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Abstract

CDKN3 (cyclin-dependent kinase inhibitor 3), a dual specificity protein phosphatase, dephosphorylates cyclin-dependent
kinases (CDKs) and thus functions as a key negative regulator of cell cycle progression. Deregulation or mutations of CDNK3
have been implicated in various cancers. However, the role of CDKN3 in Bcr-Abl-mediated chronic myelogenous leukemia
(CML) remains unknown. Here we found that CDKN3 acts as a tumor suppressor in Bcr-Abl-mediated leukemogenesis.
Overexpression of CDKN3 sensitized the K562 leukemic cells to imanitib-induced apoptosis and dramatically inhibited K562
xenografted tumor growth in nude mouse model. Ectopic expression of CDKN3 significantly reduced the efficiency of Bcr-
Abl-mediated transformation of FDCP1 cells to growth factor independence. In contrast, depletion of CDKN3 expression
conferred resistance to imatinib-induced apoptosis in the leukemic cells and accelerated the growth of xenograph leukemia
in mice. In addition, we found that CDKN3 mutant (CDKN3-C140S) devoid of the phosphatase activity failed to affect the
K562 leukemic cell survival and xenografted tumor growth, suggesting that the phosphatase of CDKN3 was required for its
tumor suppressor function. Furthermore, we observed that overexpression of CDKN3 reduced the leukemic cell survival by
dephosphorylating CDK2, thereby inhibiting CDK2-dependent XIAP expression. Moreover, overexpression of CDKN3
delayed G1/S transition in K562 leukemic cells. Our results highlight the importance of CDKN3 in Bcr-Abl-mediated
leukemogenesis, and provide new insights into diagnostics and therapeutics of the leukemia.
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Introduction

Chronic myelogenous leukemia (CML) is a hematopoietic

malignancy characterized by the presence of the Philadelphia

chromosome that arises from a reciprocal translocation between

the Bcr gene on chromosome 22 and the c-Abl gene on

chromosome 9, resulting in the formation of Bcr-Abl oncogene

[1,2]. Previous studies have revealed that deregulation of multiple

signaling pathways associated with cell survival and proliferation,

including phosphoinositide-3-kinase (PI3K)/AKT, RAS, and

Janus kinase (JAK)/signal transducer and activator of transcription

(STAT), underlies Bcr-Abl-induced tumorigenesis [3–5]. Howev-

er, the precise mechanisms by which Bcr-Abl causes leukemogen-

esis are not fully clarified.

Dysregulation of cell cycle causes aberrant cell proliferation,

which potentiates genomic instability and cancer development [6–

8]. It is well known that Bcr-Abl expression in hematopoietic cells

promotes cell cycle progression from G1 to S phase, leading to

cytokine-independent proliferation [9,10]. Bcr-Abl may downreg-

ulate expression of cyclin-dependent kinase (CDK) inhibitor

p27Kip1 not only by suppressing its mRNA expression but also

by enhancing its protein degradation through the PI3K/AKT-

mediated proteasome pathway, resulting in activation of CDKs to

accelerate cell cycle progression [11–13]. Although alterations in

cell cycle progression and cell proliferation have been implicated

in Bcr-Abl-mediated tumorigenesis, the precise contribution of

relevant signaling molecules to the development of CML remains

to be further defined [9].

As a member of the dual specificity protein phosphatase family,

CDKN3 (CDK inhibitor 3, also called CDI1 or KAP) plays a key

role in regulating cell division [8,14–17]. The gene encoding

CDKN3 protein is located on chromosome 14q22 [18]. It is well

known that CDKN3 can specifically dephosphorylate and

inactivate CDK2, thereby inhibiting G1/S cell cycle progression

[19]. CDKN3 also interacts with CDK1 (also known as Cdc2 in
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fission yeast) and controls progression through mitosis by

dephosphorylating CDC2 at Thr161 and consequently reducing

phosphorylation of CKb at Ser209 [17]. CDKN3 has been

suggested to function as a tumor suppressor, and its loss of function

was found in a variety of cancers [17,20]. For example,

downregulation of CDKN3 has been found in glioblastoma [17].

Loss of CDKN3 has also been observed in hepatocellular

carcinoma [20]. Contradictorily, CDKN3 is highly expressed in

breast and prostate cancers, and blocking CDKN3 expression can

inhibit the transformation [21]. In addition, elevated levels of

CDKN3 occur in renal cell carcinoma (RCC), and enforced

CDKN3 expression significantly enhances cell proliferation and

xenograft tumor growth in renal cancer cells, suggesting an

oncogenic function of CDKN3 [22]. While more work is needed

to dissect the role of the CDKN3 in cancer, these findings suggest

that CDKN3 may potentially function either as an oncogene or a

tumor suppressor. Interestingly, several spliced transcript variants

encoding different isoforms of CDKN3 were found in diverse

cancers, implying that these isoforms may be associated with

specific tumor formation [23,24]. Despite the importance of

CDKN3 in tumorigenesis, how CDKN3 plays a role in Bcr-Abl-

induced leukemia and the mechanism by which CDKN3 functions

to impact Bcr-Abl-mediated cellular transformation are largely

unknown.

