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Abstract

Variations in individual body mass and composition have long been a key focus in the health sciences, particularly now that
overweight and obesity are considered as public health problems. We study a mathematical model that describes body
mass variations which are determined by the energy balance between caloric intake and total energy expenditure. To
calculate the change in caloric intake and energy expenditure over time, we proposed a relationship for each of these
quantities, and we used measured values that are reported in the literature for the initial conditions. To account for small
variations in the daily energy balance of an individual, we include social interactions as the multiplication of two terms:
social proximity and social influence. We observe that social interactions have a considerable effect when the body mass of
an individual is quite constant and social interactions take random values. However, when an individual’s mass value
changes (either increases or decreases), social interactions do not have a notable effect. In our simulation, we tested two
different models that describe the body mass composition, and it resulted that one fits better the data.
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Introduction

Overweight and obesity have become worldwide health

problems because they cause several diseases [1–4]. In response,

various disciplines, particularly the health sciences, have focused

on variations in human body mass and composition [5–9],

particularly on factors that lead to increases in human body mass

[10–15]. Mathematical models and their numerical solutions can

be used to quantify changes in body mass and are therefore useful

tools for studying body mass. Caloric intake and total energy

expenditure are two of the most important and complex factors

that should be quantified [16,17]. Our aim in the present study is

to propose a set of formulas as a function of individual body mass

and implement them to estimate how body mass varies over time.

Then, a random variation is introduced to represent variations in

the caloric intake and energy expenditure from those for the daily

routine of an individual; this variation provides a simple method of

accounting for social interactions.

Results/Discussion

We introduce values for the initial caloric intake and total

energy expenditure to the equation system of Hall and Chow [18].

We choose initial values for intake and total energy expenditure

from energy distributions based on an extensive Food and

Agriculture Organization (FAO) study [19]. These energy

distributions have a dependency on individuals weight, age and

sex. Initial values for mass, height and body fat percentage, which

are chosen by sex, are also required for each individual. [20,21].

Once all the initial values are given, the simulation can begin. We

performed several simulations to compare the results of the

numerical solutions for equations (2) and (3) using the two

expressions for p given by equations (4) and (6) [22,23]. The first

simulations were conducted to test the expresions for p in

equations (4) and (6) and choose one of these equations for our

next simulations. We found that one of the equations provides a

more satisfactory description of the body mass variation. In this

case we determined that the Forbes relationship produces better

results. In figures 1 and 2, we show two examples of individuals

with different initial conditions. To test these formulas we

performed simulations with large changes in body weight. In

figure 1, we show the change in the total body (A), lean (B) and fat

(C) masses with respect to time for a simulated male individual

with the following characteristics at the initial time t0:

age(t0) = 30.43 years, mass m(t0) = 72.06 kg, fat mass

f (t0) = 12.96 kg, lean mass l(t0) = 59.09 kg, intake

I(T0) = 2821.48 Kcal, total energy expenditure

E(t0) = 3248.75 kcal, height h = 1.88 meters and bmi(t0) = 20.37
kg

m2
. The value for variable c for this individual is chosen randomly,
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and is c = 0.32 in the present case. As shown in figure 1A, there is

no significant difference in the simulations using equation (4) and

the simulations using equation (6). However, in figures 1B and 1C,

we noticed a large difference between the two cases. In fact, in

figure 1C, using equation (6) predicts negative values for the fat

mass. These negative values are due to the way p changes. In the

equation (4) p reaches an steady value only when F becomes

constant. In the other hand, in the equation (6) the contribution to

p comes from both values, F and L, and it is the latter which is

responsible of the negative values.

In figure 2, we show a simulation of a male individual with the

following characteristics: age(t0) = 20.263 years, m(t0) = 74.69 kg,

f(t0) = 12.69 kg, l(t0) = 61.99 kg, I(t0) = 3288.08 kcal, E(t0) =

29991.30 kcal, h = 1.89 meters and bmi(t0) = 20.75
kg

m2
. The value

for c is chosen randomly, and for this case c = 0.44. Figure 2A

shows that, there is not a substantial difference in total body mass

values that are found using equations (4) and (6). However, in

figures 2B and 2C, we can observe that the values of fat and lean

mass values obtained using the two relationships for p differ

appreciably. In equation (6), lean mass increases more quickly than

fat. However, for equation (4) we have the opossite case. From

figure (1), we conclude that Forbes equation (4) is more adequate

for our next simulations.

