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Abstract

The sensitivity of current diagnostics for Johne’s disease, a slow, progressing enteritis in ruminants caused by
Mycobacterium avium subsp. paratuberculosis (MAP), is too low to reliably detect all infected animals in the subclinical stage.
The objective was to identify individual metabolites or metabolite profiles that could be used as biomarkers of early MAP
infection in ruminants. In a monthly follow-up for 17 months, calves infected at 2 weeks of age were compared with aged-
matched controls. Sera from all animals were analyzed by 1H nuclear magnetic resonance spectrometry. Spectra were
acquired, processed, and quantified for analysis. The concentration of many metabolites changed over time in all calves, but
some metabolites only changed over time in either infected or non-infected groups and the change in others was impacted
by the infection. Hierarchical multivariate statistical analysis achieved best separation between groups between 300 and 400
days after infection. Therefore, a cross-sectional comparison between 1-year-old calves experimentally infected at various
ages with either a high- or a low-dose and age-matched non-infected controls was performed. Orthogonal Projection to
Latent Structures Discriminant Analysis (OPLS DA) yielded distinct separation of non-infected from infected cattle, regardless
of dose and time (3, 6, 9 or 12 months) after infection. Receiver Operating Curves demonstrated that constructed models
were high quality. Increased isobutyrate in the infected cattle was the most important agreement between the longitudinal
and cross-sectional analysis. In general, high- and low-dose cattle responded similarly to infection. Differences in acetone,
citrate, glycerol and iso-butyrate concentrations indicated energy shortages and increased fat metabolism in infected cattle,
whereas changes in urea and several amino acids (AA), including the branched chain AA, indicated increased protein
turnover. In conclusion, metabolomics was a sensitive method for detecting MAP infection much sooner than with current
diagnostic methods, with individual metabolites significantly distinguishing infected from non-infected cattle.
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Introduction

Mycobacterium avium subsp. paratuberculosis (MAP) is the

etiological agent of Johne’s disease (JD), a debilitating chronic

enteritis in ruminants. It is well known that JD causes great

economic losses on dairy farms, due to decreased milk production,

premature culling, and reduced carcass value. Infected dairy cows

slowly evolve from stage 1, during which no effects of infection can

be observed or detected diagnostically by routine diagnostic tests,

through stage 2, when a portion start to shed the bacteria and

develop a detectable immune response, to stages 3 and 4, which

are characterized by increasingly severe clinical symptoms.

To control the spread of MAP, test-based culling is typically

recommended. However, a major challenge with controlling JD is

the inability to detect MAP-infected cattle prior to them becoming

infectious (fecal shedding), which can take several years to occur.

Current diagnostic tests, such as fecal culture, fecal PCR and

ELISA, have high test sensitivities for detecting cattle in later

stages of infection, but very low test sensitivities for detection in the

early subclinical stages, when shedding levels and antibody titers

are low or non-existent [1–3]. Consequently, these tests produce

many false-negative results in subclinical cattle, making interpre-

tation and utilization challenging in the majority of cases. As a

result, test and cull strategies are largely ineffective; they fail to

control spread of the disease within infected herds, with and

increased risk to introduce the disease in uninfected herds.

Therefore, diagnostics that can detect and early infection are

urgently needed.

In recent years, effects of bacterial infections on the host have

been studied with increasing depth and scope, using advanced

techniques, comprehensive platforms and analytical methods. In

that regard, transcriptomics and proteomics have been used to

study expression of genes and proteins in order to identify

biomarkers and to place them in the context of specific pathways

which fit the etiology and progression of a disease. From these

studies, using proteomic and transcriptomic analyses, several

putative biomarkers for early infection with MAP have been

proposed [4–8]. Unfortunately, apparently none of these biomarkers
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have been validated on cattle of varying ages or in various stages of

diseases to determine their true sensitivity and specificity.

The emerging field of metabolic profiling (i.e. metabolomics)

involves identification and quantification of numerous low

molecular weight compounds in biological fluid samples. Meta-

bolomics provides a functional alternative or complement to the

above-mentioned techniques, as it measures chemical phenotypes

that are the net result of all activity on the transcriptome and

proteome levels; therefore, it provides an integrated and reductive

profile of the status of the test subject. Recent reports have

demonstrated the potential of metabolomics to improve current

clinical microbiology diagnostic methods [9,10].

Clinical JD is very likely associated with a complicated array of

chemical reactions and metabolites that stem from a diverse set of

metabolic pathways associated with inflammation [11] and

infection. However, we hypothesized that due to changes in gut

function and metabolism caused by subclinical MAP infection, a

characteristic pattern of metabolites would also be detectable.

