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Abstract

The quasi-linear transport equation is investigated for modeling the bipolar memory resistor. The solution accommodates
vacancy and circuit level perspectives on memristance. For the first time in literature the component resistors that
constitute the contemporary dual variable resistor circuit model are quantified using vacancy parameters and derived from
a governing partial differential equation. The model describes known memristor dynamics even as it generates new insight
about vacancy migration, bottlenecks to switching speed and elucidates subtle relationships between switching resistance
range and device parameters. The model is shown to comply with Chua’s generalized equations for the memristor.
Independent experimental results are used throughout, to validate the insights obtained from the model. The paper
concludes by implementing a memristor-capacitor filter and compares its performance to a reference resistor-capacitor filter
to demonstrate that the model is usable for practical circuit analysis.
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Introduction

MEMRISTIVE dynamics in chemicals has been reported in

experimental literature from at least the late 1960s in conjunction

with the study of thin films [1]. The mathematics behind the

memristor was presented by Chua in 1971 [2]. It was manufac-

tured by Hewlett-Packard’s (HP) Williams et al. in 2008

accompanied by two important papers that are ubiquitously

referenced [3,4]. The name memristor is an abbreviation for

memory resistor. It is a two-terminal resistor that retains memory

of the last known resistance prior to removal of the programming

stimulus. Physically the device consists of two metal end plates with

a chemical sandwich that has mobile vacancies also referred to as

defects. For example a common chemical species is titanium

dioxide where some of the compound molecules might lose a

positive oxygen ion resulting in negatively charged TiO which can

be thought of as forming the defect structure [3,4]. Gathering the

vacancies to any one end plate results in a high resistance and

distributing them makes the device exhibit low resistance [3].

Choosing the right chemical species to provide the mobile

vacancies makes it possible to integrate the device into a CMOS

substrate. In general, and without considerations of any high

electric field induced breakdown, the memristor would seem very

amenable to device length scaling. The possibility of integration

with CMOS technologies combined with the dimension scalability

make them good candidates for use as high-density memory

elements, where the low and high resistance states can represent

binary data.

Identifying the performance limiting parameters is an important

outcome for any modeling effort. Clearly specified variables,

computability and clarity are essential for a usable model.

Portability to a Simulation Program with Integrated Circuit

Emphasis (SPICE) environment will allow specialist circuit

designers to investigate circuit networks that incorporate memris-

tors.

The scope of memristor literature has expanded remarkably

following the fabrication work by Williams [4]. Papers on the topic

may be broadly classified as modeling or circuit implementations

that derive from Strukov et al.’s dual variable resistor model [3].

Within the modeling and circuit category, one will find theoretical

and experimental papers. Strukov and Williams’ are the two

contemporary papers that introduce the idea of the memristor

being composed of dual variable resistors with a low and high

resistance. These two papers also form the fountainhead for

numerous contributions by various authors.

Joglekar and Wolf [5] mathematically address the moving

boundary between the low and high resistance regions, device

resistance and non-linear dopant drift toward end plates. Non-

linear drift is tackled using window functions that have a tuning

knob (variable) to help adjust the vacancy velocity toward the end

plates. Their paper has some explorations of circuits using

memristors.

Biolek et al. [6] take the basic model from [3], discuss the

implications of nonlinear dopant drift from [5], and suggest

enhancements to the window function. They also present a

compact SPICE model.
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Kim et al. [7] present a memristor emulator circuit built using

discrete components. The paper is based on Chua’s work on the

memristor and has an extensive repertoire of I–V curves generated

with the emulator.

Waser et al. [8] methodically classify various physical phenom-

ena that could result in memristive behavior. From the discussion

therein, it is clear that bipolar memristance resulting from vacancy

dynamics is a subset of the broader phenomena of memristance.

The paper also serves as a survey of experimental results,

illustrated with Scanning Electron Microscope (SEM) captures

and containing chemistry intensive discussions. The authors

recognize the development of a large body of literature where

the transport of ions is considered essential for resistive switching.

This transport results in the depletion or enrichment of vacancies

in a given volume of the memristor, resulting in a considerable

change in electronic conductivity.

Meuffels and Soni [9] present a strong case for why the memory

resistor model as presented in [3] is unrealizable as a practical

device. Their work points out that to arrive at the equations in [3],

the concentration in the on and off regions of the memristor must

remain unchanged despite the moving boundary. Such an

(enforced, impractical) assumption will lead to the equations in

[3] and also to an undesirable, unstable physical condition at the

boundary between the on and off regions. These criticisms are

readily redressed by this manuscript, in the last paragraph of this

section.

Strachan et al. [10] present a study on tantalum oxide

memristors. They determined that the on state was metallic while

the off state was best described by the Frankel-Poole relationship.

The authors model the device conductance as a parallel

combination of the two phases. Strachan’s work may be more

suited as a demonstration of a phase change, unipolar memristor,

while this work seeks to address only bipolar memristance deriving

from memristive dynamics.

Nardi et al. [11] take a unique approach with the vacancies

subjected to the continuity equation accompanied by a numerical

solution. The two-part paper has experimental results in Part-I,

which are then compared to the results of the numerical model

from Part-II, with some success over the current-voltage (I–V)

curves under consideration. Nardi et al. [11] may be one of very

few papers that have attempted a modeling technique that reaches

into the vacancy levels, rather than start with the dual variable

resistor abstraction.

