network due to its much larger coverage. The

rat probe-set identifiers were mapped to their corresponding

human gene identifiers using orthology mapping tools [26,48,49].

This approach followed the work by Zhang et al. [50] for mapping

other species’ gene expression data to a human PPI network. We

utilized the KeyPathwayMiner program in Cytoscape 2.8 to

obtain the liver fibrosis-relevant sub-network [51–53]. Key-

PathwayMiner attempts to find maximally connected sub-

networks for the input query genes with gene expression data

using the ant-colony optimization algorithm [51]. We used

KeyPathwayMiner with ant-colony optimization algorithm, node
exceptions (K) set to 100, and case exceptions (L) set to 0. The node
exception (K) value provided the allowance for genes that were not

present in the input gene set and the case exception (L) defined the

number of conditions in which the input gene may not be active.

We separately ran KeyPathwayMiner using the up-regulated and

down-regulated genes in liver fibrosis-relevant DEGs and co-

expressed genes and extracted the sub-networks. We then

combined the four sub-networks into one final liver fibrosis-

relevant sub-network. This sub-network was created by the union

of the four sub-networks. We did not use the intersection of the

four sub-networks, as it contained only two nodes. Finally, we

clustered this liver fibrosis-relevant sub-network using the topol-

ogy-based network clustering program in Cytoscape, Clusterviz.

We used the EAGLE algorithm in Clusterviz with default

parameters [54]. As implemented, Clusterviz generated 11

network modules.

Module characterization
We mapped the proteins in the PPI network modules to the rat

gene expression Z-score matrix. We calculated the activation

scores (Equation 2) for the 11 network modules under conditions

that caused periportal liver fibrosis. The method is the same as

described above, except that here we used the genes in the module

instead of cluster. We collected 28 known liver fibrosis-relevant

genes from literature (Set 1) [3,5,55,56]. Of these 28 genes, 26

mapped to the high-confidence human PPI network. We also

collected genes that are known to be associated with liver cirrhosis

from the Comparative Toxicogenomics Database (CTD) (Set 2)

[57]. Of the 126 genes with direct evidence of an association with

Pathways and Networks Associated with Liver Fibrosis
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liver cirrhosis, 95 mapped to the high-confidence human PPI

network. We used the Fisher exact test to calculate the enrichment

of these genes (Set 1 and Set 2) in each PPI network module. The

module genes were also characterized by gene ontology (GO)

biological process-term enrichment using the DAVID tool. We

used the Revigo tool to visualize the GO enrichment results [58]

and analyzed the network modules in terms of activation in liver

fibrosis, enrichment with known liver fibrosis-relevant genes, and

enrichment of liver fibrosis-relevant GO terms. Based on this

analysis, we prioritized one PPI network module (M5) as a liver

fibrosis-relevant network module.

We used two statistical significance tests to analyze whether the

network module M5 was obtained by random chance. Our null

hypothesis was that the observed number of nodes (M5nodes) and

edges (M5edges) in module M5 were obtained by random chance.

In the first analysis, we randomly selected 92 proteins from the

human PPI network and counted the number of nodes (Rnodes)