Here we found that CDKN3 acted as a tumor suppressor in

Bcr-Abl-induced tumorigenesis. Overexpression of CDKN3 de-

layed G1/S transition, sensitized imatinib-induced apoptosis in

K562 leukemic cells, and inhibited the growth of xenografted

leukemias in nude mice. In addition, we observed that forced

expression of CDKN3 significantly impaired the efficiency of Bcr-

Abl-mediated FDCP1 cellular transformation. Furthermore, we

revealed that CDKN3 reduced the cell survival by disrupting

CDK2-dependent expression of XIAP. Together, our experiments

establish an important role for CDKN3 in Bcr-Abl-mediated

leukemogenesis, and provide a potential new therapeutic target for

treatment of Abl-positive malignancies.

Materials and Methods

Cell lines and cell culture
Cell lines 293T and K562 were purchased from American Type

Culture Collection (ATCC) and grown in Dulbecco’s modified

Eagle medium (DMEM) or RPMI1640 supplemented with 10%

fetal bovine serum (FBS) and antibiotics (penicillin and strepto-

mycin) as previously described [4]. SUP-B15 cell line was obtained

from Cell Resource Center, Chinese Academy of Sciences in

Shanghai and cultured in IMEM supplemented with 20% FBS

and antibiotics. FDCP1 cell line was purchased from ATCC and

grown in RPMI1640 supplemented with 10% fetal bovine serum

containing antibiotics and 3 ng/ml murine IL3. CDKN3-overex-

pressing K562 cells were generated by infecting the cells with

retroviruses encoding FLAG-tagged CDKN3 using the pMSCV-

IRES-GFP vector as previously described [5]. Short hairpin RNA

(shRNA)-expressing K562 or SUP-B15 cells were generated by

infection of the cells with lentiviruses expressing specific shRNA in

pSIH-H1-GFP vector as described previously [5].

Antibodies and reagents
The following antibodies were used in this study: anti-FLAG

(Sigma, Saint Louis, MO, USA); anti-CDK2 and anti-phospho-

CDK2 Thr160 (Santa Cruz Biotechnology, Dallas, TX, USA);

anti-c-Abl (Merck Millipore, Billerica, MA, USA); anti-XIAP (Cell

Signaling, Danvers, MA, USA). All other antibodies were obtained

as described previously [25]. Thymidine and nocodazole were

purchased from Sigma, RNase Inhibitor was obtained from

Thermo Scientific (Waltham, MA, USA), and murine IL3 was

purchased from PEPRO TECH (Rocky Hill, NJ, USA).

Construction of CDKN3 expressing and specific shRNA
expressing vectors

FLAG-tagged CDKN3 was subcloned into pMSCV-IRES-GFP

to generate pMSCV-CDKN3-IRES-GFP. CDKN3 mutant

(CDKN3-C140S) devoid of the phosphatase activity and CDK2

dominant-negative mutant (CDK2-D145N) were generated using

a QuickChange site-directed mutagenesis kit (Stratagene, La Jolla,

CA, USA). The shRNA-expressing constructs were generated by

subcloning shRNA oligonucleotides into BamH I and EcoR I sites

of pSIH-H1-GFP vector (System Biosciences, Mountain View,

CA, USA) as previously described [26]. The shRNA sequence

targeting CDKN3 is 59-GCCGCCCAGTTCAATACAAAC-39.

Reverse transcription PCR (RT-PCR) and real-time PCR
Total RNA was extracted using TRizol reagent (Invitrogen,

Carlsbad, CA, USA). cDNA was synthesized using GoScriptTM

Reverse Transcription System (Promega, Madison, WI, USA) and

oligo (dT) primers (Takara, Dalian, China) by following the

manufacturer’s instruction. Briefly, 4 mg RNA was mixed with

0.5 mg oligo (dT) primers and nuclease-free water to a final volume

of 5 ml. This mixture was heated at 70uC for 5 minutes and then

immediately chilled on ice for 5 minutes, followed by addition of

15 ml GoScriptTM reverse transcription mix (1.5 mM MgCl2,

0.5 mM each dNTP, 20 units of RiboLock RNase Inhibitor, 160

units of GoScript Reverse Transcriptase). The reaction was then

performed by annealing at 25uC for 5 minutes, extending at 42uC
for 60 minutes and inactivating reverse transcriptase at 70uC for

15 minutes. The synthesized cDNA was amplified by PCR using

rTaq DNA polymerase (Takara, Tokyo, Japan) with specific

primers following the manufacturer’s instruction. The quantitative

real-time PCR was conducted with SuperReal PreMix Plus kit

(TIANGEN, Beijing, China) following the manufacturer’s instruc-

tion. The following primers were used for both PCR and real-time

PCR: human CDKN3 forward, (59-GGACTCCTGACATAGC-

CAGC-39) and reverse (59-CTGTATTGCCCCGGATCCTC-

39); human XIAP forward, (59-TGAAAATAGTGCCACG-

CAGTCT-39) and reverse (59-CTGGCCAGTTCTGAAAG-

GACTT-39). Expression level of b-actin or GAPDH was used as

a control.