Therefore, the aim of this study was to determine whether

metabolic profiling could be a reliable tool to detect early MAP

infection in dairy calves. For this purpose, dairy calves were

experimentally infected with MAP at various ages and with two

doses of the pathogen, and a 1H NMR spectroscopy-based

metabolomics approach was used to identify a characteristic

metabolic ‘biomarker pattern’ in subclinically infected calves. The

ability to discover early MAP infection in calves by metabolic

profiling of sera has apparently been reported. First, a longitudinal

follow-up of infected and non-infected cattle was done to identify

how early after infection these calves could be discriminated. Next,

non-infected cattle were compared with infected cattle at a fixed

age (1 year old) in a cross-sectional analysis.

Methods

Experimental infection
Experimental details were identical to the infection study

described in Mortier et al. 2013 [12]. Briefly, male Holstein-

Friesian calves (n = 35) were obtained from MAP-free or low

prevalence dairy herds on the day they were born. To minimize

the risk of including calves that had acquired intra-uterine MAP

infection, calves were collected only from the 16 herds that yielded

negative pooled (n = 5) fecal samples (decontaminated and

prepared for culture according to manufacturer’s instructions;

para-JEM, TREK Diagnostic systems, OH, USA) and had a

within-herd seroprevalence ,5% (IDEXX Paratuberculosis Ab

Test; IDEXX Laboratories Inc, Westbrook, ME, USA). A virulent

cattle type MAP strain isolated from a clinical case (Cow69), with

an identical IS900 – RFLP profile as the reference strain K10

(data not shown), which is the recommended strain type to use in

experimental infections [13], was grown in supplemented 7H9

broth and used as inoculum. A high dose (HD) and a low dose

(LD) inoculum were prepared (56109 and 56107 CFU, respec-

tively), with both given on 2 consecutive days, corresponding to 5

times the recommended standard bovine challenge dose [13] and

10 times the lowest confirmed and consistent infectious dose for

young calves [14]. In a first experiment, further referred to as the

longitudinal study, serum samples were collected monthly and

analysed from 7 animals experimentally infected with MAP at 2

weeks of age (5 HD and 2 LD) and from 6 non-infected age-

matched controls for 17 months (approximately 500 days). In a

second experiment, further referred to as the cross-sectional study,

35 calves were infected with MAP at 4 age ages (2 weeks and 3, 6

and 9 months) with 5 calves in each age group receiving a HD and

5 receiving a LD. Calves receiving the LD infection at 9 months

after infection were not included in the analyses because the effect

of this infection was expected to be low at 3 months post

inoculation. Sixteen calves of the same age, housed under the same

conditions, served as non-infected controls. Blood samples were

drawn from the jugular vein when all cattle were exactly 1 year

old. For logistical reasons, both experiments were conducted in

two replicates, with equal representation of the different treatment

groups in either run, with one run starting in February/March and

the other in June/July. Samples were transported on ice, serum

was harvested within 2 hours after sample collection and aliquots

were frozen at 280uC. Animal care protocol M09083 covers the

experimental infection of dairy calves with Mycobacterium avium
subsp. paratuberculosis for the purpose of discovering biomarkers

of infection by metabolomic profiling and was approved by the

Health Sciences Animal Care Committee of the University of

Calgary. Euthanasia was performed by injection of Euthanyl-Forte

(pentobarbital 540 mg/mL) intravenously into the jugular vein.

Tests to confirm exposure and infection with MAP
Sera were collected monthly from all calves and tested for

antibodies using an ELISA (Pourquier ELISA; Institut Pourquier,

Montpellier, France). Fecal samples were collected every month

for MAP culture using para-JEM, TREK Diagnostic Systems

(Cleveland OH, USA) and the presence of MAP was confirmed

with IS900 PCR. Intestinal tissues were investigated for the

presence of MAP by culture and IS900 PCR confirmation and

lesions characteristic of MAP infection were determined on the

basis of gross and histological pathology, as described [12].

Heparinized whole-blood samples were collected monthly by

the Vacutainer system and transported to the laboratory in a

thermos box (without cooling). At arrival, 2 to 4 h after sampling,

1.5-ml cultures were stimulated in 24-well culture plates (Greiner

Bio-One Inc, Monroe, NC) with previously added Johnin (CFIA),

PPDavium, and PBS (50 ml) and positive control stimulations with

Pokeweed mitogen (Sigma-Aldrich, Oakville, ON, Canada). All

Purified Protein Derivative (PPD) preparations and pokeweed

mitogen (PWM) were added to a final concentration of 10 mg/ml.