and edges (Redges) of the largest connected component. This

process was repeated 1,000 times. We computed the number of

times Rnodes$M5nodes, denoted as Nrandnode. Similarly, we

computed the number of times Redges$M5edges, denoted as

Nrandedge. Then we computed the probability of obtaining a

similar number of nodes by random chance using P =

Nrandnode/1,000, and the probability of obtaining a similar number

of edges by random chance using P = Nrandedge/1,000. In the

second analysis, we shuffled the human PPI network and then

mapped the proteins in the M5 network to this randomized

network. We preserved the average node degree during network

shuffling. Similar to the first analysis, we extracted the largest

connected component, counted the number of nodes and edges,

and calculated the probability of obtaining M5 parameters by

random chance. We analyzed the overall robustness of the M5

module by comparing the modules generated from a reduced

number of samples to those generated from the full dataset. We left

out one quarter of the samples from the differential gene

expression dataset and analyzed the remaining samples, repeating

this procedure four times and leaving out each quarter of the data

once. We then compared the overlap of the final module proteins

from these four analyses with the module M5 proteins and found

an average overlap of 72%. This showed that our method

identified roughly the same genes even when samples were

missing. We analyzed the expression of genes in module M5 in

chemical exposures that produced periportal liver fibrosis across

different time periods of exposures. Among the four chemical

exposure conditions that produced periportal liver fibrosis, earlier

time points were not available for exposure with N-nitroso

dimethylamine at 10 mg/kg. Data were available for exposures

to 1-naphthyl isothiocyanate at 30 mg/kg and 60 mg/kg at all

time points, i.e., 0.25 day, 1 day, and 3 days, and for exposures to

4,4’-methylene dianiline at 1 day and 3 days. We mapped the

expression profile of genes in module M5 across different time

periods using the average log2 ratio of the available chemical

exposure data at that time point. Finally, the genes in the

prioritized network module M5 were used to cluster the 640

chemical exposure conditions in the DrugMatrix database. We

used the clustering software cluster3 for this purpose [59]. We

Figure 2. Number of fibrosis-relevant genes from differential
and co-expression analysis. Number of genes in the liver fibrosis-
relevant differentially expressed gene list and liver fibrosis-relevant co-
expressed gene list and the overlap between them.
doi:10.1371/journal.pone.0112193.g002

Table 2. KEGGa pathway enrichment for all genes relevant to liver fibrosis.

Pathway Count BHb

Prion diseases 11 0.003

Leukocyte transendothelial migration 19 0.008

Focal adhesion 26 0.007

Fc gamma R-mediated phagocytosis 16 0.006

Pyruvate metabolism 10 0.010

Viral myocarditis 15 0.011

Antigen processing and presentation 14 0.035

Systemic lupus erythematosus 14 0.037

Chemokine signaling pathway 21 0.035

Complement and coagulation cascades 12 0.033

Regulation of actin cytoskeleton 24 0.031

ECMc-receptor interaction 13 0.030

PPARd signaling pathway 12 0.029

Arginine and proline metabolism 10 0.035

Glycerolipid metabolism 9 0.035

aKyoto Encyclopedia of Genes and Genomes
bBenjamini-Hochberg false discovery rate
cExtracellular matrix
dPeroxisome proliferator-activated receptor
doi:10.1371/journal.pone.0112193.t002

Pathways and Networks Associated with Liver Fibrosis
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evaluated the specificity of network module M5 using the average

Z-score across the genes in M5 for each of the 640 chemical

exposure conditions.

External validation
In order to further demonstrate the relevance of network

module M5 in liver fibrosis, we evaluated the M5 genes in two

external datasets (GSE13747 and GSE6929) from the Gene

Expression Omnibus (GEO). Both datasets used Affymetrix

GeneChip Rat Genome 230 2.0 Arrays. In GSE13747, liver

fibrosis was produced by bile duct ligation [60]. Six replicates of

liver fibrosis samples and six controls were available. In GSE6929,

liver cirrhosis was induced by inhalation of carbon tetrachloride

[13]. Four replicates of liver cirrhosis controls and four replicates

of sunitinib (SU11248)-treated samples were available. We used

the same steps described above for the DrugMatrix database to

preprocess these two external datasets and calculated the log2 ratio

between the treatment and controls. Finally, we matched the genes

in module M5 and calculated the correlation between the average

log2 ratios in the four chemical exposure conditions that produced

periportal liver fibrosis from the DrugMatrix database with the

log2 ratio from external datasets.

Results and Discussion

Identification of liver fibrosis-relevant genes
We used differential gene expression and co-expression analysis

to identify liver fibrosis-relevant genes. As outlined in the Materials

and Methods section, we analyzed the chemical exposures in the

DrugMatrix data that produced periportal liver fibrosis with a

histopathological score .1. We used the rank product approach

and identified 400 liver fibrosis-relevant DEGs, of which 192 genes

were significantly up-regulated, and 208 genes were significantly

down-regulated. Here, we used an FDR ,0.05 as the cutoff value

to select DEGs. This cutoff-based approach knowingly excludes

DEGs to minimize false positives and may not capture the

complete picture of the disease or processes being studied [61–63].