This paper recognizes that many physical phenomena such as

electrochemical, defect or vacancy migration, stoichiometry and

phase change can exhibit memory resistance [8]. The modeling

presented here is confined to bipolar memristance arising from

vacancy migration. This work avoids the unstable physical

boundary that may result from the modeling in [3] (as pointed

out by Meuffels) by proposing a refined definition for the boundary

that separates the device volume with more vacancies from the

device volume with fewer vacancies. This model allows the

vacancy concentration to vary non-linearly between the end

plates. The vacancies are also recognized as being able to diffuse

and lose their stored state over a prolonged period of storage with

no applied voltage. The volatility will be driven by the much

smaller diffusion constant of the vacancies compared to the

mobility when vacancies drift in the presence of an applied electric

field. At a high level of abstraction, this paper is similar to Nardi et

al. [11] in seeking a solution that is independent of the dual

variable resistor model, yet transcends the vacancy and circuit

levels of abstraction. This paper is different from [11] in that the

proposed model in the form of a single partial differential equation

(PDE) is solved analytically, to yield computable equations for

vacancy and circuit dynamics. The generally accepted idea of

nonlinear [3] vacancy transport [8] between end plates suggests

that some form of the non-linear transport equation should be able

to model the memristor phenomenon. The literature survey

reveals a variety of equations that quantify different pieces of the

memristive phenomena but not a unifying model. The goal for this

paper is to present a single governing equation accompanied by an

analytical solution that can be manipulated to yield known

memristive characteristics including the ubiquitously referenced

dual variable resistor circuit abstraction.

Methods

A. Assumptions
The following assumptions provide a framework for how

vacancies evolve with time, inside the memristor. Nardi et al.’s

[11] experimental work shows that resistance did not depend

significantly on the device area. Since the top-plate may contact

the ambient, this data is taken to indicate that there is minimal or

zero ingress/egress of vacancies from within the device boundaries

[8]. Taking into consideration, the ‘‘bubbles in glass’’ analogy

from [4] and the fairly repeatable empirical I–V data from many

sources it may be assumed that vacancies are drifting and

accumulating toward the attracting end plate, with an accumu-

lation boundary that separates the region with lots of vacancies

from the region without many vacancies. The assumptions and

related references are concisely stated as follows,

(i) Vacancies are conserved [8,11].

(ii) Vacancies accumulate to one end plate to a maximum

normalized concentration of unity and vacancies dissipate

from the opposite region to a minimum normalized

concentration of zero [3,4].

(iii) A non-linear drift mechanism governs the movement of

these vacancies between end plates [5,6,9]. The author

recognizes that nonlinear drift will be modulated by

diffusion and thermal effects to some extent as mentioned

by Strachan et al. For the first steps with this derivation, drift

is considered dominant when vacancies move toward the

one or the other end plate. This should not dilute the essence

of the phenomenon because the vacancies conclusively drift

in the presence of the applied electric field [3].

The derivation uses normalized vacancy concentration to

remove ambiguity relating to the value of mobility, precision of

the programming voltage, the total quantity of vacancies in the

material etc. associated with disparate sources. A subset of data is

presented with the normalization removed, to compare to

published results [11,12,13] and show that the normalization is

not hiding any undesirable side-effects.

B. The Continuity Equation and Solution
Having identified the common thread of drift and conservation

from literature, this paper proposes the variable co-efficient

advection or transport equation as the governing PDE.

utzq(x,t) ux~0 ð1Þ

In (1), u~u(x,t) and is the normalized vacancy concentration at

a point inside the memristor. The coefficient of mx is the variable

velocity q(x,t) which will accommodate the ‘‘non-linear dopant

drift’’ that is anticipated by the many references [5,6,9]. A simpler

equation utzq(x) ux~0 is a teaching aid and has the solution
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ln u(x,t)~ ln f (x)zh(t):u(x,t)~f (x) eh(t). Additionally the au-

thor observes that a simple PDE such as ut z({x=t) ux~0 which

accepts e+x t also accepts e+ x t= 1ze+ x tð Þ as a solution. The

second form of the solution (with the positive exponents) has the

desirable property that it asymptotically approaches zero for

t?{? and unity as t?? forming the basis for the proposed

solution to the evolution of (normalized) vacancy concentration

within the memristive device. With the aforementioned guidance,

a test solution of the form u(x,t)~ p
a el f (x,t) h(t)

1za el f (x,t) h(t)
is proposed for

the PDE (1), such that at t~0, the concentration is some constant

representing the equally distributed value. The variable p is an

additional knob that limits the maximum concentration to less

than unity due to forces of repulsion [14]. Except where explicitly

mentioned, p = 1.