Western blotting
Western blotting was conducted as previously described [27,28].

Briefly, cells were treated as indicated in the figure legends,

harvested, and lysed for protein collection. Samples were then

separated on SDS-polyacrylamide gel, transferred to a nitrocellu-

lose membrane, and probed with antibodies as indicated.

Apoptosis and cell viability assay
Cell apoptosis assay was performed using KeyGEN Annexin V-

APC/propidium iodide (PI) Apoptosis Detection kit (KeyGEN

BioTECH, Nanjing, China) according to the manufacturer’s

instructions. Briefly, cells were treated with 5 mM or 10 mM

imatinib for the indicated times. The samples were washed with

ice cold phosphate-buffered saline (PBS) and stained with 2.5 mg/

ml Annexin V-APC and 1 mg/ml propidium iodide. The samples

were then examined by fluorescence-activated cell sorter (BD

Bioscience, San Jose, CA, USA) as previously described [5,29]. For

cell viability assay, cells were treated with 10 mM imatinib for

indicated time, washed with ice cold PBS, stained with 1 mg/ml of
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propidium iodide, and examined by fluorescence-activated cell

sorter as described previously [5,29]. All the data were analyzed by

FCS Express V3 Software (De Novo Software, Thornhill, Ontario,

Canada).

Bcr-Abl-mediated FDCP1 transformation
FDCP1 cells were infected with retroviruses carrying Bcr-Abl

oncogene by spin infection with 8 mg polybrene at 32uC for

2 hours. The infected cells were suspended in RPMI1640

containing 10% FBS and seeded in 96-well plates (each plate

was seeded with 46106 cells equally). The transformation

efficiency was scored by counting the number of wells that

displayed cytokine-independent growth 2 weeks after infection as

described previously [27].

Cell cycle synchronization and cell cycle analysis
K562 cells were synchronized at the G1/S transition as

previously described [30,31]. In brief, cells were treated with

2 mM of thymidine for 13.5 h and then released for 9 h, followed

by treatment with thymidine for 13.5 h. Cells were released for

2.5 h and subjected to flow cytometry analysis. To obtain cells in

mitosis, cells were treated with thymidine for 13.5 h and then

released for 6 h, followed by treatment with 100 ng/ml of

nocodazole for 6 h. Cells were released for 2 or 4 h, and subjected

to flow cytometry analysis. Cell cycle analysis was performed as

previously described [30,31]. Briefly, cells were collected at the

indicated time, fixed in 75% ethanol at 220uC overnight, then

washed and incubated with propidium iodide (5 mg/ml with 0.1%

RNase A) for 30 min. The samples were analyzed with a

fluorescence-activated cell sorter (BD Bioscience).

Nude mouse xenograft experiments
Female nude mice (5–6 weeks old) were obtained from Vital

River Laboratories (VRL) (Beijing, China). Nude-mouse injection

was performed as previously described [4]. Tumor growth was

monitored and measured in volume (length6height6width) at the

indicated time points. Bioluminescent imaging was performed to

detect tumors originating from the GFP-expressing cells. Mice

were anesthetized using 2% isoflurane and imaged using a cooled

CCD camera. Images were quantified as photons/s using the

indigo software (Berthold Technologies, Bad Wildbad, Germany).

Ethics statement
The mouse experimental design and protocols used in this study

were approved by ‘‘the regulation of the Institute of Microbiology,

Chinese Academy of Sciences of Research Ethics Committee’’

(Permit Number: PZIMCAS2013008). All mouse experimental

procedures were performed in accordance with the Regulations

for the Administration of Affairs Concerning Experimental

Animals approved by the State Council of People’s Republic of

China.

Statistical analysis
Results were expressed as mean values 6 standard error (mean

6 SE). Statistical significance was determined by Student’s t-test.

A level of P,0.05 was considered to be significant.