Body mass changes for different values of ci

In the simulations, we consider 8|105 individuals to obtain the

most representatives variations for random initial conditions. We

chose two representative examples: a man who loses weight and a

woman who gains weight. Other examples, such as a woman who

loses weight and a man who gains weight, are also possible. We

chose these examples for their representative curves that show how

body mass, caloric intake and total energy expenditure vary over

time.

The first example is a man who is 38.44 years old and 1.76 m in

height (figure 3). His initial values are 99.52 kg weight, 37.11%
body fat percentage, 3506.32 kcal intake and 3527.51 kcal total

energy expenditure. The variations in mass, intake and energy

expenditure over time have the same functional shape. As ci

becomes greater than zero, the intake variation increases over

time, and consequently, the body mass variation also increases.

Thus, as the value of ci increases, more time is required to reach a

stable value. In addition, the difference between the caloric intake

and energy expenditure is negative, causing the individual to lose

weight.

The second example is a woman, who is 34.45 years old and

1.54 m in height (figure 4). Her initial values are 50.01 kg weight,

20.40% body fat percentage, 2196.22 kcal intake and

2187.62 kcal total energy expenditure. Because her energetic

difference is positive, she gains weight. Again, the functional shape

of the variations in mass, caloric intake and total energy

Figure 1. Difference between the Forbes and Hall relationships for an individual who is losing weight. Characteristics: 30.43 years old,
72.06 kg initial body mass, 12.96 kg initial body fat mass, 59.09 kg initial lean mass, and height = 1.88 m.
doi:10.1371/journal.pone.0111709.g001
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expenditure is similar. As ci increases in value, more time is

required for the mass, caloric intake and total energy expenditure

values to reach the maximum values, that is, when the intake and

expenditure have the same value and the energetic difference is

zero.

Although we use basic mathematical equations, our results are

comparable to those of previous studies [9,12,18]. However, we do

not believe that the trend in body mass variation would be that

consistent when small time steps are used. Thus we introduce the

hypothesis that the social environment affects intake and total

energy expenditure.

Modeling social interactions as energy noise
The simulations use one day as a single time increment, and we

introduce a small amount of noise to simulate the daily situations

that are beyond an individual’s control, such as social interactions.

These interactions vary depending on daily circumstances and can

influence an individual’s caloric intake and total energy expendi-

ture. Therefore we use equations (13) and (14), which include a

term that we introduced to describe social interactions. To begin

studying the effect of this social term [24], we use three relevant

cases. The first case (i) uses a fixed value for social proximity b with

a variation in the social influence DE. In the second case (ii), a

fixed value is used for the social influence DE with b varying

between 0 and 1.

Human interactions are irregular, and the type of situations that

people encounter vary, which can also cause randomness in these

interactions. To account to these factors we propose a third case

(iii) in which random values are assigned to both the social

proximity and the social influence. In the following simulations, we

take ci = 0.3, which is the average value of the uniform

distribution, to simplify the calculations.

Case i: To estimate the effects of social energetic differences on

an individual, the social proximity is fixed at 0.5, and DE is varied

between 20 and 150 kcal per day. In the first example, which

involves a man who loses body mass due to personal intake,

including the social term has a positive effect on his body mass

(figure 5). The social influence (DE) is associated with the caloric

intake and total energy expenditure but does not have a role in the

individual’s daily routine; instead, the social influence is a type of

noise that is linked to the social interactions.

Case ii: In this case, a fixed value for social influence (DE) is

used and b is varied from 0 to 1. For example, in figure 3, a

positive value is used for the social influence (DE = +50 kcal/day;

figure 6). The social proximity is correlated with the interaction

nearness; that is, larger values of b (i.e., values closer to 1)

correspond to a stronger relationship between this individual and

the other individuals with whom s/he interacts. This nearness can

be physical or social, but we do not differentiate between the types

of nearness in these cases.