The concept of accumulation boundary is read in [4,5]. With

reference to Fig. 1(a), the author observes that when the vacancies

are evenly distributed, it is impossible to distinguish any point

along the device from any other, from the point of view of

concentration. As the vacancies accumulate to one end plate, there

will always be a point x~xb(t) which has the same normalized

concentration as the initial distributed value a. It is assumed that

there is no discontinuous jump from zero to unity at the

accumulation boundary, at any time. This location xb(t) is the

refined definition of the accumulation boundary. Since the

numerator and denominator must be dimensionless, consider just

the numerator when attempting to expand the various functions in

(x,t). Taking the natural logarithm results in

ln (u(x,t))~l f (x,t) h(t)z ln (a), where the term ln (a) can be

evaluated after applying the initial conditions at t~0. The first

term can evaluate to a normalized concentration like the other

terms only if f (x,t) represents a velocity, h(t) represents time and l
is the normalization factor. With this insight, assign

f (x,t)~m E
x{xb(t)

d
, where m E is the velocity of vacancies when

far away from the influence of the device boundaries or the

accumulation boundary. The term
x{xb(t)

d
modulates the free-

space velocity with the normalized distance of a point from the

accumulation boundary. The assignment of l~
1

d
and h(t)~t

makes the exponent dimensionless. The true vacancy velocity at

any location will be given by the velocity term q(x,t) in the

governing equation (1). The complete solution is presented as

follows with p = 1.

u(x,t)~
a e

m V

d3
x{xb(t)ð Þ t

1za e

m V

d3
x{xb(t)ð Þ t

ð2Þ

where,

u(x,t) is the normalized concentration at some x,tð Þ (unit less),

a is a yet-to-be determined true constant coefficient (unit less),

m is the vacancy mobility m2V{1s{1
� �

,

V is the programming DC voltage (V),

d is the device length (m),

x is the length along the device,

t is time and

xb(t) is the accumulation boundary.

Given that the memory resistor is a flux controlled device, where

flux is the time-integral of the voltage, the solution can be rephrased

in terms of flux with quantities in x simultaneously normalized as,

u(n, w)~
a ef0 w n{nb(w)ð Þ

1za ef0 w n{nb(w)ð Þ ð3Þ

where,

a is the constant coefficient,

f0~m
�

d2 is a natural frequency,

w~
Ðt
0

V (t) dt is the flux and

n{nb(w)~(x{xb(w))=d, is the normalized distance of a point

inside the device, from the flux dependent accumulation

boundary.

The equations as presented simplify the concepts while being

scalable to accommodate temperature effects. Mobility can be

expanded using the Einstein-Smoluchowski relation which relates

diffusion constant D to the electrical mobility m of particles as

mq~
D q

kBT
, where mq is the mobility of the charged particle

(vacancy), kB is the Boltzmann constant, q is the electrical charge

of the particle (vacancy) and T is the temperature. In summary,

the derivation of the solution is based on the author’s observations

about the PDE and material from [15].

C. Solution Verification
1. Initial Condition. The initial condition can be tested by

substituting t~0 in (2).

u(x,0)~
a e0

1za e0
~

a

1za

The above can be used to calculate a, by equating it to the

distributed initial (normalized) concentration a. Upon solving, the

solution is a~a=(1{a).
2. Final Condition. The final condition has two parts to be

evaluated, one at each end of the device. The following calculation

assumes that vacancies are drifting and accumulating to the right

side of the device.

Figure 1. The vacancy accumulation and symmetry boundary.
(a) The accumulation boundary is non-existent when the vacancies are
distributed through the volume of the memristor. (b) The boundary
xb(t) becomes well defined when the vacancies accumulate to one end
plate. (c–e) Sketch of the accumulation boundary and vacancy
symmetry boundary evolving as the vacancies accumulate to one end
plate.
doi:10.1371/journal.pone.0111607.g001
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u(0,?)0 v nb(?)~
a el 0{nb(?)ð Þ?

1za el 0{nb(?)ð Þ? ~
a e{?

1za e{? ~0

u(1,?)1 w nb(?)~
a el 1{nb(?)ð Þ?

1za el 1{nb(?)ð Þ? ~
a e?

1za e?
~1

The two normalized conditions are satisfied.

Results

This section derives and provides visualization for various

dynamics of interest such as the vacancy accumulation boundary,

vacancy symmetry boundary, vacancy velocity and device

resistance. In the accompanying figures, the plots were generated

with an excitation waveform described by

v(t)~vcmzva sin (2 p fm f0 t). The common-mode of the wave

is vcm and the amplitude is va. Variable fm denotes a multiple of

the natural frequency of the memristor f0 as defined in (3). The

parameter values used for all calculations and plots are in Table 1.

When a plot or calculation uses different values other than from

the table, the reason and the specific value used are called out.

A. Vacancy Velocity
For a constant programming voltage V and constant mobility m,

the proposed solution (2) satisfies the PDE (1) when,

q(x,t)~{
x{xb(t){t x0b(t)
� �

t
ð4Þ

This method of solving for q(x,t) produces a computable

formula for velocity since it is not possible to enforce the velocity of

vacancies inside the device. Fig. 2 plots (4) at various locations, for

a~0:1. Negative velocity indicates dissipation of vacancies while

positive velocity indicates accumulation. Fig. 2(a) and Fig. 2(d)

show dissipation and accumulation at very close to the left and

right end plates respectively. Fig. 2(b) shows dissipating vacancies

because the device has been initialized to its lowest resistance state

with the accumulation boundary at infinity as in Fig. 1(c) and the

only possible outcome when vacancies drift to the right, is for the

location n = 0.4 to lose vacancies. In Fig. 2(c) the normalized

location n = 0.6 exhibits an initial gain of vacancies with positive

velocity when vacancies from the left side rush in. As the

accumulation boundary transits through this point, the velocity

becomes negative (representing outflow), reaches a negative

maximum, and asymptotically tends to zero as time increases.