Results

CDKN3 negatively regulates K562 leukemic cell survival
in the presence of imatinib

Deregulation or mutation of CDKN3 has been associated with

a variety of human cancers [17,20,22,23,32], but it is unknown

whether it plays a role in Bcr-Abl-induced tumorigenesis. To

address this issue, we generated K562 leukemic cells stably

expressing wild type CDKN3 (CDKN3-WT), or empty vector

control (EV) (Figure 1A, Figure S1). These cells were treated with

10 mM of imatinib for up to 36 h, followed by Annexin V and PI

staining and flow cytometry analysis. We found that under these

culture conditions, approximately 50% of the control cells

remained viable after incubation with imatinib for 36 h. In

contrast, only approximately 31% of CDKN3-WT overexpressing

cells were viable under the same imatinib treatment (Figure 1B),

although overexpression of CDKN3 had no significant effect on

the cell survival in the absence of imatinib (Figure S2A). To rule

out the possibility of off-target responses caused by the imatinib

dose at 10 mM, we also treated K562 cells with 5 mM imatinib for

36 h. Similarly, overexpression of CDKN3 significantly reduced

the cell viability under this condition as compared with the control

(Figure S2B). Importantly, there was no significant difference in

cell survival between the control cells and cells expressing CDKN3

mutant (CDKN3-C140S) devoid of the phosphatase activity, in

response to imatinib treatment (Figures 1C and 1D). These data

suggest that CDKN3 overexpression promotes imatinib-induced

apoptosis in K562 cells, and that the phosphatase activity of

CDKN3 is required for its function in regulating leukemic cell

survival in the presence of imatinib.

To further confirm the role of CDKN3 in regulating the

survival of Bcr-Abl-transformed leukemic cells, K562 cell lines

stably expressing shRNA targeting CDKN3 (sh-CDKN3) or

luciferase (sh-luc) control were generated. Examination by

Western blotting, RT-PCR and real time PCR showed that

expression of CDKN3 was strongly diminished in cells expressing

related shRNA (Figure 1E, and Figure S1). However, depletion of

CDKN3 had no significant effect on the apoptosis of K562 cells

without imatinib treatment (Figure S2C). These cells were then

treated with 10 mM imatinib for indicated times and analyzed for

cell survival. As expected, our results showed that approximately

49% of the control cells remained viable after treatment with

imatinib for 36 h, while approximately 66% of the CDKN3

knockdown cells were viable under the same condition (Figure 1F),

indicating a critical role for CDKN3 in imatinib-induced apoptosis

of K562 leukemic cells. In addition, we also treated these K562

cells with 5 mM imatinib for 36 h. CDKN3 knockdown resulted in

an increase in cell viability after imatinib treatment as compared to

the control (Figure S2D). To better clarify the function of CDKN3

in Bcr-Abl tumorigenesis, we employed another Bcr-Abl positive

cell line SUP-B15 that expresses comparable level of CDKN3 to

K562 (Figure S3A). SUP-B15 cells stably expressing shRNA

against CDKN3 or luciferase were generated (Figure S3B). The

cells were then treated with 5 mM imatinib for 24 h and stained

with Annexin V and PI. Similarly, depletion of CDKN3

significantly increased the cell viability after treatment with

imatinib (Figure S3C). Taken together, these data implicate

CDKN3 as a negative regulator of leukemic cell survival in the

presence of imatinib.

Altering CDKN3 expression has profound effects on
Bcr-Abl-dependent tumor growth in a nude mouse
xenograft model

To understand whether CDKN3 regulates Bcr-Abl-mediated

tumorigenesis in vivo, nude mice were subcutaneously injected

with K562 cells stably expressing CDKN3-WT or empty vector as

control. Tumor volumes were measured each week after

inoculation. Remarkably, we observed that the tumors formed

by K562 cells overexpressing the CDKN3 phosphatase grew

clearly slower than those formed by control cells (Figure 2A and
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2B). Statistical analysis revealed that the tumor growth was

significantly inhibited by exogenous expression of CDKN3-WT in

K562 cells (Figures 2C). This finding was validated via biolumi-

nescent imaging analysis (Figure 2D) and confirmed in three

independent experiments. Additionally, Western blotting analysis

demonstrated the overexpression of CDKN3 in the slow growth

tumors (Figure 2E). In contrast, no significant difference was

observed in the growth of tumors formed by K562 cells

overexpressing phosphatase-dead CDKN3-C140S and control

cells (Figures 2F and 2G). Together, these findings revealed that

ectopic expression of wild type CDKN3, but not the phosphatase-

deficient CDKN3-C140S mutant, significantly impeded the

growth of the Bcr-Abl-driven K562 cells in the nude mouse

xenograft model.

Since overexpression of CDKN3 inhibited the growth of

leukemia in vivo, we hypothesized that decreased CDKN3

expression may promote the growth of leukemic tumors. To

address this possibility, nude mice were injected subcutaneously

with K562 cells stably expressing shRNA against CDKN3 (sh-

CDKN3) or luciferase (sh-luc) control. As hypothesized, we found

that silencing CDKN3 expression greatly promoted K562

xenografted tumor growth in nude mice (Figure 3A and 3B).

Statistical analysis showed that a significant enhancement of tumor

growth was induced by the knockdown of CDKN3 in K562 cells

(Figures 3C). These results further indicate that CDKN3 phos-

phatase acts as a tumor suppressor in Bcr-Abl-mediated tumor-

igenesis.