For example, many genes that do not meet the cutoff criteria can

be involved in the same pathway as the DEGs and provide insights

into the altered disease process [63]. Identifying co-expressed

genes by means of gene clustering is an alternative approach that

does not use cutoffs or thresholds at the individual gene level.

Instead, genes are clustered based on their expression profiles

across a wide range of exposures in order to identify gene sets that

are expected to have similar functions, i.e., participate in related

pathways [64]. We used hierarchical clustering to cluster 7,826

genes based on their log-ratio values across 640 chemical exposure

conditions, which yielded 210 gene clusters containing an average

of 37 genes each. Unlike differential expression analysis, these co-

expressed genes were not linked or associated with liver fibrosis or

any other particular disease. We used the cluster activation scores

defined in Equation 2 to establish the connection between the

gene clusters and liver fibrosis. We found 565 genes in the nine

clusters with activation scores .2 and 42 genes in the two clusters

with activation scores ,22. The genes in these clusters were used

as liver fibrosis-relevant co-expressed genes. Finally, we combined

the differentially expressed and co-expressed gene lists to create a

liver fibrosis-relevant gene set with 897 genes. There were 110

genes in common between the differentially expressed and co-

expressed genes, and we show the overlap between these two sets

as a Venn diagram (Figure 2). Table S1 provides the list of 897

genes, along with log-ratio values, in the four chemical exposure

conditions that produced periportal liver fibrosis.

Pathway enrichment analysis
Table 2 lists the significantly enriched KEGG pathways

derived from the liver fibrosis-relevant gene set. These pathways

include leukocyte transendothelial migration, focal adhesion,

chemokine signaling, regulation of the actin cytoskeleton pathway,

and ECM-receptor interaction, and they mainly represent liver

fibrosis-related processes. These processes are consistent with

previous reports for liver fibrosis. Injured liver cells and activated

Figure 3. Genes that mapped to the enriched Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways. The average log2 fold-
change ratio across chemical exposures that produced periportal liver fibrosis was used as the gene expression value. Genes with average log2 fold-
change ratios .0.6 are colored in red. Genes with average log2 fold-change ratios ,20.6 are colored in green. Genes whose average log2 fold-
change ratios are between 0.6 and 20.6 are colored in grey.
doi:10.1371/journal.pone.0112193.g003

Pathways and Networks Associated with Liver Fibrosis
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hepatic stellate cells release chemokines that recruit leukocytes to

the site of injury [65]. An elevated expression of chemokines and

chemokine receptors has been reported in both animal models and

clinical cases of liver fibrosis [66]. Hepatic stellate cell migration is

an essential process in fibrosis [67]. Hepatic stellate cells are also

known to express adhesion molecules and a-smooth muscle actin

Table 3. Activation of network modules and enrichment of known genes relevant to liver fibrosis.

Module
Activation score in
Liver fibrosis

No. of genes
in module

No. of fibrosis
genes (set 1)a

p-value
(set 1)a

No. of cirrhosis
genes (set 2)b p-value (set 2)b

M1 1.47 150 1 0.24 1 1

M2 0.95 144 3 0.002 5 0.003

M3 1.67 127 2 0.02 0 1

M4 1.92 110 1 0.18 1 0.52

M5 2.12 92 6 1.28E-08 13 3.25E-14

M6 0.77 81 1 0.14 2 0.10

M7 1.09 58 - 1 1 0.32

M8 1.38 49 - 1 2 0.04

M9 0.36 46 - 1 1 0.27

M10 0.87 40 - 1 1 0.24

M11 1.38 34 - 1 1 0.20

aLiver fibrosis-relevant genes collected from literature [3,5,55,56]
bLiver cirrhosis-relevant genes collected from the Comparative Toxicogenomics Database (CTD)
doi:10.1371/journal.pone.0112193.t003

Figure 4. Statistical significance analysis of network module M5. A) The comparison of number of nodes in M5 to that from random
sampling analysis. B) The comparison of number of edges in M5 to that from random sampling analysis. C) The comparison of number of nodes in M5
to the number present in shuffled protein-protein interaction (PPI) networks. D) The comparison of number of edges in M5 to the number present in
shuffled PPI networks.
doi:10.1371/journal.pone.0112193.g004

Pathways and Networks Associated with Liver Fibrosis
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(SMA) [4]. Activated hepatic stellate cells are known to secrete

prion protein [68,69]. Innate immunity and adaptive immunity

play a major role in hepatic stellate cell activation and propagation

of liver fibrosis [70]. Anticoagulant drugs and peroxisome

proliferator-activated receptor (PPAR)-c agonists were reported

to have an anti-fibrotic effect in experimental liver fibrosis, which

is consistent with the enriched pathways, such as complement and

coagulation cascades, and the PPAR signaling pathway [70].