B. Accumulation Boundary
The formula for accumulation boundary is derived by

integrating p u(x,t) over the volume of the device, equating to

the estimated total vacancy count in the device and solving for

xb(t) (or the normalized nb(t)~xb(t)=d ). The result is shown here

Table 1. List of parameter values used for calculations.

# Symbol Parameter Units Value

1 u Normalized vacancy density m{3 -

2 a Normalized average concentration m{3 0.2

3 d Device length nm 32

4 l Inverse device length m{1 -

5 c Resistance of pristine chemical sandwich species V 100

6 g RHI limiter (optional computational aid) - 0.0

7 m Vacancy mobility m2V{1s{1 10{14

8 V Programming voltage V 1

9 p Packing factor - 1

10 t Transition time s -

doi:10.1371/journal.pone.0111607.t001

Figure 2. Vacancy velocity within the memristor. (a) Vacancy
velocity is negative close to the left end plate at n~0:1 signifying
evacuation of vacancies. (b) Even at n~0:4, the vacancies are
evacuating the location because the device was originally initialized
to a low resistance and the accumulation boundary materializes past
the n~0:5 position. (c) Shows an intermediate location n~0:6 which
initially experiences an inrush of vacancies (with positive velocity) and
then loses vacancies (with negative velocity) as the accumulation
boundary transits the location. (d) A location very close to the right end
plate always accumulates vacancies. The velocity in all panels
asymptotically approach zero with time.
doi:10.1371/journal.pone.0111607.g002
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with p~1 for simplicity where p is the additional knob that limits

the maximum concentration to less than unity due to forces of

repulsion [14].

xb(t)~
d

f0 V t
ln

a ef0 V t{ea f0 V t
� �

ea f0 V t{1

� �
ð5Þ

This derivation assumes that the total number of vacancies is

known from the stoichiometry of the chemical species. The

accumulation boundary is mentioned with a similar equation in

[5]. The bold thick plot in Fig. 3(a) shows the simulation for the

normalized accumulation boundary. The missing segment at t~0
is because the boundary has traveled to infinity according to the

refined definition, illustrated in Fig. 1(c). Fig. 3(b) shows a plot of

the boundary from [5]. There is a simple time shift between

Fig. 3(a) and Fig. 3(b) because of how the models are initialized.

The timescale is different because Joglekar’s boundary is shown for

a DR~200V, while the calculation in this paper is for a

DR~2800V and involving an assumed initial vacancy concentra-

tion of a~0:1. Due to the unknown parameters, the only intent

here is to show the agreement in the general shape.

C. Vacancy Symmetry Boundary
This paper introduces a new concept of vacancy symmetry

boundary to offset the inconvenience of having the accumulation

boundary tend to infinity when the vacancies are evenly

distributed as sketched in Fig. 1(c). The vacancy symmetry

boundary xs(t) is a location that has an equal number of vacancies

to either side of it. The formula is derived similar to xb(t) with

p~1 and V~1.

xs(t)~{
d

f0 t
ln {

1{(1za) e
{

a f0 t

2

a

0
@

1
A, 0ƒxƒ0:5d ð6Þ

The vacancy symmetry boundary is shown sketched in Fig. 1(c–e)

and marked with the blue arrow. Fig. 3(a) plots a simulation of the

vacancy symmetry boundary with a red dotted line. Notably the

vacancy symmetry boundary always evaluates to a position within

the boundary of the device, unlike the accumulation boundary

which tends to infinity when the vacancies are evenly distributed.

The infinity signifies that there is no boundary in the traditional

sense because the entire volume of the device has the same

vacancy concentration.

D. Resistance
The model in this paper stands apart from other contributions

in that it derives a resistance equation, rather than starting out

from the dual variable resistor model with known RLO and RHI .

The derived resistance equations reveal dual variable resistors and

some additional interesting characteristics.

For the derivation, the chemical species with the mobile

vacancies is considered to be like an electrolyte. The similarity

comes from the fact that a vacancy concentration u x,tð Þ at a

location translates into resistance just like in an electrolyte. With

reference to sketches from [4] and empirical data in general, a low

resistance is associated with vacancies being distributed through

the length of the device. In keeping with these observations, the

resistance equation at any location inside the device boundaries is

proposed to be,

r(x,t)~
c

1zg{p u(x,t)
ð7Þ

In (7) c is the resistance in a region that is devoid of any defects.

The variable g is an arbitrary computational knob to limit the

maximum resistance and prevent a singularity if u x,tð Þ~1. The

value of c may be known from empirical data or the chemical

composition of a pristine device with no vacancies.

Figure 3. Computed normalized accumulation and symmetry plots. The normalized plots of the vacancy accumulation boundary and
symmetry boundary show that while the accumulation boundary ‘‘tends to infinity’’ when the vacancies are distributed (at t~0), the symmetry
boundary is always within the physical ends of the device.
doi:10.1371/journal.pone.0111607.g003
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The resistance across the device is determined by integrating (7)

over the device length, resulting in R(t)~

ðx~d

x~0

r(x,t) dx. The

normalized resistance-time plot in Fig. 4(a) shows two resistance

states. The plot in Fig. 4(b) was generated by the author using the

equation from [5] shown along with the plot. The similarity

confirms that the proposed model is able to reproduce the

transient behavior from published works. The plot uses a~0:2
from Table 1 to facilitate a closer approximation to [5]. The

maximum value and the timescale (in seconds) in which this

transition happens are reasonably close to that from [5].