Figure 1. CDKN3 negatively regulates K562 cell survival. (A) Expression of CDKN3 in K562 cells stably overexpressing FLAG-tagged wild type
CDKN3 (CDKN3-WT) or empty vector (EV) was detected by Western blotting using indicated antibodies. (B) K562 cells stably overexpressing CDKN3-
WT or EV were treated with 10 mM of imatinib for the indicated time. Samples were stained with Annexin V-APC and PI, examined by flow cytometry
and analyzed by FCS Express V3. Plotted are results from three independent experiments. Error bars represent SEM, n = 3; *P,0.05. (C) Shown is an
immunoblot examining FLAG-tagged CDKN3-C140S in K562 cells ectopically expressing CDKN3 mutant (CDKN3-C140S) or empty vector (EV). (D) Cell
viability of K562 cells expressing CDKN3-C140S or EV was assessed by flow cytometry after treatment with 10 mM of imatinib for 36 h. Samples were
stained with Annexin V-APC and PI. Plotted are results from three independent experiments. Error bars represent SEM, n = 3. (E) Shown is an
immunoblot examining shRNA-based knockdown of CDKN3. (F) K562 cells stably expressing sh-luc or sh-CDKN3 were treated with 10 mM imatinib for
the indicated time. Samples were then stained with Annexin V-APC and PI, followed by flow cytometry analysis. Plotted are results from three
independent experiments. Error bars represent SEM, n = 3; *P,0.05.
doi:10.1371/journal.pone.0111611.g001
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Forced expression of CDKN3 significantly reduced the
efficiency of Bcr-Abl-mediated transformation of FDCP1
cells to growth factor independence

To better define the role of CDKN3 in Bcr-Abl-mediated

cellular transformation, we generated bicistronic retroviruses

encoding Bcr-Abl and either GFP or CDKN3 (Figure 4A and

4B). Equal titer of these viruses was used to infect FDCP1 cells.

Efficiency of the viruses to transform FDCP1 cells to growth factor

independence was then assessed by counting the number of wells

containing Bcr-Abl-transformed cell clones. FDCP1 cells infected

with viruses carrying Bcr-Abl-IRES-GFP showed an average result

of 23 wells/96-well plate which displayed IL-3-independent

growth of cell clones. Interestingly, the exogenous expression of

CDKN3 remarkably impaired the transformation efficiency of

Bcr-Abl to 12 wells/96-well plate (Figure 4C). These data

Figure 2. Overexpression of CDKN3 dramatically inhibits K562 xenografted tumor growth in nude mice. (A) Nude mice were
subcutaneously injected with K562 cells stably expressing CDKN3-WT or EV. The tumor volumes were measured at indicated time points. Plotted are
results from three independent experiments. Error bars, SEM; n = 9; *P,0.05. (B) Tumors were excised from mice. Shown are representative images
from four independent experiments with similar results. (C) Relative volume of tumors excised from nude mice injected with K562 cells expressing
CDKN3-WT or EV (control). The average volume of control tumors is set to 100%. Error bars, SEM; n = 9; *P,0.05. (D) Over a 21-day period after
inoculation, tumors formed by control or CDKN3-WT overexpressing K562 cells were measured by bioluminescent imaging. Shown are representative
images from at least three independent experiments with similar results. (E) CDKN3 expression in representative tumors expressing CDKN3-WT or EV
was examined by Western blotting. (F) Nude mice were subcutaneously injected with K562 cells stably expressing CDKN3-C140S or EV. The tumor
volumes were measured at indicated time points. Shown are volumes of tumors excised from nude mice injected with K562 cells expressing CDKN3-
C140S or EV. Plotted are results from three independent experiments. Error bars, SEM; n = 9. (G) Tumors from nude mice injected with K562 cells
expressing CDKN3-C140S or EV were excised from mice. Shown are representative images from three independent experiments with similar results.
doi:10.1371/journal.pone.0111611.g002
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provided strong evidence that CDKN3 significantly inhibited Bcr-

Abl-induced cellular transformation and might function as a key

suppressor in Bcr-Abl-mediated tumorigenesis.

CDKN3 negatively regulates leukemia cells survival by
disrupting CDK2-dependent XIAP expression

Our experiments presented above demonstrated that the

phosphatase activity of CDKN3 is essential for its pro-apoptotic

activity in the CML leukemia cells. Previous studies have revealed

that CDKN3 could dephosphorylate cyclin-dependent kinase 2

(CDK2) and thus modulate cell proliferation [23,33]. It has been

shown that CDK2-dependent expression of anti-apoptotic protein

XIAP may account for the inefficient apoptosis in tumor cells

including Bcr-Abl expressing cells [34–36]. Thus, we hypothesized

that CDKN3 may inhibit the Bcr-Abl-mediated tumorigenesis at

least partially by dephosphorylating and inactivating CDK2 to

inhibit CDK2-dependent XIAP expression. To test this hypoth-

esis, we examined the activation of CDK2 and the expression of

XIAP in K562 cells expressing CDKN3-WT, CDKN3 specific

shRNA, empty vector control, or luciferase specific shRNA

control. The results showed that forced expression of CDKN3-

WT reduced the levels of CDK2 phosphorylation at Thr160.