Comparing cases (i) and (ii) using the first example (figure 3)

reveals that varying the social influence (DE) causes a more

pronounced increase in body mass than just varying b. In other

words, although the individual is motivated to lose weight in this

Figure 2. Difference between the Forbes and Hall relationships for an individual who is gaining weight. Characteristics: 20.26 years old,
74.69 kg initial body mass, 12.69 kg initial body fat mass, 61.99 kg initial lean mass, height = 1.89 m.
doi:10.1371/journal.pone.0111709.g002
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Figure 3. Body mass, intake and total energy expenditure variation for a male. Characteristics: 38.44 years of age, 99.52 kg initial body
mass, 3506.32 kcal initial intake and 3527.51 kcal total energy expenditure.
doi:10.1371/journal.pone.0111709.g003

Figure 4. Body mass, intake and total expenditure variation for a female. Characteristics: 34.54 years of age, 50.01 kilograms initial body
mass, 2196.22 kcal initial intake and 2187.62 kcal total energy expenditure.
doi:10.1371/journal.pone.0111709.g004
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Figure 5. Body mass in a male individual for whom EDEE is variable and b = 0.5.
doi:10.1371/journal.pone.0111709.g005

Figure 6. Body mass in a male individual for whom b is variable and EDEE = 50 Kcal/day.
doi:10.1371/journal.pone.0111709.g006
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case, as indicated by his negative personal energetic difference

(figure 3), interacting with individuals whose routine leads to an

increase in body mass (we use a positive sign in equations (15) and

(16)) undermines his attempt to lose weight. Indeed, as DE
increases, the body mass variation becomes positive and the mass

increases. In case (ii), increased interactions with other individuals

(i.e., b approaching 1) again makes the variation in body mass

positive.

Comparing (i) and (ii) using the second example (figure 4),

reveals that varying DE (in this case, we use a negative sign)

generates a greater variation in body mass than does increasing b
(figures 7 and 8). Although the individual’s tendency is to gain

weight slightly, the social interaction leads to a negative variation

in body mass. In other words, if a person who wants to gain weight

interacts with others who want to lose weight, it will be much more

difficult for the former individual to attain her goal. In general, we

noticed that gaining (or losing) and maintaining weight will

become even more challenging in the case of strong social

interactions. [25]

Case iii: We use a random value for the social energy influence

DE that is selected from a uniform distribution of points in the

range of [0,300] kcal/day, a random sign for the social interaction

in equations (15) and (16), and we vary b uniformly from (0,1), in

the first example (figure 3). These parameters produce small

variations over time that are more irregular than those in figure 3

(figure 9). The body mass varies, but the variations are more

pronounced in intake and total energy expenditure. When the

same conditions are used in the second example (figure 4), the

same variation patterns occur (figure 10).

During the first time steps in both cases (with and without social

interaction), the body mass change is more pronounced and

follows similar patterns in both. However, as the body mass

approaches a stable mass value, the fluctuations are much larger

for the case in which social interaction is included (figure 11). This

difference occurs because as body mass approaches a stable value,

the personal energetic difference tends toward zero. As a result,

the social interactions cause large variations and thus lead to

caloric intake and expenditure values that differ from those for the

individual’s daily routine.

Using the second example (figure 4) and the same conditions as

above, the body mass variation is positive (figure 12). Both cases

(with and without social interaction) have similar tendencies;

however, in comparison to the previous example, the variations

are less pronounced. In other words, the personal energetic

difference (Iind{Eind ) approaches zero more rapidly. Consequent-

ly, the social interactions have larger effects across the entire time

interval. It becomes clear that if the social interaction mean value

is not zero, there would a tendency for the body mass to change

accordingly. We expect that with the introduction of networks in

these calculations, this tendency will be the result of the

individual’s interaction with its neigborhood, depending on the

average mean value of the neighbor’s energetic differences.

Simulations similar to those above provide a theoretical

foundation that provide suggestions about how the human

environment can affect body mass. The regular variation patterns

(figures 3 and 4) exhibit no peaks, but the social interactions are

important and play a vital role in the variation. Several studies

have addressed the effects of social interactions by considering

kinship, friendship, gender, age and other factors [25–27].