We analyzed genes involved in the enriched pathways to

ascertain whether we could provide new, testable hypotheses.

Genes were mapped to the enriched KEGG pathways (Figure 3)

and Table S2 provides the complete list of these genes with

pathway information, and their average log2 ratio in chemical

exposures that produced periportal liver fibrosis. The log2 ratio is

commonly used in microarray data analysis, and a value of 0.6

corresponds to a ,1.5 fold-change (up-regulation) in gene

expression. Col1a1, Col1a2, Col4a1, Col4a2, Col5a2, Itgb1, Plat,
Plau, Pdgfa, Ezr, and Msn were up-regulated and have an

average log2 ratio .0.6. These genes are known to be altered in

liver fibrosis [4,67,71]. We also analyzed the gene list (Table S2)

for potential new candidates and found genes such as Lgmn and

Limk2, which were up-regulated in all four chemical exposure

conditions that produced periportal liver fibrosis. These genes are

potential candidates for further exploration. Next, we carried out

pathway enrichment analyses using the up- and down-regulated

genes separately (Tables S3 and S4). The significantly up-

regulated pathways were related to liver fibrosis-relevant processes,

whereas the significantly down-regulated pathways were related to

metabolism. The down-regulation of metabolism-related pathways

could either be related to external factors, such as altered food

intake, or could also be an indication of reduced liver function.

Although pathway enrichment analyses are useful and provide

an overview of biological processes associated with our gene list,

the method has some well-known limitations. Pathway analysis is

based on curated data and is limited to the information present in

the underlying knowledge database. Moreover, the pathway

enrichment based on an over-representation analysis approach

treats pathways as simple gene lists without accounting for network

connectivity [72]. As such, pathway analysis has limited utility in

identifying new molecular mediators or new pathways. Using the

connectivity information or pathway topology may provide us with

alternative approaches to capture the most relevant pathways

associated with a disease.

PPI network analysis
Based on the premise that proteins that are closely connected to

each other in a network are more likely to be involved in similar

processes, an integration of gene expression with PPI networks has

been used to identify disease-specific networks [73]. Such networks

have been proposed as de novo pathways and partly remedy the

limitations of KEGG pathway analysis [25]. Consequently, we

mapped the liver fibrosis-relevant genes to a high-confidence

human PPI network. Out of 897 fibrosis-relevant genes, 606

mapped to the human PPI network. We extracted a liver fibrosis-

relevant sub-network with 902 nodes (proteins) and 2,527 edges

using KeyPathwayMiner. Out of the 606 fibrosis-relevant genes,

Figure 5. Liver fibrosis-relevant network module M5. Proteins encoded by genes with average log2 fold-change ratios.0.6 are colored in red.
Proteins encoded by genes with average log2 fold-change ratios ,20.6 are colored in green. Proteins encoded by genes with average log2fold-
change ratios between 0.6 and 20.6,20.6 are colored in grey. Proteins without corresponding gene expression data are shown as white circles.
doi:10.1371/journal.pone.0112193.g005
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573 were present in this sub-network. Finally, we clustered the 902

proteins in the liver fibrosis-relevant sub-network into 11 PPI

network modules. Data S1 – S3 provides all the input and

Cytoscape session files associated with PPI network analysis.

Table S5 provides the mapping of rat probe IDs to human gene

IDs, and Table S6 provides the protein membership in the PPI

network modules, along with their gene expression data.

