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Abstract

Primary glaucoma is one of the most common causes of irreversible blindness both in humans and in dogs. Glaucoma is an
optic neuropathy affecting the retinal ganglion cells and optic nerve, and elevated intraocular pressure is commonly
associated with the disease. Glaucoma is broadly classified into primary open angle (POAG), primary closed angle (PCAG)
and primary congenital glaucoma (PCG). Human glaucomas are genetically heterogeneous and multiple loci have been
identified. Glaucoma affects several dog breeds but only three loci and one gene have been implicated so far. We have
investigated the genetics of primary glaucoma in the Norwegian Elkhound (NE). We established a small pedigree around the
affected NEs collected from Finland, US and UK and performed a genome-wide association study with 9 cases and 8 controls
to map the glaucoma gene to 750 kb region on canine chromosome 20 (praw = 4.9361026, pgenome = 0.025). The associated
region contains a previously identified glaucoma gene, ADAMTS10, which was subjected to mutation screening in the
coding regions. A fully segregating missense mutation (p.A387T) in exon 9 was found in 14 cases and 572 unaffected NEs
(pFisher = 3.5610227) with a high carrier frequency (25.3%). The mutation interrupts a highly conserved residue in the
metalloprotease domain of ADAMTS10, likely affecting its functional capacity. Our study identifies the genetic cause of
primary glaucoma in NEs and enables the development of a genetic test for breeding purposes. This study establishes also a
new spontaneous canine model for glaucoma research to study the ADAMTS10 biology in optical neuropathy.
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Introduction

Glaucoma is an optic neuropathy affecting the retinal ganglion

cells and optic nerve. Elevated intraocular pressure (IOP) is

commonly associated with the disease. However, normal tension

glaucoma is diagnosed as well [1]. Human glaucomas form a

heterogeneous group of diseases, which are broadly classified into

primary open-angle (POAG), primary closed-angle (PCAG) and

primary congenital glaucoma (PCG) [2]. POAG is the most

common form in humans [2]. In POAG, the iridocorneal angle

(ICA) is open with an elevated IOP, which is considered as a

significant risk factor for the disease. PCAG results from the

collapse of the ICA structures, elevated IOP and subsequent death

of the retinal cells [3]. Elevated IOP is caused by the blockage of

the aqueous humor outflow due to a shallow anterior chamber

combined with the obstruction of the iris-trabecular meshwork in

the iridocorneal angle of the eye, [4]. PCG occurs within the first

few years of life and is characterized by abnormalities in the

anterior chamber angle and elevated IOP [4].

In human, several loci [5–6] and several genes including,

contactin 4 (CNTN4) [7], myocilin (MYOC) [8], neurotrohin 4

(NTF4) [9], optineurin (OPTN) [10] and WD repeat domain 36
(WDR36) [11] have been associated with POAG. Three loci [6]

and the two genes cytochrome P450 1B1 (CYP1B1) [12] and

latent transforming growth factor beta binding protein 2 (LTBP2)
[13] have been associated with PCG. Three loci have been

associated with PCAG, in which separate markers showed

significant association after replication on human chromosomes

1, 8 and 11 [14]. Only one causative gene ATP-binding cassette,
sub-family C (CFTR/MRP), member 5 (ABCC5) has been

associated with PCAG [15]. Furthermore, multiple genes and loci

have been associated with syndromes and other ocular conditions

accompanied by glaucoma [6]. However, glaucoma is considered

a multifactorial disease and although several variants have been

identified for familial cases, the glaucoma genetics remains

controversial [16–17].

In dogs, POAG and PCAG have been described in several

breeds [18]. Clinical features resemble human glaucoma, includ-

ing loss of the retinal ganglion cells and elevated IOP.

Abnormalities in the pectinate ligament (PL) structure are

considered as a risk factor in canine PCAG [19–24]. The
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pectinate ligament forms the internal boundary of the canine ICA

and is presented as pillar of tissue. It project from the base of iris to

the peripheral Descemet’s membrane. It provides support for the

iris to the posterior cornea [25]. Although structural abnormalities

are considered a risk for the disease, not all dogs affected with PLD

develop glaucoma, suggesting other genetic risk factors.