However, no definitive conclusions have yet been reached as to

how social interactions directly affect important variables such as

an individual’s intake and total energy expenditure. Introducing

social interaction into the present equation system using energetic

terms helps to elucidate how a network of individuals whose body

masses increase and decrease affect an entire population. This tool

could be useful in studying how social interactions can modify the

Figure 7. Body mass in a female individual for whom DE is variable and b = 0.5.
doi:10.1371/journal.pone.0111709.g007
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Figure 8. Body mass in a female individual for whom b is variable and DE = 50 Kcal/day.
doi:10.1371/journal.pone.0111709.g008

Figure 9. Variation in body mass, intake and total energy expenditure for a male with social noise. Characteristics: 38.44 years of age,
99.52 kg initial body mass, 3506.32 kcal initial intake and 3527.51 kcal total energy expenditure.
doi:10.1371/journal.pone.0111709.g009
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Figure 10. Variation in body mass, intake and total expenditure for a female with social noise. Characteristics: 34.54 years of age,
50.01 kg initial body mass, 2196.22 kcal initial intake and 2187.62 kcal total energy expenditure.
doi:10.1371/journal.pone.0111709.g010

Figure 11. Body mass variation with and without social terms in intake and total energy expenditure for a male, c = 0.3.
doi:10.1371/journal.pone.0111709.g011
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percentages of individuals in a network who have obesity,

overweight or low weight, as well as the average BMI of the

network. Future work can be performed to explain the effect of

social networks on variations in mass.

Methods

Many analyses of the variations in individual body mass have

been developed to predict changes. Recently, mathematical

models have been developed that can make predictions that cover

a large number of variables that affect human body mass. The

model proposed by Chow and Hall [18] mainly focuses on the

differences between caloric intake and total energy expenditure;

this model is capable of incorporating new terms such as the term

we introduce to describe social interactions. Initially, this model is

based on the law of energy conservation:

DU~DQ{DW ð1Þ

where DU is the change in the energy reserved or accumulated in

the body; DQ is the variation in caloric intake; and DW is the

variation in total energy used. Using the mathematical model of

Chow and Hall leads to the following equations:

rF

dF

dt
~(1{p)(I{E) ð2Þ

rL

dL

dt
~p(I{E) ð3Þ

where F is the individual’s fat mass; L is lean mass (including all

non-fat tissues: organs, bones, muscle, etc.); I is the caloric intake;

E is the total energy expenditure; rF is the energy density

associated with body fat; rL is the energy density associated with

lean mass; and p is calculated as follows:

p~
1

1za
ð4Þ

where a is calculated by

a~
rF

rL

F

10:4
ð5Þ

The caloric intake (I ) and total energy expenditure (E) are not

constant values; instead, these values change over time. Equation

(5) was formulated by Forbes [12] for adult women, although we

use this equation as an approximation in the model for both sexes.

To adjust the model, we solve equations (2) and (3) numerically

and propose relationships for the caloric intake and total energy

expenditure (for the latter, we use equations given by the FAO

[19]). In our study, we are dealing with total mass and define the

total mass of an individual as M~FzL. However, there is

another mathematical form for p that is given in equation (4) and

proposed by Hall in [13].

p~

DL

DM
DL

DM
za 1z

DL

DM

� � ð6Þ

Figure 12. Body mass variation with and without social terms in intake and total energy expenditure for a female, c = 0.3.
doi:10.1371/journal.pone.0111709.g012
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where DL is the difference between the lean mean at time t and

time t-1, DM is the difference between the body mass at time t and

t-1, and a~
rF

rL
. In this work, we compare the Forbes and Hall

expressions for p using computer simulations.

Energy intake and total energy expenditure
Various computational models have been proposed to calculate

intake [8,10,14,15] and thus to analyze body mass variations in

large numbers of individuals. We introduce a new theoretical

model designed to identify a way to include dynamic change in

caloric intake. We must properly describe the large variations in

body mass among individuals. Considering this, we introduce a

new parameter ci (which depends on the individual) that would be

related to how fast the body mass of an individual reaches

equilibrium after significant variations in the caloric intake values.

The caloric intake values are then related to the parameter ci

through the following equation that is proposed for either gaining

or lossing weight:

Ii(t)~I
t0
i

Mi(t)

M
t0
i

 !ci

ð7Þ

where Ii(t) is the caloric intake of an individual i at time t; I
t0
i is the

caloric intake of the individual i at the initial time t0; Mi(t) is the

body mass of an individual i at time t; and M
t0
i is the body mass of

an individual i at time t0. To determine the range of ci, we

performed 8 | 105 simulations and analyzed the data. Comparisons

with the data showed in various papers in the literature [9,18,20]

indicated that the optimum ci values are consistent with the

literature values for regular variations of ci in the interval (0.1, 0.5).