Module characterization and potential application
We further analyzed the 11 network modules in terms of

activation in chemical exposure conditions that produced

periportal liver fibrosis, enrichment with known liver fibrosis-

relevant genes, and enrichment of GO terms. Table 3 shows the

module activation scores 1A1c calculated using Equation 2 for

chemical exposure conditions that produced periportal liver

fibrosis. Module M5 with 92 genes coding for proteins was the

highest activated module with an activation score of 2.12. Next, we

analyzed the enrichment of known fibrosis-relevant genes collected

from the literature (Table S7) [3,5,55,56]. Table 3 shows the p-

values for enrichment of known fibrosis-relevant genes in the

network modules. Modules M2, M3, and M5 were enriched with

liver fibrosis-relevant genes with p-values ,0.05. Module M5 had

the lowest enrichment p-value with six known fibrosis-associated

genes coding for proteins mapped to this module: TIMP1,

APOA1, CTGF, LGALS3, TGFB1, and MMP-2. CTD provides

curated information on genes associated with a disease [57]. Liver

fibrosis was not curated in CTD, but genes associated with liver

cirrhosis, the final stage of liver fibrosis, were available. We further

analyzed the enrichment of genes associated with liver cirrhosis

collected from CTD (Table S8) and found module M5 to be the

module most enriched with liver cirrhosis-related genes (Table 3).

We also characterized the 11 modules using the GO biological

process-term enrichment analysis. We found that module M5 was

enriched with liver fibrosis-relevant GO terms such as ECM
organization and Wound healing. Figure S2 shows the enriched

GO biological process-terms for module M5, and Table S9
provides the entire list of enriched GO terms for all modules.

Based on activation in liver fibrosis-producing conditions, enrich-

ment of known liver fibrosis-relevant genes, and liver fibrosis-

relevant GO terms, we selected module M5 as the top liver

fibrosis-relevant network module identified from this analysis.

First, we ascertained whether the network module M5 could be

observed by random chance. As outlined in the Materials and

Methods section, we carried out two statistical significance tests

based on random sampling and permutation of the network. The

average node degree of the network was 12.76 and it was

preserved during network shuffling. Our null hypothesis was that

the number of nodes and edges in M5 could be obtained by

random chance. In both tests, M5 was significantly different from

random occurrence, and the probability of finding this module by

random chance was essentially zero (Figure 4).

Second, we plotted the PPI network for the protein products

encoded by the genes in module M5 (Figure 5). Many of the

molecular interactions captured were already reported to be

associated with liver fibrosis, validating the computational

approach. For example, the network map shows connectivity

between the genes coding for matrix metalloproteinases and the

up-regulated genes encoding TIMP1, COLs and FBN1 (Fig-
ure 5) [4]. This network map supports a published disease

mechanism where increased expression of the gene coding for

TIMP1, the negative regulator of matrix metalloproteinases, leads

to an increased accumulation of ECM proteins, e.g., collagens

(COLs). The network module M5 included other genes encoding

the proteins implicated in the pathogenesis of fibrosis (e.g., LUM,

CTGF, LGALS3, LCN2, PDGFR, PLAT, and LOX) [4,74–76].

Genes coding for the integrin receptors (ITG) in this network

Figure 6. Myocilin interaction network. First neighbors of myocilin (MYOC) in the entire high-confidence human protein-protein interaction (PPI)
network.
doi:10.1371/journal.pone.0112193.g006
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interact with ECM proteins that support their known role as

mediators of pro-fibrogenic signaling of ECM proteins [77]. In

addition to retrieving genes coding for proteins that are already

known to be associated with liver fibrosis, this network module also

retrieved some potential new candidate protein products. One

such candidate is LGMN (average log2 ratio of 1.24), a cysteine

protease that functions in ECM remodeling, but has no known

associations with liver fibrosis [78]. Another candidate is the gene

encoding PLIN3 (mannose-6-phosphate receptor binding protein),

with an average log2 ratio of 1.29; it interacts with IGF2R in the

M5 network. PLIN3 is known to play a role in the pathogenesis of

steatosis, and is also reported to play a role in PGE2 production

[79,80].