Despite the presence of glaucoma in many breeds the genetic

etiology of glaucoma is almost completely unknown in dogs. A

novel locus was mapped in Dandie Dinmont Terriers [19] and two

loci were suggested for the Basset Hound [26] with PCAG. In a

research colony of Beagles a recessive mutation (p.G661R) in the

ADAM metallopeptidase with thrombospondin type 1 motif, 10

(ADAMTS10), has been found in a research colony of Beagles

with POAG has been suggested as causative [27]. The early

clinical signs in the affected Beagles include open ICA that

narrows as the disease progresses, gradual increase in IOP that

eventually leads to retinal ganglion cell death, optic nerve atrophy,

and irreversible blindness [28]. The age of onset in Beagles varies

from 8 to 16 months [29].

In addition to Beagles, Norwegian Elkhounds are also affected

with POAG [30–31]. Unlike the Beagle, the disease in NEs is

commonly diagnosed in middle-aged or elderly dogs when it starts

to affect the dogs hunting capabilities [30]. However, the actual

disease onset may be much earlier. Early clinical signs in NEs

include a slightly elevated IOP with a normal opening of the ciliary

cleft [30]. The peripheral vision is commonly affected. At the later

stages of the disease, the narrowing of the ciliary cleft contributes

to the elevation of IOP. This may lead to secondary subluxation of

the lenses in some cases. The vision deterioration continues to

expand due to optic nerve atrophy and cupping. The retina

appears funduscopically normal until the late stages of the disease.

Other clinical signs include Haabs striae, cataract, and buphthal-

mos [30].

We aimed to find the genetic cause of primary glaucoma in NEs

in this study to better understand the molecular pathogenesis, to

establish a large, spontaneous canine model for POAG research,

and to develop a genetic test for breeding purposes. We discovered

a novel missense mutation in the ADAMTS10 gene.

Materials and Methods

Study cohort
Blood samples from 596 NEs, including 16 glaucoma affected

dogs from Finland, Norway, Sweden, United Kingdom and

United States were collected to the canine DNA bank at the

University of Helsinki, Finland with owners consent and under the

permission of the Animal Ethical Committee of County Admin-

istrative Board of Southern Finland (ESAVI/6054/04.10.03/

2012). All affected dogs were examined by a certified veterinary

ophthalmologist. The clinical diagnoses indicated bilateral primary

glaucoma with significantly elevated IOP, between 25–86 mmHg

(normal 10–20 mmHg), and no detectable underlying cause. In

addition, various degrees of optic nerve atrophy and cupping were

reported. In addition, a progressive vision loss was detected in the

affected dogs leading to complete blindness. Other, secondary

clinical signs included lens luxation, corneal stromal edema, Haabs

striae, keratitis, vitreal syneresis and retinal degeneration. The

average age at the time of diagnosis was 6.5 years.

Genomic DNA was extracted from EDTA blood using

Chemagic Magnetic Separation Module I (MSM I) (Chemagen

Biopolymer-Technologie AG, Baeswieler, Germany) according to

the manufacturer’s instructions. DNA from buccal swabs (Euro-

tubo Cytobrush, sterile, 200 mm, Danlab, Helsinki, Finland) was

extracted using QIAamp DNA Mini Kit (Qiagen).

Genome wide association study
A genome-wide association study (GWAS) was performed using

Illumina’s CanineHD BeadChip array (San Diego, CA, USA) with

9 cases and 8 controls (Fig. 1). The control dogs were at least 8

years of age without any clinical signs of glaucoma. Genotyping

was performed at the Geneseek (Lincoln, NE, USA) and the

genotyping data was analyzed using PLINK 1.07 analysis

software. A total of 173,662 markers were initially included for

the analysis. No individual were removed for low genotyping

success of 95%. Missingness test of 95% removed 17,484 SNPs. A

total of 72,715 SNPs had minor allele frequency of less than 5%

and were removed. None of the SNPs deviated from Hardy-

Weinberg equilibrium based of HWE test of P, = 0.0001. After

frequency and genotyping pruning, 89,277 SNPs remained in the

analysis. A case-controls association test was performed using

PLINK software to compare the allele frequencies between cases

and controls (Fig. 2A). Identity-by-state (IBS) clustering and

CMH meta-analysis (PLINK) were used to adjust for population

stratification. Genome-wide corrected empirical p-values were

determined applying 100,000 permutations to the data. Besides

PLINK the data was analyzed with compressed mixed linear

model [32] implemented in the GAPIT R package [33] and with

R-implemented GenABEL [34] software (data not shown). The

GWAS data is publicly available at dbSNP database (http://www.

ncbi.nlm.nih.gov/projects/SNP/).