Rearranging terms after integration produces two constituent

resistors similar to the dual variable resistor model.

R1(t)~
c

1{p
z

p c ln (p{1) e
(pza) f0 V t

p ze
a f0 V t

p {p ef0 V t

� �
f0 (1{p) t V

R2(t)~{
p c

1{p
{

p c ln 1{ef0 V t{p 1{e
a f0 V t

p

� �� �
(1{p) f0 t V

ð8Þ

All computed results are generated with w~

ðt~ t
^

t~0

v(t) dt. In the

special case where voltage is DC 1 V, then it is possible to write

w~t. The following discussion may use w and t interchangeably.

The two resistors in (8) individually evaluate to complex quantities

that may be represented as R1(t)~+ azi b and

R2(t)~+ c{i b as in Fig. 4(c). In this complex representation

the real parts always evaluate such that the positive real part

(either a or c) is always greater than the negative real part.

Therefore, when these resistors appear in series in the dual

variable resistor model, the result is a positive composite resistance

for all t. The resistors R1(w) and R2(w) are complex because they

individually contain phase information as observed by Chua [16].

Fig. 5 shows the normalized resistances in the complex plane.

Fig. 5(a) shows that when forced with a programming sinusoid

having a common-mode 0 V and one-tenth the natural frequency

of the device, the constituent resistors R1(w) and R2(w) have the

form {azi b and c{i b respectively. The filled navy blue circle

represents the composite normalized resistance R(w), which is

shown to be at about one-tenth the maximum possible value.

Fig. 5(b) demonstrates that with a programming common-mode

and amplitude of 0.25 V, at a frequency of one-thousandth the

natural frequency, the constituent resistors R1(w) and R2(w)
evolve significantly. R1(w) transitions from azi b to {azi:b,

where the real part has changed from a positive resistance to a

negative resistance. R2(w) transitions from -a-i b to a{i:b, where

the real part has changed from a negative resistance to a positive

resistance. The composite resistance has a wider spread because

the resistance is evolving quickly even in the one cycle under

consideration due to the low frequency. Fig. 5(c) is different in that

the amplitude of the sinusoid is larger than the common-mode

offset, causing negative voltage excursions which delay the

accumulation of flux. Consequently, the composite resistor has

not evolved much, as evidenced by the small range of values

occupied by the filled navy blue dots on the positive real axis.

Fig. 5(d) shows the resistors when subjected to a programming

voltage at ten-times the natural frequency. The constituent

resistors trace a straight line and the composite R(w) has not

evolved at all. This is the expected behavior because the vacancies

in a memristor subjected to a high frequency will not have enough

time to dislodge from their original positions in any of the

waveform cycles [5]. All panels of Fig. 5 conclusively show that the

composite resistance is always real and positive.

The excursion of the real part of the constituent resistors

between positive and negative numbers is important. It explains

why there is seemingly a negative resistance region in the I–V

curve for the memristor. Since R(w)~R1(w)zR2(w), the sum will

exhibit an increase or decrease depending on the rate at which

R1(w), R2(w) are evolving due to phase differences between these

resistors. The semblance of negative resistance lasts only for a brief

range of the sweep voltage, and may be practically unusable for

building an oscillator as observed by Chua [16]. The primary

objective in this subsection is to emphasize that the independent

methods presented here are able to mathematically show the

underlying reason for the existence of a negative resistance region

in the memristor I–V curve. Fig. 6 shows various experimental

and simulated I–V curves with their negative resistance region

marked up as ‘‘NR’’. Fig. 6(a) shows an I–V curve produced using

(8). The plot traces an asymmetric first cycle because of the

Figure 4. Computed resistance-time plot. Panel (a) shows the resistance-time plot generated using (8) in agreement with panel (b) showing
similar results from [5]. The complex R1(w) and R2(w) in panel (c) is a manifestation of phase information as observed by Chua [16].
doi:10.1371/journal.pone.0111607.g004
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common-mode offset of 0.1 V. The second lobe in quadrant 1 has

lower current caused by the increasing resistance. The plot was

abruptly stopped before reaching the origin to clearly show the

(higher resistance) direction in which the trace was progressing.

Fig. 6(b) shows an experimental I–V curve from Argall [1].

Fig. 6(c) shows an I–V curve from Strukov [3] and Fig. 6(d) shows

an experimental I–V curve from Nardi et al. [11]. Fig. 6(a) should

also serve to demonstrate that the model proposed in this

submission can produce the ubiquitous bow-tie I–V curve that

appears in every memristor paper.

Fig. 7 shows a variety of I–V curves produced using (8) and

varying the common mode (vcm), amplitude (va) and frequency (ff
= f0 fm) of the stimulus. The natural frequency of the device f0ð Þ
was about 5 Hz. Fig. 7(a) shows symmetric lobes and may be

considered as a reference for the discussion. Fig. 7(b) shows the

impact of increasing the frequency to approximately the natural

frequency of the device, whereby the I–V curve became a straight

line akin to a traditional resistor. In Fig. 7(c), the amplitude of

excitation was increased while keeping the frequency at one-

hundredth the natural frequency resulting in deformation of the

lobes compared to Fig. 7(a) and also a higher resistance for the

same applied voltage. For example, the lower trace of the lobe in

quadrant 1 of Fig. 7(a) shows about 3.5 mA at 0.5 V (equivalent to

143V), whereas Fig. 7(c) presents about 2 mA at 0.5 V (equivalent

to 250V). Fig. 7(d) shows multiple sweeps progressively accumu-

lating higher resistance.