Third, we used the network analysis to identify proteins encoded

by genes that do not change in expression, but may form PPI

networks. Among the 92 proteins in M5, 30 are K-node exceptions

obtained using KeyPathwayMiner, based on their connection to

fibrosis-relevant proteins. In protein network analysis, the concept

of guilt by association is well known [14]. If a protein is known to

be associated with many proteins involved in a biological process,

it can be hypothesized to play a role or to be related to the

biological process associated with these proteins. For example, the

genes encoding osteopontin (SPP1) and vitronectin (VTN) are

known to be associated with liver fibrosis [4,81]. These genes did

not reach the fold-change threshold in our preprocessed expres-

sion dataset, but the network interactions with other fibrosis-

relevant protein products that did change in expression predicted

them to be fibrosis-relevant (Figure 5). In addition to retrieving

known proteins, the network analysis also identified MYOC, a

protein with no reported association with liver fibrosis. MYOC is a

secreted glycoprotein involved in the pathogenesis of glaucoma

[82]. MYOC interacts with many up-regulated genes in the high-

confidence human PPI network, including genes that encode

TIMP1, LGALS3, FBN1, COL1A2, and COL3A1 (Figure 6).

Based on its connection with many liver fibrosis-relevant proteins,

MYOC is a new testable candidate in fibrosis diagnosis and/or

pathogenesis. We also analyzed the expression profile of genes in

module M5 in chemical exposures that produced periportal liver

fibrosis across different time periods of exposures (Figure 7). Only

a few genes were activated (i.e., log2 ratio .0.6) after 0.25 day and

1 day, but at $3 days, most of the genes exhibited increased

expression (Figure 7).

We performed hierarchical clustering of the 640 chemical

exposure conditions present in the DrugMatrix database using the

expression data for the genes in module M5. We identified a single

cluster that included all four chemical exposure conditions that

Figure 7. Activation of genes encoding proteins in liver fibrosis-relevant network module M5 at different time points. Genes
encoding proteins with average log2 fold-change ratios.0.6 are colored in red. Genes encoding proteins with average log2 fold-change ratios ,20.6
are colored in green. Genes encoding proteins with average log2fold-change ratios between 0.6 and 20.6,20.6 are colored in grey. A) Activation at
0.25-day exposure. The mapped expression profile is the average log2 ratio in 1-naphthyl isothiocyanate 30 mg/kg and 60 mg/kg, at 0.25-day
exposure. B) Activation at 1 day of exposure. The mapped expression profile is the average log2 ratio in 1-naphthyl isothiocyanate 30 mg/kg and
60 mg/kg, and 4,4’-Methylenedianiline 81 mg/kg, at 1 day of exposure. C) Activation at 3 days of exposure. The mapped expression profile is the
average log2 ratio in 1-naphthyl isothiocyanate 30 mg/kg and 60 mg/kg, and 4,4’-Methylenedianiline 81 mg/kg, at 3 days of exposure. D) Activation
at .3 days of exposure. The mapped expression profile is the average log2 ratio across chemical exposures that produced liver fibrosis.
doi:10.1371/journal.pone.0112193.g007
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were initially identified with grade 2 periportal liver fibrosis

(Figure 8a). Most of the 17 conditions in the cluster were

associated with compounds that cause fibrosis. Vinblastine,

carmustine, and allyl alcohol all had conditions within the drug

matrix dataset that caused periportal fibrosis, but they did not

meet the histopathology grade 2 threshold used for our initial

Figure 8. Analysis of genes in liver fibrosis-relevant network module M5. A) Hierarchical clustering of 640 chemical exposures using genes
in liver fibrosis-relevant network module M5. The conditions that clustered with four liver fibrosis-producing conditions are highlighted and listed.
Genes with Z-scores.2 are colored in red. Genes with Z-scores ,22 are colored in green. Genes with Z-scores between 2 and -2 are colored in
yellow. NA in the table represents that histopathological data was not available for that chemical exposure condition. B) Average Z-scores across the
genes in module M5 for each of the 640 chemical exposure conditions.
doi:10.1371/journal.pone.0112193.g008