Candidate gene sequencing
The coding regions of the best candidate gene in the associated

region, ADAMTS10, were first sequenced in four NE cases, in

four NE controls (unaffected .8 years) and in one unaffected

Rough Collie samples. The identified candidate mutation was then

validated in 596 NEs, including 7 additional cases. In addition, the

mutation was studied in 71 dogs from 17 other breeds affected

with POAG, PCAG or PLD and in 115 unaffected dogs from 6

breeds (Table S1).

Primer pairs (Table S2) were designed for the ADAMTS10

gene to amplify the coding regions and splice sites by standard

PCR (Table S2). PCRs were carried out in 12 ml reactions

consisting of 1.2 U Biotools DNA Polymerase (Biotools, Madrid,

Spain), 1.5 mM MgCl2 (Biotools, Madrid, Spain), 200 mM dNTPs

(Finnzymes, Espoo, Finland), 1 x Biotools PCR buffer without

MgCl2 (Biotools, Madrid, Spain), 0.83 mM forward and reverse

primer (Sigma Aldrich, St. Louis, USA) and 10 ng template

genomic DNA. Reaction mixtures were subjected to a thermal

cycling program of 95uC for 10 min, followed by 35 cycles of 95uC
for 30 s, 30 s at the annealing temperature and 72uC for 60 s and

a final elongation stage of 72uC for 10 min. ExoSap purified PCR

fragments were Sanger sequenced in our core facility the FIMM

Technology Center using ABI 3730xl DNA analyzer (Applied

Biosystems, Foster City, California, USA). Sequence data analysis

was performed using the Sequencher software (Gene Codes, Ann

Arbor, MI, USA). Build 3.1 of the canine genome reference

sequence was applied in the study.

Results

We established a global sample cohort including glaucoma

affected (n = 16) and unaffected NEs (.570) to map the disease

locus, to identify the causative gene and to validate the segregation

of the mutation. We performed a GWAS in a small pedigree of 9

cases and 8 controls. Statistical analyses revealed a 750 kb locus on

CFA20 with 23 most highly associated SNPs between

53070684 bp to 53816416 bp (praw = 4.93610206, pgenome =

0.025) (Fig. 2B, C). A mild population stratification was identified
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in the study cohort by genome wide IBS clustering (genomic

inflation factor l= 1.1) (Fig. S2), but it did not affect the result as

two mixed model approaches (GenABEL and GAPIT) that better

control for population stratification, gave the same results (data not

shown).

A pedigree constructed around the affected dogs using GenoPro

genealogy software (http://www.genopro.com) suggested a reces-

sive mode of inheritance as the affected dogs are born to

unaffected parents and there are multiple affected littermates in

some litters.

The identified locus contains 35 genes including a known canine

POAG gene, ADAMTS10 (Fig. 2D). It was selected for mutation

screening in the coding regions and splice sites in four affected and

five control dogs. Sequencing identified altogether ten variants; a

non-synonymous variant c.1441G.A, p.A387T in the exon 9

(Fig. 3A, B), five synonymous and four non-coding variants

(Table S3). Only one out of the five synonymous variants,

p.P171P, co-segregated with the non-synonymous variant. How-

ever, it was not suspected to be in the exonic enhancer region

when analyzed by the ESE-finder [35]. Instead, the non-

synonymous variant was predicted to be pathogenic based on

the bioinformatics prediction tools Polyphen2 [36] and SIFT [37].

The mutation affects a highly conserved residue (present in 75

species, Fig. S1) in the metalloprotease domain of ADAMTS10

protein (Fig. 3C).

To gather further evidence for the p.A387T segregation, we

genotyped seven additional NE primary glaucoma cases and four

obligatory carriers (Fig. 1) and 572 randomly selected unaffected

NEs. All but two of the cases were homozygous for the mutation.

Unfortunately, we have a limited access to the health records and

history of these two affected dogs and they may have had a

secondary glaucoma with a primary underlying cause such as

inflammation being missed at the end stage of disease when the

animals were presented to the veterinary ophthalmologist. All four

obligatory carriers were heterozygous. Genotyping of the 572 NEs

indicated a 25.3% carrier frequency (151/596) and revealed one

additional homozygous dog. This genetically affected dog is now 5

years old without signs of glaucoma yet but needs to be followed

up since the average age of diagnosis in the breed is at 6.5 years of

age. Collectively, these results support a segregation of a mutation

in clinically confirmed primary glaucoma cases with a highly

significant association between the mutation and disease when

comparing genotyped genetically affected dogs (n = 16) and

unaffected using Fisher’s exact test (PFisher = 3.5610227). The

breed-specificity of the p.A387T mutation was indicated by

excluding it from 71 glaucoma or PLD affected dogs from 17

breeds and from 115 unaffected dogs from six breeds.