In our simulation, we change the value of ci within the range from

0.1 to 0.5 by increments of 0.05. The parameter ci was introduced

with the only intention to model the individual’s intake dynamically

since very often in the literature the intake values are taken as

constants. Additionally, with the introduction of this parameter, we

can assign to each individual a different gamma value. Doing so, we

can model each of the individual’s metabolic rate, for instance,

taking into account for particular differences among them.

The total energy expenditure is calculated by a well-known

expression: (used in [21] for body mass changes)

E~BEzTGzAE ð8Þ

where E is the total energy expenditure; BE is the average basal

expenditure [19]; TG is thermogenesis; and AE is the energy

expenditure for activity. Using the initial conditions just men-

tioned, the total energy expenditure at time t is calculated as (for

an individual i)

Ei(t)~ (E
t0
i {BE

t0
i {TG

t0
i )

Mi(t)

M
t0
i

" #
zBEi(t)zTGi(t) ð9Þ

where E
t0
i is the total energy expenditure at the initial time t0;

BE
t0
i is the basal expenditure at the initial time t0; thermogenesis

is taken as 10% of the intake TGi(t)~Ii(t) � 0:1 [22];

TG
t0
i ~0:1 � I

t0
i is the thermogenesis at the initial time t0; and

BEi(t) is the basal expenditure at time t. The expenditure for

activity (AE) is shown in terms of the initial conditions so that only

known variables are used:

AEi(t)~ (E
t0
i {BE

t0
i {TG

t0
i )

Mi(t)

M
t0
i

" #
ð10Þ

Introducing the social interaction to energy terms
Body mass variations can sometimes be induced by other

people, depending of the type of social influences exerted on an

individual. We want to describe social interactions by adding a

random term to the intake and energy expenditure equations. Our

intent is to model the small daily variations in an individual that

are caused by stimuli that lead him/her to change intake or energy

expenditure from his/her normal habits. To this end, we define

intake as

Ii(t)~Iind (t)zIs(t) ð11Þ

where Iind is the individual caloric intake, and Is is the socially-

induced caloric intake. The total energy expenditure takes the

form

Ei(t)~Eind (t)zEs(t) ð12Þ

where Eind is the total individual energy expenditure, and Es is the

total socially-induced energy expenditure. These social terms, Is(t)
and Es(t), are modeled in the following manner

Is(t)~bIr(t)

Es(t)~bEr(t)

where the variable b is taken as the strength of the social influence

[24], which we term social proximity. Ir(t) and Er(t) are the

socially induced intake and expenditure, respectively. As a result,

equations (2) and (3) take the following forms

rF

dFi

dt
~(1{p)((Iind{Eind )zb(Ir{Er)) ð13Þ

rL

dLi

dt
~p((Iind{Eind )zb(Ir{Er)) ð14Þ

where the energetic difference induced by others is termed the

social influence (DE~Ir{Er). The product of the social proximity

and the social influence will give us the total social interaction [24].

Using the energy distributions obtained from documented data in

FAO studies, we found that the energy difference of an individual

was within the range of [-300:300] kilocalories. This change

correspond to a daily variation of 10 to 20% of the caloric intake,

depending on the individual. Therefore, equations (13) and (14)

can be approximated as

rF

dFi

dt
~(1{p)((Ii{Ei)+b � DE ð15Þ
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rL

dLi

dt
~p((Ii{Ei)+b � DE ð16Þ

where the social proximity parameter b takes random values from

a uniform distribution of points in the (0.0, 1.0) range, the social

influence DE take random values from a uniform distribution of

points in the (0, 300) range and the sign is chosen randomly.

Conclusions

The present simulations indicate that, in general, social

interactions have a greater effect on body mass variation when

individual body mass is mantained near a stable value, see

figure 12. This finding is expected because the social interaction is

introduced in a random manner. However, as shown in figure 11,

the social interactions are relevant but even are more significant

when the individual energetic differences (Iind{Eind ) becomes

close to zero. Comparing our results with other calculations

[8,10,18], we can infer that the parameter ci introduced in

equation (7) is useful for this type of simulations, because it allows

for the inclusion of dynamic variation in caloric intake; this

parameter is sufficient for our purpose and allows the equation

system to reproduce variations in the body mass of an individual

for different periods of time. In addition, the parameter can be

used to incorporate other individual-dependent effects, such as

phenotype. The mass variation of an individual, who is part of a

social network, can also be explored for different types of networks.

This would be part of our future work.
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