Cultures were incubated for 18 hours at 37uC and 5% CO2 in air.

After incubation, plates were centrifuged and approximately

0.8 ml of supernatant was collected and frozen at 220uC until

analysis. The IFN-c contents of supernatants were measured in

duplicate with a Bovigam ELISA kit (Prionics, La Vista, Nebraska,

USA), in accordance with the manufacturer’s instructions.

Metabolite sample preparation
Serum samples were thawed in 3 batches and filtered twice

using 3 kDa NanoSep microcentrifuge filters (which had been pre-

washed) to reduce contamination. Filtrate was transferred to

prewashed microfuge tubes; final sample volume ranged from 100-

400 mL. Samples were brought to 650 mL by addition of D20,

130 mL of phosphate buffer containing dimethyl-silapentane-

sulfonate (DSS, final concentration 0.5 mM), and 10 mL of 1 M

sodium azide to inhibit bacterial growth. Final sample pH was

adjusted to 760.05 by addition of HCl or NaOH.

Spectrum acquisition
One-dimensional version of Nuclear Overhauser Effect spec-

troscopy (NOESY) spectra were acquired using an automated

NMR Case sample changer on a 600-MHz Bruker Ultrashield

spectrometer (Bruker Biospin Ltd., Milton, ON, Canada). The 1D

NOESY pulse sequence had a water signal presaturation during

relaxation delay of 1 second and mixing time of 100 milliseconds.

Initial samples for each batch were shimmed to ensure half-height

line width of approximately 0.8 Hz for the DSS peak at 0.0 ppm.

Paratuberculosis Detection by Metabolomics
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Shims for each sample were then refined using a 1D gradient shim

adjustment before spectrum acquisition. Spectra were acquired

with 1024 scans, then zero-filled to 64 k points, followed with

Fourier transformation. Additional 2-dimensional NMR experi-

ments were performed for the purpose of confirming chemical shift

assignments, including total correlation spectroscopy (2D 1H-13C

TOCSY) and heteronuclear single quantum coherence spectros-

copy (2D 1H-13C HSQC), using standard Bruker pulse programs.

Original spectra are available for validation (upon request).

Sample fitting
Processed spectra were imported into Chenomx NMR Suite

software version 7.1 (Chenomx Inc., Edmonton, Canada) for

quantification. Preprocessing in Chenomx Processor module took

the form of Fourier transformation of FID signal with exponential

multiplication by 0.2 Hz line broadening factor, water region

deletion, and baseline correction using a manually calibrated

spline mode to remove distortions of amplitude greater than

background noise. Representative examples of spectra of samples

from non-infected and infected animals are given in Figure S1.

Metabolites were assigned based on comparison of both 1H and
13C chemical shifts and spin-spin coupling constants with those of

model compounds in Human Metabolite Database [15] and

Chenomx NMR Suite 7.1 software. Metabolites were quantified

using the targeted profiling approach as implemented in the

Chenomx software [16]. In total, 53 compounds were quantified

in each spectra when signal to noise ratio was sufficient. These

compounds were 2-aminobutyrate, 3-hydroxybutyrate, acetate,

acetone, alanine, allantoin, arginine, asparagine, aspartate, beta-

ine, carnitine, choline, citrate, citrulline, creatine, creatine

phosphate, creatinine, dimethyl-sulfone, dimethylamine, ethanol,

formate, glucose, glutamate, glutamine, glycerol, glycine, hippu-

rate, histidine, isobutyrate, isoleucine, isopropanol, lactate, leucine,

lysine, mannose, methanol, methionine, N,N-dimethylglycine,

ornithine, phenylalanine, proline, propionate, pyruvate, serine,

succinate, taurine, threonine, trimethylamine N-oxide, trypto-

phan, tyrosine, urea, valine, myo-inositol. Across all samples,

profiled compounds comprised approximately 95% of total

spectral area. All spectra were randomly ordered (within

acquisition batches) for fitting in a Chenomx Profiler. Within

each, compounds were profiled in order of decreasing concentra-

tion, refined from an average concentration/translation set

derived from previous studies in mice. Each compound concen-

tration was then normalized by dividing the measured concentra-

tion into the total concentration of all metabolites in that sample,

excluding glucose and lactate, to adjust for dilution effects from

sample preparation. Normalized metabolite concentrations were

then mean centered and univariate scaled. Unknown metabolites

were not tracked during data analyses.