Importantly, we observed that overexpression of CDKN3-WT

caused a marked decrease in mRNA and protein expression of

XIAP (Figure 5A and 5C). Conversely, depletion of CDKN3

increased CDK2 phosphorylation at Thr160 and the expression of

XIAP (Figure 5B and 5D). These data suggest that CDKN3 might

modulate leukemic cell survival at least partially through

regulating CDK2-dependent expression of the anti-apoptotic

regulator, XIAP.

To confirm the above findings, we generated CDKN3-

knockdown K562 cells stably expressing either CDK2-WT,

CDK2-D145N (dominant-negative mutant), or the control

(Figures 6A and 6B). These cells were subjected to imatinib

treatment and analyzed for cell survival. As shown in Figure 6C,

without imatinib treatment, depletion of CDKN3, overexpression

of CDK2-WT or CDK2-D145N did not significantly affect cell

viability in K562 cells as compared to the control cells. However,

consistently with our aforementioned findings, depletion of

CDKN3 significantly increased the survival of imatinib-treated

leukemic cells (Figure 6C). Overexpression of functional CDK2

further increased the survival of CDKN3-depleted leukemic cells

after treatment with imatinib, whereas ectopic expression of the

catalytically inactive CDK2-D145N mutant had the opposite

effect on survival of the CDKN3-deficient leukemic cells exposed

to imatinib. Together, these results reveal that activity of CDK2

regulated by CDKN3 is involved in imatinib-induced apoptosis in

K562 leukemic cells.

Overexpression of CDKN3 delays the G1/S transition in
K562 leukemic cells

Given that CDKN3 is a critical inhibitor for CDK2 [14,19], we

next evaluated the effect of CDKN3 on cell cycle progression in

K562 cells. K562 cells stably expressing CDKN3-WT or control

cells were synchronized at the G1/S boundary by thymidine

treatment, and then subjected to cell cycle analysis (Figure S4A).

As shown in Figure 7A, 61.65% of control cells resided in S phase,

whereas only 49.35% of CDKN3-WT overexpressing cells were in

S phase. This finding demonstrates that overexpression of

CDKN3 delays the G1/S transition in K562 leukemic cells.

Because CDKN3 also interacts with CDK1 [17], we further

examined whether overexpression of CDKN3 affects the timing of

mitotic exit upon nocodazole release in K562 cells (Figure S4B).

As shown in Figure 7B, 18.7% of the control cells were labeled as

G2/M phase population at 4 hours after release. Similarly, 17.1%

of CDKN3 overexpressing cells were in G2/M phase at this time

point, indicating that overexpression of CDKN3 had no significant

effect on the timing of the G2/M/G1 progression upon release

from nocodazole-induced mitotic spindle checkpoint arrest.

Together, these data reveal that enforced expression of CDKN3

delays the G1/S transition but has little effect on G2/M/G1

progression in Bcr-Abl positive K562 cells.

Figure 3. CDKN3 deficiency promotes K562 xenografted tumor
growth in nude mice. (A) Nude mice were subcutaneously injected
with K562 cells stably expressing sh-CDKN3 or sh-luc (control). The
tumor volumes were measured at indicated time points. Plotted are
results from three independent experiments. Error bars, SEM; n = 9; *P,
0.05. (B) Tumors were excised from mice. Shown are representative
images from four independent experiments with similar results. (C)
Relative volume of tumors excised from nude mice injected with K562
cells expressing sh-luc (control) or sh-CDKN3. The average volume of
control tumors is set to 100%. Error bars, SEM; n = 9; *P,0.05.
doi:10.1371/journal.pone.0111611.g003
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Discussion

Abnormal expression of CDKN3 is associated with a broad

spectrum of human cancers. Dual roles of CDKN3 acting either as

an oncogene or a tumor suppressor have been documented in

different tumors [17,20,21,23]. However, the functional relevance

of CDKN3 in Bcr-Abl-mediated leukemias remains elusive. Here,

for the first time, we present evidence that CDKN3 plays a crucial

role in Bcr-Abl-mediated tumorigenesis. Overexpression of

CDKN3 markedly sensitized K562 leukemic cells to imatinib-

induced apoptosis, and inhibited Bcr-Abl-dependent tumor

growth in nude mice. On the contrary, silencing CDKN3 greatly

rendered K562 cells resistant to imatinib-induced apoptosis, and

promoted K562 xenografted tumor growth in nude mice. In

addition, overexpression of CDKN3 remarkably inhibited the

transformation efficiency of FDCP1 cells induced by Bcr-Abl.