E. Switching Time
Switching or transition time is the time it takes for a memristive

device to transition from low resistance to high resistance or vice

versa. This author designates the ratio of high to low resistance as

rr for resistance ratio. Algebraic manipulation of (7) with p~1 and

g~0 yields f0 w n{nb(w)ð Þ~ ln
rr{(1{a)

a
, where n is the

normalized distance and nb(w) is the normalized accumulation

boundary. Substituting n~1, nb(w)~1{a and w~V t, the

equation for switching time becomes,

t~
d2

m V

1

a
ln

1{a

a

DR

c

� �� �
ð9Þ

The term
d2

m V
is already seen in [14,17] and is referred to as the

primary formula in the following discussion. The term

DR~RHI{c represents the difference between the highest

resistance achieved by the memristor when all vacancies are

pulled to one end plate and c, the resistance of a device with no

vacancies in it. For practical purposes DR=c is a resistance ratio.

The modulating term
1

a
ln

1{a

a

DR

c

� �
is now investigated. When

there are no vacancies in the device, one expects that it will take an

infinite time to switch to any resistance ratio.

ta~0~
d2

m V

1

0
ln

1{0

0

DR

c

� �� �
~?

The preceding calculation confirms the expectation. When the

device is completely filled with vacancies (if such an event is

possible), the device is already at its highest resistance state

compared to the pristine material. Substituting a~1 and

calculating,

Figure 5. Computed dual variable resistors. The resistors R1(w), R2(w) and R(w) in the complex plane show that the composite resistance R(w)
is always real and positive.
doi:10.1371/journal.pone.0111607.g005
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Figure 6. Negative resistance. Experimental and simulated I–V curves marked up ‘‘NR’’ showing the negative resistance region. This negative
resistance is not useful in designing an oscillator because of the brevity of existence.
doi:10.1371/journal.pone.0111607.g006

Figure 7. Current-voltage curves. A collection of I–V curves generated using (8) where the device was initialized into the low-resistance state. (a)
A reference curve with zero common mode. (b) At the natural frequency the I–V curve becomes a straight line like a simple resistor. (c) With a large
amplitude, the lobes take on odd shapes. (d) The lobes are offset and asymmetric when the programming voltage has a common-mode offset. The
curve is clearly seen to transition from low to high resistance.
doi:10.1371/journal.pone.0111607.g007
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ta~1~
d2

m V

1

1
ln

1{1

1

DR

c

� �� �
~{?

In absolute terms, it takes an infinite time to switch the device.

The presence of the negative sign shows that from the perspective

of the strict definition of transition time as the ‘‘time taken to

transition from low-to-high resistance’’, the device has already

switched and is readily at its high resistance state. Thus it is

expected that the possible range of switching resistance decreases

with increasing concentration, which is the reason why the device

has ‘‘already switched into high resistance’’ when a~1. This

intuition is confirmed by calculating and plotting the difference

between the highest and lowest resistance, as a function of the

normalized concentration a. In Fig. 8, the memristor was

exercised with a very low frequency sinusoid at one-thousandth

the natural frequency fm~0:001, and having a common mode

and amplitude of 0.25 V. The resistance range DR decreases at

very high concentrations. Any benefit from increasing vacancy

concentration is seen to top out for this particular example, at

about a = 0.2. Fig. 9 demonstrates the reduction in the resistance

range DR~RHI{RLO when the excitation frequency is increased

as observed by Radwan et al. [18]. The same phenomenon is

observable in general literature as I–V curves with a lobe size that

is inversely proportional to the frequency of excitation [3].

Fig. 7(a) and Fig. 7(b) also demonstrate the same relationship

between lobe size and excitation frequency.

Pickett et al. [19] address the topic of switching time from a

constant current perspective. The result is that Dt!
ð

dw

w0
where w

is equivalent to the accumulation boundary xb(t). Their result is

generated through a combination of ‘‘numerical integration

motivated by physical insight from theoretical analyses, and trial

and error modifications’’. This paper by contrast is able to derive

an analytical equation for transition time from the original PDE. It

is expected that some ‘‘fitting’’ will be necessary to precisely match

any experimental data. The equation (9) is tested against switching

time from literature and the results are shown in Table 2, without

normalization. The works of Nardi, Biolek and Strukov are for a

vacancy mobility scenario like that assumed for this paper, while

that of Liu is for a digital filament type memristor. The mobility

for Liu’s work was estimated from general reading and trial and

error fitting into the switching time formula. The switching

formula is seen to produce a reasonably good estimate for vacancy

migration type of memristive devices and a satisfactory estimate

for filamentary devices.

In order to study the relationship between switching time and

voltage, all the variables and terms in (9) except the programming

voltage V are assumed to evaluate to unity. Then it is possible to

write t~V{1. Taking the natural logarithm, ln (t)~{ ln (V )

which is the same as ln (t)~{ V
^

or t~e{ V
^

. In essence (9) is

equivalent to the statement in literature that switching time has an

exponential dependence on the programming stimulus [14,19].

Some papers choose to plot log (t) vs. V [13].