Statistics
To identify metabolites changing significantly with age within

control and infected groups of cattle and between these two groups

in the longitudinal study, the SAM method was used [17]. This is a

well-established statistical method for identification of differentially

expressed genes in microarray data analysis. In that regard, it was

designed to address the false discovery rate (FDR) when running

multiple tests on high-dimensional microarray data and is

compatible with time-course data. The SAM assigns a significance

score to each variable, based on its change relative to the standard

deviation of repeated measurements. For a variable with scores

greater than an adjustable threshold, its relative difference is

compared to the distribution estimated by random permutations of

class labels. For each threshold, a certain proportion of the

variables in the permutation set will be significant by chance. The

proportion is used to calculate the FDR.

Factors associated with the binary status (infected and non-

infected) and confirmed by IFN-c release assay were identified

using multivariate regression analysis. Principal Component

Analysis (PCA) was used to detect intrinsic clusters and outliers

within the data set, followed by Orthogonal Projection to Latent

Structures Discriminant Analysis (OPLS DA), and the bi-

directional (X and Y) predictive OPLS-DA (O2-PLS) analyses

using the SIMCA-P software suite (Umetrics, Malmö, Sweden).

The OPLS-DA is an extension of PLS-DA, featuring an integrated

Orthogonal Signal Correction (OSC) filter to remove variability

not relevant to class separation [18]. The OPLS-DA yields a

loading value for each metabolite (X-variable) and a score value

for each sample, respectively representing a pattern of change

correlated with a supervisory Y-variable (infection status or time

after infection) and indicating the degree to which the pattern was

present in each sample.

The quality of the models was evaluated with R2 and Q2,

indicating the total variation explained in the data and the cross-

validated predicted variation, respectively, using a default 7-fold

cross-validation approach (which was also interpreted as the

overall predictive ability of the metabolite profiling).

Score scatter plots, loading plots, and coefficient plots were

generated in SIMCA-P. Also the ANalysis Of VAriance testing of

Cross-Validated predictive residuals (CV-ANOVA) for assessing

reliability of O-PLS models and the Receiver Operator Curves

(ROC) were done using SIMCA-P.

Boxplot representation (Stata Statistical Software: Release 12.

College Station, TX, USA: StataCorp LP) was used to visualize

variation in levels of integrated compounds in control and infected

samples.

Results

The cellular immune response measured by the interferon-

gamma release assay was used as a positive control for exposure.

All infected calves had a strong reaction in the interferon-gamma

release assay as soon as 3 months after infection and persisting for

the duration of the trial. None of the control calves produced a

positive result in this assay.

Two of the calves infected at 2 weeks of age with the high dose

were continuously shedding MAP, with weight loss (likely related

to the infection) near the end of the 17 month trial. These two

cattle were euthanized at 472 and 485 days, due to animal welfare

concerns. Consequently, the last monthly samples for those

animals were missing from the longitudinal study analysis.

Wherease these calves represent an unexpectedly high rate of fast

progression to clinical disease, none of the other infected cattle

demonstrated clinical symptoms indicative of JD.

Other indicators of infection identified in cattle that were part of

the longitudinal experiment included fecal shedding (6/7),

antibody positive on ELISA (5/7), gross pathology lesions (6/7)

and MAP positive tissues (4/7). Cattle in the cross-sectional

experiment had the following profiles: fecal shedding (24/35),

antibody ELISA (15/35), gross pathology lesions (21/35), and

MAP-positive tissues (17/35). Shedding was either intermittent,

continuous or sporadic. Calves could not be categorized based on

shedding pattern so that there were enough calves per category to

perform a meaningful metabolomic analysis.

Longitudinal study
To identify the earliest time after infection single metabolites or

metabolite profiles can reliably predict MAP infection, longitudinal

Paratuberculosis Detection by Metabolomics
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testing of infected and age-matched control cattle was performed.
1H-nuclear magnetic resonance (NMR) spectroscopy of serum was

used to yield metabolite identification as well as quantitation. In this

study, 7 infected calves at 2 weeks of age were compared to 6

controls for the duration of the 17-month infection trial. Monthly

serum samples were analysed by 1H-nuclear magnetic resonance

(NMR) spectroscopy. Separation of samples obtained from the 2

experiments was apparent by both PCA and OPLS analysis and was

attributed to differences (Fig. 2).