These results strongly indicate that CDKN3 acts as a tumor

suppressor in Bcr-Abl-mediated tumorigenesis.

Figure 4. Overexpression of CDKN3 significantly reduces the efficiency of Bcr-Abl-mediated FDCP1 cell transformation. (A) Shown
are constructs of bicistronic retroviruses carrying Bcr-Abl and GFP, Bcr-Abl and CDKN3-Flag, or empty vector (EV). (B) 293T cells were transfected with
the plasmids described in (A). Cells were harvested after 36 hours and protein expression was detected by Western blotting using indicated
antibodies. (C) FDCP1 cells were infected with retroviruses carrying empty vector, Bcr-Abl and GFP, or Bcr-Abl and CDKN3-Flag, and plated on 96-well
plates. Transformation efficiency was assessed as described in Materials and Methods. Plotted are the results from three independent experiments.
Error bars, SEM; n = 3; *P,0.05.
doi:10.1371/journal.pone.0111611.g004
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Numerous studies have demonstrated that tumorgenesis in-

duced by the oncogenic Bcr-Abl kinase is associated with

dysregulation of a variety of signaling pathways, which endows

leukemic cells with malignant proliferation and defected apoptosis

[9,37,38]. It is well known that CDKN3 is a key inhibitor of

CDK2 [15]. CDK2 controls multiple cell cycle checkpoints,

including the G1/S transition and mitotic entry [39–41].

Activation of CDK2 requires the binding of cyclin E/A, but also

requires phosphorylation of CDK2 at Thr160 by CDK-activating

kinase (CAK) [39–41]. CDKN3 can form a stable complex with

CDK2, dephosphorylating Thr160 and thus inactivating CDK2

[42]. Our experiments demonstrated that overexpression of

CDKN3 was sufficient to prevent K562 leukemic cells from

entering S phase of the cell cycle, suggesting that CDKN3 may

negatively regulate proliferation of the leukemic cells by inacti-

vating CDK2 and thereby delaying the S-phase entry. This finding

is consistent with previously published observations in other

experimental systems, implicating CDKN3 as a S-phase gate-

keeper in multiple cell types [14–15,19].

In this study, we also investigated the mechanisms by which

CDKN3 promotes death of Bcr-Abl-driven leukemic cells upon

imatinib exposure. Our data showed that overexpression of wild

type CDKN3 significantly enhanced imatinib-induced apoptosis in

K562 cells. We found that ectopic expression of the phosphatase-

dead C140S CDKN3 mutant did not promote apoptosis under the

same conditions. In addition, enforced expression of the CDK2

dominant-negative mutant (CDK2-D145N) attenuated survival of

the CDKN3-knockdown leukemic cells, suggesting that increased

CDK2 activity is essential for increased survival of the CDKN3-

knockdown leukemic cells.

Several studies have revealed that XIAP, an anti-apoptotic

protein regulated by CDK2, plays an important role in controlling

cell survival [35,36,43,44]. Our results demonstrated that the

expression level of XIAP strongly correlated with the phosphor-

ylation status of CDK2 and the expression of CDKN3 in the K562

Figure 5. CDKN3 negatively regulates phosphorylation of CDK2 and expression of XIAP. (A) The levels of the indicated genes and
proteins were detected by RT-PCR and Western blotting, respectively, in K562 cells overexpressing CDKN3-WT or EV. (B) Experiments were performed
as described in (A). Shown are data from K562 cells expressing shRNA targeting CDKN3 or luciferase. (C) The mRNA expression of XIAP was detected
by real-time PCR in K562 cells expressing CDKN3-WT or EV. Plotted are the results from three independent experiments. Error bars, SEM; n = 3; *P,
0.05. (D) Experiments were performed as described in (C). Plotted are the results from three independent experiments using K562 cells expressing
shRNA targeting CDKN3 or luciferase. Error bars, SEM; n = 3; *P,0.05.
doi:10.1371/journal.pone.0111611.g005
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leukemic cells, supporting the notion that CDKN3 may negatively

regulate leukemic cell survival by dephosphorylating CDK2,

leading to decreased expression of XIAP. Taken together, our

observations suggested that CDKN3 suppresses Bcr-Abl-induced

tumorigenesis likely through cell cycle arrest at the G1/S phases

and regulation of the apoptosis by altering the XIAP expression.