Menzel et al. [20] study temperature related effects on the

switching transients. They produce the same primary equation (9)

for switching time. Therefore (9) in this manuscript reveals the

same influence of temperature on vacancy dynamics. Consider the

secondary term
1

sinh
Vdisc

ldisc E0

� � of Menzel’s transition time. It can

be re-written as
1

sinh qð Þ where q~
Edisc

E0
represents the field across

the disc (concept from that paper) normalized with respect to the

characteristic field E0. Assuming an average disc length, any

increase in field strength will be due to a higher resistance that

causes a larger voltage drop across the same disc length. For a disc

field ranging from zero to infinity, the switching time ranges from

infinity to zero. In other words, a zero resistance in the disc returns

DtSET~
1

sinh (0)
~?, where infinity means that there is no

switching because the device is already at some immutable low-

resistance. This corresponds to the case where (9) with DR~0
returns t~ ln (0)~{?, which in this manuscript means that the

device is readily available in its high resistance state. When

Menzel’s device experiences a large or infinite disc resistance, their

formula yields DtSET~0 which again can be interpreted to mean

that the device is already at its highest resistance, without any

switching action. This manuscript with DR~? in (9) returns

infinity which is taken to mean that the device will never switch.

The seeming difference between the two quantities is redressed by

proper interpretation, similar to interpreting the concept of infinity

in root locus diagrams from classical control systems.

In summary, switching time exhibits an exponential relationship

to voltage, and vacancy mobility. Switching time has quadratic

dependence on the device length making device length a dominant

factor that influences operating speed. Increasing the vacancy

Figure 8. Vacancy concentration dependence of switching
resistance. Resistance switching range decreases for very low and high
values of vacancy concentration. Therefore excessively increasing the
concentration of vacancies is not a viable option for decreasing
switching time if the switching range is not expected to decrease.
doi:10.1371/journal.pone.0111607.g008

Figure 9. Frequency dependence of switching resistance.
Resistance switching range decreases with increasing excitation
frequency as observed by Radwan [18].
doi:10.1371/journal.pone.0111607.g009
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concentration will result in a decrease in the switching resistance

range, negating the reduction of switching time. Increasing the

frequency of excitation also decreases the switching resistance

range.

F. Standard Memristive Equation
The standard memristive equations attributed to Chua and as

presented in [3] are,

v~R(w,i) i

dw

dt
~f (w,i) ð10Þ

Where

v is the stimulus voltage,

i is a current that results in a charge passing through the device,

w is a state variable equivalent to the xb(t) or the normalized

nb(t) in this paper.

f could be a function of time,

R is a resistance and could be a function of time.

The first condition can be re-stated as R(w,i)~
R(w,(q,t))~R(w,(v,t))~R(w,t). This subsection will test the

proposed quasi-linear model for adherence to the standard

memristive form.

Starting from (7) with p~1 for convenience,

R(t)~

ðx~d

x~0

c

1zg{u(x,t)
dx

~

ðx~d

x~0

c

1zg{
a el f0 V t(x{xb(t))

1za el f0 V t(x{xb(t))

dx

ð11Þ

Thus resistance is a function of t and w (w is represented

equivalently by xb(t) or the normalized nb(t) in this paper),

satisfying the first condition v~R(w,t).

Starting from the normalized version of (5) and differentiating

with respect to time results in the following equation, shown with

V~1 V and p~1.

dw

dt
~nb

0(t)~

1

f0 t ef0 t nb (t)
{

a a f0 ea f0 t ef0 t{ea f0 t
� �

{1z ea f0 t
� �2

z
a f0 ef0 t { a f0 ea f0 t
� �

{1z ea f0 t
� �1

 !
{

1

t

� �
nb(t)

ð12Þ

The above equation fits the expectation that
dw

dt
~f (w,i)~

f (w,t), where this paper substitutes w~xb(t) or the normalized

nb(t).

In summary the model presented here fits the profile for a

general memristive system as shown by (11) and (12).

G. Mathematical Classification
This paper has so far demonstrated that the model (1) and its

particular solution (2) are able to generate a variety of information

about the memristor, comparable to independently published
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experimental and theoretical data. This subsection will investigate

a mathematical classification for the model, based on order,

linearity and homogeneity.

Equation (1) is a form of the continuity or transport equation

with a variable coefficient. It is also found referred to in literature

as a variable coefficient advection equation [15]. A general PDE

has the form a(x,y) uxzb(x,y) uyzc(x,y) u~d(x,y). The case

presented here is equivalent to the simpler a(x,y) uxzuy~0, with

d(x,y)~c(x,y)~0, b(x,y)~1 and y~t [21].

1. Order. The equation utzq(x,t) ux~0 contains only

derivatives to the first order, making it a first-order equation.

2. Homogeneity. Every term in the given PDE contains

either u(x,t) or some derivative of u(x,t) . Specifically there are no

terms with any other functions other than some form of the

solution function u(x,t) in it. Therefore the equation is homoge-

neous.

3. Linearity. First order PDEs may be classified as linear or

nonlinear. There are various degrees of nonlinearity such as semi-

linear, quasi-linear or fully nonlinear. A PDE is semi-linear when

the coefficient of the highest derivative of u does not depend on u.