The influence of developmental and diet changes during the 17

months of the life of the calves was assessed by performing SAM,

on separate groups and between groups. The following metabolites

increased significantly over time in both the infected and the non-

infected groups: 2-Aminobutyrate, Alanine, Citrate, Hippurate,

Dimethyl sulfone, Glutamine, Histidine, Isoleucine, Leucine,

Lysine, Methionine, Ornithine, Pyruvate, Tyrosine, Valine. These

metabolites represented the influence of developmental and diet

changes during the 17 months of the life of the calves. Allantoin,

Creatine, Isobutyrate, Tryptophan only increased significantly

over time in the infected group, whereas Acetone, Isopropanol,

Glucose, and Myo-Inositol only decreased significantly over time

in the infected group (data not shown).

From the time-course analysis differences between groups,

glucose was significantly higher for the duration of the experiment

in the infected group, whereas Acetate, Dimethyl Sulfone, 3-

Hydroxybutyrate and Methanol were lower in the infected than in

the non-infected group.

To determine when the metabolite profiles started to differen-

tiate between infected and non-infected cattle, samples were

analysed by OPLS-DA for every single time point. Whereas R2 (.

0.6) and Q2 (.0.4) values were obtained for respectively 7 and 5

individual time points, the CV-ANOVA p-value was generally

high, with only the exception of p = 0.053 for 8.5 months post

inoculation, corresponding with a R2 and Q2 of 0.682 and 0.445 (1

predictive component), suggesting overfitting of the models. This

was supported by the fact that for almost half of the time points, no

model could be generated.

Next, samples were divided in 4 age categories (,200 days,

200–300, 300–40,0 and 400–500 days of age), so that the

categories contained respectively 6, 3, 3, and 4 samples,

representing repeated measures over time for each animal. The

corresponding OPLS-DA models are presented in Fig. 1. Sepa-

ration between groups and clustering of groups along the X-axis

was best achieved in the age category 300–400 days, based on

examination of scores plots (Fig. 1) and corresponding R2(Y)

values. The predictive capacity of the models as given by the Q2

value was also greatest in this time frame after infection. However,

the CV-ANOVA only yielded a p-value of 0.09 for this age

category, whereas the oldest age category that had the best

validated model by CV-ANOVA (P = 0.012).

Cross-sectional study
The second study included sera from 35 infected calves (1-year

old) with 16 age-matched control sera from non-infected calves.

The infected group included calves at 12, 9 and 6 months after

infection which had received either the HD or LD inoculum and

calves only 3 months after infection with HD. All cattle were 12

months old serum collection (thereby avoiding confounding

metabolic changes due to natural aging and developmental

changes). Unsupervised principal component analysis (PCA) did

not yield distinct separation between infected and non-infected

cattle, but there was a separation between samples from the first

and second runs (Fig. 2).

When all 53 metabolites were included, an OPLS-DA model

was created with R2(Y) of 0.757 and Q2 of 0.439 (1 predictive and

2 orthogonal components) and a CV-ANOVA p-value of 0.00018.

From this analysis, metabolites were trimmed to those with most

significant regression coefficients (n = 16) to create an improved

OPLS-DA model. The scores plot from this analysis is shown

(Fig. 3), revealing a statistical separation along the primary axis

between control and MAP-infected cattle. This OPLS-DA yielded

a R2(Y) of 0.645 and Q2 of 0.519 (1 predictive and 1 orthogonal

components) and a CV-ANOVA p-value of 0.00000062.

The corresponding regression coefficients for the included

metabolites, ordered according to their variable importance in the

OPLS-DA model, are shown (Fig. 4). Serum mannose, citrate and

glycerol concentrations were significantly lower in infected cattle,

whereas acetone, isobutyrate, urea, asparagine, tyrosine, dimethy-

lamine, myo-inositol were higher.

Coefficient plots were also built for the OPLS-DA models

generated to discriminate HD and control cattle or LD and

control cattle (Fig. 5). More metabolites were increased than

decreased in infected cattle. Mostly, the same metabolites were

identified which contributed the most to these models compared to

the model in which all infected cattle were grouped and contrasted

against those that were non-infected. Most notably, mannose,

creatinine, citrate and glycerol were decreased in the infected

cattle in all models. Hippurate, histidine, dimethylamine, tyrosine,

asparagine, urea, isobutyrate and acetone were increased in all

models. Therefore, infected cattle behaved uniformly, regardless of

inoculation dose (the model was not dominated by the HD

infection group).

Receiver operating curves were calculated for the OPLS-DA

model, including all 53 metabolites and the model with the

metabolites trimmed to 16 metabolites; the AUC were 1.0 and

0.984, respectively (Fig. 6).