In summary, our results reveal that CDKN3 acts as a tumor

suppressor during Bcr-Abl-mediated tumorigenesis through con-

trol of both cell proliferation and cell survival. Downregulation or

Figure 6. CDK2 is involved in regulating CDKN3-mediated leukemic cell survival. (A) Shown is lentiviral vectors constructed in this study
that encode luciferase shRNA (sh-luc) control, CDKN3 shRNA (sh-CDKN3), sh-CDKN3 and either wild type CDK2 (CDK2-WT) or CDK2 dominant-
negative mutant (CDK2-D145N). (B) RT-PCR and Western blotting were performed to examine the expression of CDKN3, CDK2, and XIAP in K562 cells
expressing sh-CDKN3 alone, sh-CDKN3 and CDK2-WT, sh-CDKN3 and CDK2-D145N, or control. (C) Survival of K562 cells expressing sh-CDKN3, sh-
CDKN3 and CDK2-WT, sh-CDKN3 and CDK2-D145N, or the control was analyzed by flow cytometry after treatment with or without 10 mM of imatinib
for 48 h. Plotted are results from three independent experiments. Error bars represent SEM, n = 3; *P,0.05.
doi:10.1371/journal.pone.0111611.g006
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mutation of CDKN3 may increase cell proliferation and confer

high resistance to imatinib-induced apoptosis in Bcr-Abl-positive

leukemic cells. However, further studies are needed to address the

precise mechanisms by which CDKN3 impacts these processes. In

addition, future work will also explore the proposed role of

inactivation of the CDKN3 tumor suppressor pathway in human

leukemia. Whether this pathway has any prognostic or therapeutic

significance in the leukemia induced by Abl oncogenes also

remains to be determined.

Supporting Information

Figure S1 Generation of K562 cell lines stably express-
ing CDKN3, CDKN3 shRNA, or the controls. (A)

Generation of K562 cells stably overexpressing CDKN3-WT or

empty vector (EV). Retroviruses encoding CDKN3-WT or EV

were produced in 293T cells. Cell culture supernatants containing

retroviruses were collected and filtered through a 0.22-mm MCE

membrane (Millipore). K562 cells were infected with the

retroviruses and GFP-positive K562 cells were sorted by flow

cytometry. Shown are micrographs of these K562 cell lines

obtained from a fluorescent microscope (Axiovert 200M; Zeiss,

Oberkochen, Germany). (B) Experiments were performed as

described in (A). Shown are micrographs of K562 cell lines stably

expressing shRNA targeting CDKN3 or luciferase control

obtained from a fluorescent microscope (Axiovert 200M; Zeiss,

Oberkochen, Germany). (C) shRNA-based knockdown of

CDKN3 was examined by real-time PCR in K562 cells expressing

specific shRNAs. Plotted are results from three independent

experiments. Error bars, SEM; n = 3; *P,0.05. (D) RT-PCR was

performed to examine CDKN3 mRNA levels in cells described in

(C).

(TIF)

Figure S2 CDKN3 promotes K562 cell apoptosis in-
duced by imatinib. (A) K562 cells stably overexpressing

CDKN3-WT or empty vector (EV) were stained with Annexin

V-APC and PI, examined by flow cytometry and analyzed by FCS

Express V3. Plotted are results from three independent experi-

ments. Error bars represent SEM, n = 3. (B) K562 cells described

in (A) were treated with 5 mM imatinib for 36 h. Samples were

analyzed as described in (A). Plotted are results from three

independent experiments. Error bars, SEM; n = 3; *P,0.05. (C)

Experiments were performed as described in (A). Plotted are the

results from three independent experiments using K562 cells

expressing shRNA against CDKN3 or luciferase. Error bars,

SEM; n = 3. (D) K562 cells expressing shRNA against CDKN3 or

luciferase were treated with 5 mM imatinib for 36 h. Samples were

analyzed as described in (A). Plotted are results from three

independent experiments. Error bars represent SEM, n = 3; *P,

0.05.

(TIF)

Figure S3 Disruption of CDKN3 expression increased
the survival of Bcr-Abl positive SUP-B15 cell. (A) The

mRNA expression of CDKN3 in K562 and SUP-B15 cells were

measured by RT-PCR. (B) shRNA-based knockdown of CDKN3

was examined in SUP-B15 cells expressing shRNA targeting

CDKN3 or luciferase by real-time PCR. Shown are results from

three independent experiments. Error bars, SEM; n = 3; *P,0.05.

(C) SUP-B15 cells described in (B) were treated with 5 mM

imatinib for 24 h and stained with Annexin V-APC/PI. Samples

were analyzed by flow cytometry and FCS Express V3. Plotted are

results from three independent experiments. Error bars, SEM;

n = 3; *P,0.05.

(TIF)

Figure S4 Schematic view of experimental design to
examine the impact of CDKN3 on cell cycle progression.
(A) K562 cells expressing CDKN3-WT or empty vector (EV) were

treated with thymidine (2 mM) for 13.5 h, released for 9 h and

then treated with thymidine (2 mM) for 13.5 h again. Cells were

released for 2.5 h and subjected to flow cytometry analysis. (B)

Cells described in (A) were treated by 2 mM of thymidine for

13.5 h, released for 6 h, and then treated by 100 ng/ml of

nocodazole for 6 h. Then cells were released for indicated time

and examined by flow cytometry.

(TIF)
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