Discussion

Our study has identified a novel recessive mutation in the

ADAMT10 gene in the NEs affected with primary glaucoma using

genome wide association analysis and candidate sequencing

strategies. We mapped the disease to a known canine POAG

locus including the ADAMTS10 candidate gene and subsequently

identified a missense mutation in the exon 9 of the ADAMTS10
gene. This is consistent with the previously reported POAG

phenotype of primary glaucoma in this breed [30–31]. The

recessively segregating mutation results in an alanine to threonine

change (p.A387T) in a highly conserved functional metallopro-

tease domain of the protein (Fig. 3C), which likely impairs

ADAMTS10 function, leading to POAG in the homozygous dogs.

ADAMTS10 is a secreted glycoprotein [38] and belongs to a

family of metalloproteinases that contribute to the dynamics of the

extracellular matrix (ECM) composition and microfibril function

[38–40]. It may have a role in the storage and activation of latent

transforming growth factor beta (TGFb), which regulates the

collagen turnover [41–43] as well as in the remodeling of the

mesenchymal and basement membranes [44].

The members of the ADAMTS family share the same structural

organization including catalytic metalloprotease domain, followed

by a disintegrin-like, and cysteine-rich domains, a thrombospondin

repeat and a spacer region (Fig. 3C). ADAMTS10 differs from

the others having five thrombospondin type 1 repeats and a PLAC

domain in the C-terminal [44].

ADAMTS10 interacts with fibrillin-1 and localized to fibrillin-1

microfibril bundles [39]. It maintains the lens in its position via

lens ligaments, which are comprised primarily from fibrillin-1 [43].

Microfibrils localize and activate TGFb [45]. Fibrillin-1 is

expressed in the outflow pathway of the aqueous humor and

Figure 1. Pedigree of glaucoma affected Norwegian Elkhounds. The pedigree constructed around affected dogs indicates a likely recessive
mode of inheritance as the affected dogs are born to unaffected parents and there are multiple affected littermates in some litter. The squared dogs
were included in the GWAS. Individuals marked with yellow background were genotyped as obligatory carriers and were all heterozygous for the
mutation.
doi:10.1371/journal.pone.0111941.g001
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Figure 2. Genome wide association study. A) A Manhattan plot of genome-wide case-control association analysis with 8 cases and 9 controls
indicate the most highly associated region in CFA20. B) The glaucoma associated region on chromosome 20 spans from 53.1 Mb to 53.8 Mb. C)
Genotypes at the associated region on CFA20. All cases share a 750 kb homozygous block. D) The associated region harbors 35 genes of which only
ADAMTS10 has been associated with POAG.
doi:10.1371/journal.pone.0111941.g002
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defect in the fibrillin-1 may lead to impaired aqueous humor flow

[46–48].

In dogs, a missense mutation (p.G661R) in the ADAMTS10
gene has been previously associated with POAG in a research

colony of Beagles. The Beagle mutation is positioned in the

cysteine rich domain and is hypothesized to disrupt protein folding

leading to instability [27].

The NE mutation is different from the Beagles and may result in

a different pathogenesis. NE mutation changes a highly conserved

residue in the metalloprotease domain, which plays a role in the

remodeling of the connective tissue (Fig. 3C) [44]. Human

metalloprotease domain mutations have revealed abnormalities

in the cellular cytoskeleton [44], suggesting abnormal interactions

with the ECM. These abnormalities may eventually result in

defective microfibrils and glaucoma through alterations in

biomechanical properties of tissue and/or through effects on

signaling through TGFb, which is known to be elevated in the

aqueous humor of glaucoma patients [49]. Unfortunately, we did

not have access to any tissue samples from the affected dogs to

further investigate the functional consequences of the mutation for

ADAMTS10 and its pathway. Secondary lens luxation diagnosed

in the affected NEs may be due to abnormal fibrillin-1 functions as

the ADAMTS10 and fibrillin-1 interaction may be impaired

causing disruption of the lens ligaments.

Dagoneau et al. identified three causative mutations in the

metalloprotease domain of ADAMTS10 in human WMS patients

[44]. When studying patient fibroblasts they noted that abnor-

mally large bundles of actin were present, which were reflection of

Figure 3. A missense mutation in the ADAMTS10. A) A schematic representation of the ADAMTS10 gene structure. The gene is composed of 24
coding exons (dark blue) and the c.1441G.A variant is positioned in the exon 9 (not in scale). B) Chromatograms of the non-synonymous variant
position in an affected, a carrier and a wild-type dog. C) The p.A387T variant is positioned in the catalytic metalloprotease domain.
doi:10.1371/journal.pone.0111941.g003
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cytoskeleton abnormalities as a result of impaired connections

between cytoskeleton and ECM [44].