Most of the metabolites incorporated in the final OPLS-DA

model between all infected and non-infected cattle (Fig. 3 and 4)

matched the set identified by the Student’s t-test, without

correcting for multiple testing between infected and non-infected

cattle and also in one-way ANOVA between the non-infected

animals and the dose groups. Boxplots of those metabolites are

shown (Fig. 7). Betaine was missing from the metabolites which

were lower in infected cattle and the amino acids leucine,

isoleucine, threonine that significantly discriminated HD from

control (Fig. 5 and 7) were also not represented in the final model

as metabolites which were higher in infected cattle. Interestingly

citrate, urea, dimethylamine and myo-inositol were part of the

OPLS-DA model, whereas individually they did not significantly

differentiate between groups.

Neither an OPLS (Y: the continuous variable time after

infection being 12, 9, 6 or 3 months post infection), nor an O2-

PLS analysis (Y1-time post infection; Y2: infection status) could be

constructed which detected a significant influence of time after

infection.

Discussion

In the present study, NMR-based metabolomic analysis

technology was used, apparently for the first time, to identify

characteristics of the metabolite profiles of calves infected with

MAP and to discover biomarkers to discriminate MAP-infected

from non-infected controls. Despite the well known poor sensitivity

of diagnostic methods, including the culture of tissues generally

considered the gold standard, to detect MAP infection, especially

in the early stages of infection, the combination of methods used in

this study provided evidence of exposure and infection in the

Paratuberculosis Detection by Metabolomics
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majority of the challenged cattle by positive interferon-gamma

release assay, fecal shedding, antibody ELISA, Map culture of

intestinal tissues, gross and histological pathology lesion scoring.

The results of the longitudinal follow-up of the calves by these tests

were previously reported [12,19–21].

When samples from Mycobacterium tuberculosis-infected rats

were analyzed with NMR [22], several tissue and serum

metabolites related to membrane phospholipids, glycolysis, AA

and nucleotide metabolism and antioxidative stress were altered.

Similarly, analysis of serum from patients with leparomatous

leprosy also resulted in metabolomics biomarkers such as certain

polyunsaturated fatty acids and phospholipids, suggested to be

useful for diagnostic purposes and assessment of disease progres-

sion [23].

This was apparently the first study to attempt identification of

biomarkers of paratuberculosis in cattle experimentally infected

with two doses and at several ages. Previously, studies have

performed longitudinal metabolomics analysis on chronic infec-

tions, e.g. chronic wasting disease in elk [24] and Schistosoma
mansoni infections in mice [25].

Good predictive models were created for experimentally

infected calves at 1 year of age when fecal shedding was sporadic

Figure 1. O-PLS-DA scores plots for different intervals after MAP infection for monthly serum samples of animals infected at 2
weeks of age compared to non-infected age-matched controls for a period of 17 months. A) ,200 days after infection (R2Y = 0.45, Q2Y
= 0.07; CV-ANOVA p = 0.50), B) 200–300 days after infection (R2Y = 0.77, Q2Y = 0.23; CV-ANOVA p = 0.15), C) 300–400 days after infection (R2Y = 0.99,
Q2Y = 0.61; CV-ANOVA p = 0.09), and D) 400–500 days after infection (R2Y = 0.78, Q2Y = 0.37; CV-ANOVA p = 0.002).
doi:10.1371/journal.pone.0111872.g001
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or absent and the presence of MAP-specific antibodies was

infrequent. Therefore, signals were present which could be

targeted to detect MAP infection before the cattle shed the

organism or generated antibodies. Previously, cell-mediated

immune responses [26] were identified early after infection and

regarded as the only currently available test useful to detect

infection in young stock [27]. Perhaps the metabolite profiles are

the result of early immune responses [28,29] and chronic

inflammation [30]. Notwithstanding, it is also possible that

physiological and pathological changes in the intestines soon after

infection, changes in general metabolism, nutrient uptake and

energy balance could have affected metabolite profiles.