Figure 9. Validation with external datasets. M5 gene expression compared with external datasets. A) GSE13747 represents liver fibrosis
produced by bile duct ligation. B) GSE6929 represents sunitinib (SU11248) treatment in liver cirrhosis.
doi:10.1371/journal.pone.0112193.g009
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analysis. Carbon tetrachloride and lipopolysaccharide exposures

were present in this cluster (Figure 8a). Analysis of the literature

shows that both carbon tetrachloride and lipopolysaccharide are

well known agents that cause liver fibrosis [66]. In the DrugMatrix

database, a 28-day exposure study with carbon tetrachloride

showed histopathological evidence of liver fibrosis; however, gene

expression data were not available for this time point. Further-

more, all but one (crotamiton-750 mg/kg exposure) of the

chemicals in the DrugMatrix database that caused periportal

fibrosis and had Affymetrix arrays for the liver were identified in

this cluster. The data associated with the crotamiton-750 mg/kg

exposure most likely represents an outlier in the underlying

dataset. Thus, our analysis has the potential to generate gene sets

that could predict the early onset of liver fibrosis, consistent with

earlier reports that gene expression analysis of liver biopsy samples

could complement histopathological data [83].

To evaluate whether network module M5 activation was

specific for liver fibrosis, we plotted the average Z-scores of M5

genes in each of the 640 chemical exposure conditions

(Figure 8b). The M5 genes were mostly activated in liver

fibrosis-related chemical exposure conditions and showed very

low activation in other chemical exposure conditions (Figure 8b).

Exposure to rosiglitazone, a PPAR-c agonist, produced an

opposing effect on expression of the genes encoding the protein

products in M5 (i.e., down-regulation as measured by log2 ratio

values; Figure S3). This result was consistent with the evidence

that PPAR-c agonists prevented liver fibrosis in experimental

models [70].

Finally, we used two external gene expression datasets (GEO

datasets GSE13747 and GSE6929) to evaluate the relevance of

module M5 in liver fibrosis. The overlap of genes between the M5

module and the processed GSE13747 and GSE6929 datasets was

66 and 65, respectively. In the study associated with the

GSE13747 dataset, liver fibrosis was induced using bile duct

ligation. We observed the predicted positive correlation of gene

expression data between the DEGs in this dataset and the genes in

module M5 (r = 0.78, Figure 9a). In the GSE6929 dataset,

sunitinib, a multi-kinase inhibitor, was used to treat experimental

liver cirrhosis. As expected, we observed a negative correlation

(r = 20.46) between log2 ratio gene expression data from

GSE6929 and M5 (Figure 9b). Thus, the external dataset further

supports the validity of M5 genes in liver fibrosis.

In this work, we showed the utility of integrating gene

expression and PPI network analyses to understand the molecu-

lar-level details of liver fibrosis and to identify biomarker

candidates. The presented computational approach has general

applicability for characterizing adverse health effects. For exam-

ple, our approach can be used to computationally predict toxicity

pathways associated with specific diseases. Recent work has

suggested that the body’s response to toxic exposures and the

resulting disease progression proceed through a finite set of toxicity

pathways [84]. As stated earlier, the available knowledge-based

pathway databases are limited in coverage and susceptible to

annotation biases towards well-studied diseases. The computa-

tional approach presented in this work enabled us to partly

overcome these limitations and develop de novo pathways linked

to a specific disease. In particular, we believe that our approach

could be used to further understand the molecular basis of adverse

health effects such as acute kidney injury, liver cholestasis, liver

steatosis, and myocardial infarction. More recently, the concept of

adverse outcome pathways (AOPs) has been proposed as a novel

tool in mechanism-based predictive toxicology [85]. The AOPs

provide a flow-chart-like mechanistic representation of adverse

health effects and consist of a molecular initiating event and a

series of intermediate key events that lead to the final adverse

outcome [85]. Our computational approach will be applicable to

the development of novel AOPs; we believe that network modules,

such as the liver fibrosis module (M5) identified in this work, could

be used either as a key molecular event or used to quantify the

reversibility or point of departure of key events in AOPs.

Conclusion

We have carried out systems-level analyses of gene expression

data for periportal liver fibrosis. We found that both pathway and

network analyses provided insights into the molecular mechanisms

of liver fibrosis. Network analyses allowed us to generate de novo
pathways and overcome the limitations of analyses based on

KEGG pathways. We identified a liver fibrosis-relevant network

module that was enriched with known liver fibrosis-relevant genes

predictive of liver fibrosis and validated it with external data. The

systems approach used in this study allowed us to generate liver

fibrosis-relevant pathways and have the potential to predict

mechanism-based biomarker candidates.
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