Mutations in ADAMTS10 [44], [50], ADAMTS17 [50] and in

fibrillin 1 (FBN1) [51] have been associated with a Weill-

Marchesani syndrome (WMS) (OMIM 277600). WMS is a

connective tissue disorder and characterized by several eye defects

including glaucoma, myopia, ectopia lentis, microspherophakia

and other features such as short stature, brachydactyly, joint

stiffness in the hands, restricted articular movements and some

facial features [52]. Glaucoma is diagnosed in WMS patients, but

ectopia lentis is the more prevalent clinical sign [53]. In WMS

patients the ectopia lentis and dysgenesis of the lens ligament is

suspected to be caused by abnormal biogenesis of fibrillin-1 [39].

The same is likely true for ADAMTS17-mutant dogs [54] and

ADAMTS10-mutant Beagles [27]. Interestingly, none of our

affected NE dogs presented with signs of primary lens luxation,

although this should be expected. Histologic analyses of the lens

zonules would be very helpful to identify possible signs of zonular

dysplasia. Another difference in the affected NE dogs relates to the

lack of severe non-ocular signs, which are commonly present in the

WMS patients with mutation in the ADAMTS10 and

ADAMTS17 genes. Further studies are warranted to investigate

whether the observed breed- and species–specific differences are

due to alternate mutations in the metalloproteinase domains or

possible other factors.

In summary, we have discovered the genetic cause of primary

glaucoma in the NEs by identifying a missense mutation in

ADAMTS10. This study implicates the significant role of

ADAMTS10 in canine POAG by identifying the second mutation

in the same gene in dogs. Our affected dogs establish a new model

to study ADAMTS10 biology in the microfibrillin theory of the

glaucoma [49]. Importantly, given the high frequency of the

mutation in the NE breed, our study is a breakthrough for the NE

breeders, who will benefit from the genetic test to reduce the

disease frequency in future populations.

Supporting Information

Figure S1 ADAMTS10 protein alignments. ADAMTS10

sequence alignment between different species. The mutation is

located in a highly conserved region across 75 species. The arrow

marks the mutated alanine residue.

(ZIP)

Figure S2 Q-Q plots. Identity-by-state (IBS) clustering and

CMH meta-analysis (PLINK) were used to adjust for population

stratification (A). A mild population stratification was identified in

the study cohort by genome wide IBS clustering (adjusted genomic

inflation factor l= 1.1) (B).

(TIF)

Table S1 Dogs affected with glaucoma of PLD (71 dogs
in 17 breeds) and healthy dog (115 dogs in six breeds)
were sequenced for the ADAMTS10 mutation.
(XLSX)

Table S2 Primers used for PCR amplification and
sequencing of canine ADAMTS10 coding regions.
(XLSX)

Table S3 A total of 10 variants were in the coding and
splice site regions of ADAMTS10.
(XLSX)
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19. Ahonen SJ, Pietilä E, Mellersh CS, Tiira K, Hansen L, et al. (2013) Genome-

wide association study identifies a novel canine glaucoma locus. PloS one 8:

e70903.

20. Bjerkas E, Ekesten B, Farstad W (2002) Pectinate ligament dysplasia and

narrowing of the iridocorneal angle associated with glaucoma in the English
Springer Spaniel. Vet Ophthalmol 5: 49–54.

21. Kato K, Sasaki N, Matsunaga S, Mochizuki M, Nishimura R, et al. (2006)

Possible association of glaucoma with pectinate ligament dysplasia and

Primary Glaucoma in Norwegian Elkhound

PLOS ONE | www.plosone.org 6 November 2014 | Volume 9 | Issue 11 | e111941



narrowing of the iridocorneal angle in Shiba Inu dogs in Japan. Vet Ophthalmol

9: 71–75.
22. van der Linde-Sipman JS (1987) Dysplasia of the pectinate ligament and primary

glaucoma in the Bouvier des Flandres dog. Vet Pathol 24: 201–206.