Figure 2. 2D unsupervised PCA scores plot of infected and
non-infected cattle at 12 months old. The clustering pattern
between animals in first and second run can be seen.
doi:10.1371/journal.pone.0111872.g002

Figure 3. 2D supervised OPLS-DA scores plot demonstrating
the clustering pattern obtained for animals with known
discrete infection status in dairy calves exactly 1-year-old
dairy calves (R Y =  0.65, Q Y =  0.52).2 2 The metabolites were
trimmed to the 16 most discriminating ones based on an analysis
including all 53 metabolites.
doi:10.1371/journal.pone.0111872.g003

Figure 4. OPLS-DA coefficient plot of the 16 most discriminating metabolites; bars with negative values indicating metabolites that
are significantly lower in MAP-infected than in non-infected and bars with positive value indicating metabolites which are
significantly higher in MAP-infected than in non-infected animals exactly 1 year of age (R Y =  0.65, Q Y =  0.52).2 2 Only metabolites with
a confidence interval that did not cross the zero line had significant changes (p,0.05).
doi:10.1371/journal.pone.0111872.g004
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Most surprisingly, metabolomic analysis of the 1-year-old

animals revealed shifts in the concentration of several metabolites

that were consistent over cattle infected for varying lengths and

doses (which differed by 2 logs). Although the same metabolites

discriminated LD and HD infected cattle from negative controls;

therefore, dose did not affect metabolomic changes, it is

noteworthy that immune-related outcomes are typically influenced

by dose in parasitic [31], viral [32] and bacterial [33] infections.

Moreover, whereas all treatment groups of this trial were

purposely allocated into 2 independent runs, differentiation of

infected and non-infected animals was still possible despite added

seasonal variation to the metabolite profiles. This supported the

idea that metabolomics analysis captures the general trends of a

response and is less sensitive to variations. These findings are

promising for application of metabolomics profiling to detect early

infection under field conditions where the infection dose or time of

infection is unknown and variable. The inclusion of animals at

variable times after infection in the same analysis corresponded

better with natural infection than the uniformity obtained by

animals infected at exactly the same age. Therefore, this approach

has the potential to identify differences in metabolite profile that

are more likely to be sustained under field testing conditions.

Several metabolites (isobutyrate, acetone, and myo-inositol)

helped to differentiate between infected and non-infected cattle in

both studies. Although the direction of change of some of these

metabolites (acetone, myo-inositol) was opposite in the two

experiments, we inferred that increases and decreases in specific

metabolites were indications of disturbances of the homeostatic

concentrations of these metabolites as a result of the infection. In

that regard, compensatory mechanisms can cause metabolites to

oscillate around equilibrium concentrations.

Although biomarker models are not intended to explain the

biology of the infection, some interesting associations between the

identified metabolites and physiological changes likely occurring

during MAP infection were noteworthy. For example, changes in

concentrations of specific metabolites concentrations after MAP

infection, such as acetone, citrate, glycerol and iso-butyrate, may

have reflected altered energy metabolism in the inflamed gut.

Conversely, significant changes in amino acid (tyrosine, threonine,

isoleucine, leucine, asparagine) concentrations were regarded as

important changes in protein turnover or deficiencies in infected

cattle.

There were several commonalities in metabolite profiles

between MAP infection and other chronic diseases, such as IBD

[34,35], various cancers [36] and diabetes [37]. Although the same

metabolites were affected, the direction of the change often

differed. As discussed earlier, common imbalances in key

metabolic pathways were identified, but depending on the

chronicity and time of sampling, these imbalances might be

contradictory. Although in this study metabolite profiles were

investigated long before clinical symptoms occurred, our findings

matched further progressed stages of infection in which the body

has compensated for deficiencies or has exhausted stores.

There was evidence of increased demand for overutilization of

amino acids, likely associated with reduced absorptive capacity of

the inflamed gut, a hallmark of JD [38,39]. This was comparable

with elevation of several amino acids (tyrosine, tryptophan,

threonine, and isoleucine), which accompanied muscle wasting

in human cancer patients [36].

Acetone, a secondary energy source in the absence of glucose,

was the single most discriminatory metabolite in MAP-infected

cattle. To spare glucose by providing a substitute energy source,

glucagon stimulates degradation of fatty acids and conversion of

surplus acetyl CoA to ketone bodies (including acetone). It is only

when glucose sources are severely restricted that excess ketone

bodies are produced. The higher level of acetone in MAP-infected

cattle was consistent with an energy deficit and a higher

mobilization and degradation of fat stores. Metabolomic profiling

of the serum DSS-induced Ulcerative Colitis (UC) demonstrated

increases in ketone bodies, such as acetoacetate, acetone and 3-

hydroxybutyrate and decreased glucose concentrations, reflecting

the high demand of the body for energy [34]. Ketone body

concentrations were also markedly increased in septic rats,

especially in non-survivors [40] and in mice intraperitoneally

infected with Staphylococcus aureus [9]. Their increase might be

related to enhanced fatty acid oxidation. As the major source of

energy, fatty acid oxidation was significantly enhanced to meet the

energy requirement [41]; therefore ketone bodies accumulated.