23. Ekesten B, Narfstrom K (1991) Correlation of morphologic features of the
iridocorneal angle to intraocular pressure in Samoyeds. Am J Vet Res 52: 1875–

1878.
24. Read RA, Wood JL, Lakhani KH (1998) Pectinate ligament dysplasia (PLD) and

glaucoma in Flat Coated Retrievers. I. objectives, technique and results of a PLD

survey. Vet Ophthalmol 1: 85–90.
25. Morrison JC, Van Buskirk EM (1982) The canine eye: Pectinate ligaments and

aqueous outflow resistance. Invest Ophthalmol Vis Sci 23: 726–732.
26. Ahram DF, Cook AC, Kecova H, Grozdanic SD, Kuehn MH (2014)

Identification of genetic loci associated with primary angle-closure glaucoma
in the Basset Hound. Molecular vision 20: 497.

27. Kuchtey J, Olson LM, Rinkoski T, Mackay EO, Iverson TM, et al. (2011)

Mapping of the disease locus and identification of ADAMTS10 as a candidate
gene in a canine model of primary open angle glaucoma. PLoS Genet 7:

e1001306.
28. Gelatt KN, Peiffer RL Jr, Gwin RM, Gum GG, Williams LW (1977) Clinical

manifestations of inherited glaucoma in the Beagle. Invest Ophthalmol Vis Sci

16: 1135–1142.
29. Peiffer RL Jr, Gum GG, Grimson RC, Gelatt KN (1980) Aqueous humor

outflow in Beagles with inherited glaucoma: Constant pressure perfusion.
Am J Vet Res 41: 1808–1813.

30. Ekesten B, Bjerkas E, Kongsengen K, Narfstrom K (1997) Primary glaucoma in
the Norwegian Elkhound. Veterinary & Comparative Ophthalmology 7: 14–18.

31. Oshima Y, Bjerkas E, Peiffer RL (2004) Ocular histopathologic observations in

Norwegian Elkhounds with primary open-angle, closed-cleft glaucoma. Vet
Ophthalmol 7: 185–188.

32. Zhang Z, Ersoz E, Lai C, Todhunter RJ, Tiwari HK, et al. (2010) Mixed linear
model approach adapted for genome-wide association studies. Nat Genet 42:

355–360.

33. Lipka AE, Tian F, Wang Q, Peiffer J, Li M, et al. (2012) GAPIT: Genome
association and prediction integrated tool. Bioinformatics 28: 2397–2399.

34. Aulchenko Y (2010) GenABEL: an R library for genome-wide association
analysis. Bioinformatics 5: 1294–1296.

35. Smith PJ, Zhang C, Wang J, Chew SL, Zhang MQ, et al. (2006) An increased
specificity score matrix for the prediction of SF2/ASF-specific exonic splicing

enhancers. Hum Mol Genet 15: 2490–2508.

36. Adzhubei IA, Schmidt S, Peshkin L, Ramensky VE, Gerasimova A, et al. (2010)
A method and server for predicting damaging missense mutations. Nature

methods 7: 248–249.
37. Ng PC, Henikoff S (2001) Predicting deleterious amino acid substitutions.

Genome Res 11: 863–874.

38. Somerville RP, Jungers KA, Apte SS (2004) Discovery and characterization of a
novel, widely expressed metalloprotease, ADAMTS10, and its proteolytic

activation. J Biol Chem 279: 51208–51217.

39. Kutz W, Wang L, Bader H, Majors A, Iwata K, et al. (2011) ADAMTS10

protein interacts with fibrillin-1 and promotes its deposition in extracellular

matrix of cultured fibroblasts. The Journal of biological chemistry 286: 17156–

17167.

40. Porter S, Clark I, Kevorkian L, Edwards D (2005) The ADAMTS

metalloproteinases. Biochem J 386: 15–27.

41. Rifkin DB (2005) Latent transforming growth factor-beta (TGF-beta) binding

proteins: Orchestrators of TGF-beta availability. J Biol Chem 280: 7409–7412.

42. Isogai Z, Ono RN, Ushiro S, Keene DR, Chen Y, et al. (2003) Latent

transforming growth factor beta-binding protein 1 interacts with fibrillin and is a

microfibril-associated protein. J Biol Chem 278: 2750–2757.

43. Palko JR, Iwabe S, Pan X, Agarwal G, Komaromy AM, et al. (2013)

Biomechanical properties and correlation with collagen solubility profile in the

posterior sclera of canine eyes with an ADAMTS10 mutation. Invest

Ophthalmol Vis Sci 54: 2685–2695.

44. Dagoneau N, Benoist-Lasselin C, Huber C, Faivre L, Mégarbané A, et al. (2004)
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