It is noteworthy that the incidence of negative energy balance

resulting in ketosis is high in the first months of lactation in dairy

cows [42]. This frequent occurrence will undoubtedly jeopardize

any possible detection of ketone bodies as an indication of MAP

infection in lactating animals. Regardless, detection of acetone

levels in the dry period could circumvent this problem. Previously,

there was no apparent correlation between shedding of MAP and

subclinical or clinical ketosis as measured by beta-hydroxybutyrate

concentrations [43].

Figure 5. OPLS-DA coefficient plot of all metabolites; bars with negative values indicating metabolites that are significantly lower
in A) non-infected versus high dose MAP-infected (R Y =  0.72, Q Y =  0.42), B) in non-infected versus low dose infected animal (R Y2 2 2

=  0.86, Q Y =  0.33), and C) non-infected against all MAP-infected animals (R Y =  0.76, Q Y =  0.44), and bars with positive value2 2 2

indicating metabolites which are significantly higher in those same groups of infected animals exactly 1 year of age. Only
metabolites with a confidence interval that did not cross the zero line had significant changes (p,0.05). The negative coefficients indicate
metabolites that are significantly lower in negative versus MAP-infected animals and vice versa.
doi:10.1371/journal.pone.0111872.g005

Figure 6. ROC curve for the trimmed O-PLS DA model including
the 16 most significant metabolites. The AUC was 0.984.
doi:10.1371/journal.pone.0111872.g006
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Iso-butyrate and the branched chain amino acids (BCAA)

leucine and isoleucine concentrations were increased, whereas

citrate concentrations were decreased in MAP-infected calves.

This was in agreement with some of the most important

metabolite changes in rats in the fasted state after being fed a

high protein diet before they were fed a high fat/high sucrose diet

[44]. Both the LD and HD infected groups had a significantly

lower body weight than the control group (data not shown),

suggesting that energy intake and consumption were affected by

the intestinal inflammation [12]. The main contrasting finding was

that mannose belonged to the metabolites increased in this study,

whereas it was decreased in MAP-infected calves. This discrep-

ancy might be signifying the difference between energy and

metabolomic state versus the effects of MAP-infection and

inflammation. Mannose binding protein (MBL) is upregulated

after infection with M. tuberculosis [45] and during other acute

phase responses [46]. A dramatic increase in MBL might explain

the decline in free mannose in the blood. Concentrations of BCAA

and tyrosine were also increased in obese subjects compared to

lean controls [47].

Altered concentations of amino acid in the cross-sectional study

were consistent with JD as a protein-losing enteropathy [39,48,49].

It is noteworthy that JD is often compared with Inflammatory

Bowel Disease (IBD) in humans, due to pathological similarities,

because of a conspicuous overlap between genes predisposing for

IBD and involved in host responses to mycobacteria [50] and

because several reports of detection of MAP in samples obtained

from IBD patients have lead to the conclusion that an association

between MAP and IBD cannot be excluded [51]. In one study,

Crohn’s disease (CD) and Ulcerative Colitis (UC) had similar

impacts on blood isoleucine concentrations as detected in this

study [35], as was the case in a mouse model of UC [52], whereas

in other studies it was slightly reduced [53] or unchanged [54].

Citrate concentration was decreased in these first two mentioned

studies, analogous to this study. Interestingly, in serum and plasma

of IBD patients, opposite to our MAP-infected calves, mannose

and formate concentrations were significantly increased, whereas

urea was decreased [35]. In that regard, the substantial increase in

urea concentrations in MAP-infected calves was interpreted as

increased muscle turnover, likely to compensate for reduced AA

and energy intake.

Conclusions

Metabolomic analysis yielded a clear separation between non-

infected and MAP-infected groups, indicating a substantial imprint

from the infection on the metabolism of calves during the early

stage of the disease. In a longitudinal follow-up study, the strongest

separation occurred around 12 months after infection, wheras a

cross-sectional study demonstrated that at 3 months after

inoculation the same characteristic profile was found as at 12

months after inoculation. Limited differences were identified

between HD and LD, signifying that effects were both specific and

dose independent. That cattle at various intervals post-infection

had similar changes was strong support for diagnostic potential of

the metabolite profiles. Altered metabolomic pathways included

changes in AA metabolism, biosynthesis and degradation, ketone

body synthesis and degradation, and TCA cycle activity.

Although biomarker discovery using experimental infections has

the advantage of documenting when the biomarker detects the

infection, validation of the use of metabolomics to detect infection

under field conditions will need to be done to ultimately

demonstrate its utility.
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