A PDE is quasi-linear when the coefficients of the highest order

terms may depend on u, x, Dn{1u but never Dnu, where Dn

represents the nth derivative. A PDE is fully nonlinear when the

highest order derivatives appear non-linearly in the equation, such

as u2
xzu2

t ~0. This example equation can be written as

mtmtzmxmx~0 by pulling out one of the derivatives as a

coefficient to show that it is fully nonlinear because of the

presence of derivatives of the kind Dn as coefficients.

Consider the simple case where programming voltage and

mobility are constants in the model under consideration. Then it is

possible to write the coefficient q(x,t) as q(x,t,u(x,t)).

q(x,t,u)~{

x{xb(t)ð Þ e
{

t V m (x{xb(t))

d3 a e
t V m (x{xb(t))

d3 z1

 !

a t
u

At the other extreme, where the programming voltage is a

function of time and mobility is a function of the spatial location

inside the device, it is still possible to write the coefficient q(x,t) as

q(x,t,u(x,t)).

q(x,t,u)~{

m(x)(x{xb(t))( t V 0(t)zV(t) ) e
{

t V m(x) (x{xb (t))

d3 a e

t V m(x) (x{xb (t))

d3 z1

 !

a t V(t) ({xb(t) m0(x)zx m0(x)zm(x))
u

In the two preceding equations u(x,t) was abbreviated as u.

Thus, it is possible to express the coefficient q(x,t) as q(x,t,u(x,t)),
when the accumulation boundary can be expressed as a function

of an average m, allowing straightforward computation of xb(t).
The coefficient of the highest derivative is shown to depend on

u(x,t) therefore the model is quasi-linear.

In summary this subsection shows that the governing equation

presented in (1) may be classified as a first order, homogeneous,

quasi-linear PDE.

H. Circuit Implementation
This subsection looks at a simple passive low-pass filter circuit

implementation using a memristor. A circuit topology is presented

and the intuitive outcome is verified by simulating the proposed

electrical network mathematically, using the model proposed in

this paper.

1. The Memristor-Capacitor Filter. The test circuit

consists of a memristor-capacitor (M-C) combination constructed

similar to a textbook resistor-capacitor (R-C) filter. Consider an

application where a M-C filter might be used to isolate the power

supply of a circuit, from a more noisy side of the same supply. The

circuit topology is shown in Fig. 10. Circuit U1 is some digital

circuit that generates noise into the power grid and isolated from

circuit U2 by the M-C filter in the dotted box. The power supply

net named VCC is being yanked around by U1. The side labeled

VCCQ is the quiet supply and expects to see only a filtered version

of the noise.

The simulation compares the result of using an M-C filter versus

a regular R-C filter, where the resistance R is set to the lower

resistance value of the memristor, namely R~R(t)MIN . The low R

guarantees a startup transient for the R-C, comparable to the M-C

circuit. It is assumed here that the memristor has been

programmed by some means into its low-resistance state prior to

usage in the circuit.

The 3 dB bandwidth of the filter will be inversely proportional

to the memristance. Therefore, upon initial application of power,

the R-C and M-C circuits should exhibit similar power-up

transients. The memristor however will soon transition into its

high-resistance state causing the M-C filter to have a lower

bandwidth than the R-C version. The lower bandwidth is

expected to translate into better noise rejection on the VCCQ net.

2. Simulation. The simulation result is shown in Fig. 11. The

input power supply at the net VCC is toggled

0V ? 1V ? {1V ?1V . The initial 0V ? 1V is a power on

event. The next 1V ? {1V transition is a power off event

including a negative excursion to reset the memristor. The final

pair {1V ? 1V is a second power on event. The input wave is

the solid black thin line. The output at VCCQ due to the R-C

filter is the dotted red line, and the result of M-C smoothing is the

thin line with filled navy blue circles. The first and second power

on edge is similar for the R-C and M-C filters. There are two noise

events of 6200 mV at one-third and two-thirds of the time into

each power-on event. The M-C filter does a much better job of

attenuating the second noise event, because the memristor has

transitioned into a higher resistance, thereby reducing the

bandwidth of the filter. The inset shows a zoomed in view of the

noise and attenuated outputs during the second power-on event.

The dotted line for the R-C filter more or less (undesirably) follows

the input noise while the memristor attenuates each subsequent

noise pulse with (desirably) increasing attenuation.

An important consideration is that while the transient is

comparable during the power-on rising edge, the M-C is slower

on the falling edge during power off. This is because the memristor

is at a higher resistance, and only starts to decrease in resistance as

the power supply collapses. The intention with two power-on

cycles is to show that when considering an ideal memristor, the

behavior is repeatable. If an application desires the rapid on/off

performance, the transition from high to low resistance might be a

minor performance limiter.

Nonetheless this subsection has demonstrated a simple applica-

tion where a memristor may be used to implement a variable

bandwidth low-pass filter that resets automatically. The automatic

reset assumes that the device is not subject to performance

variations, and transitions identically between low and high

resistance. This assumption, while simplistic, is reasonable when

considering the simple objective. This subsection also demon-

strates that the derived model (8) is usable in a circuit network

containing other electrical components, when biased properly.
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Discussion

This paper presents a computable nonlinear vacancy transport

model for the memristor. Initially a word-problem is stated, based

on the behavior of vacancies as described by Strukov and Williams

[3,4]. A governing equation (1) is stated based on the general

consensus that a non-linear drift [6,14] is responsible for vacancy

migration, under the action of a programming voltage. The

proposed solution (2) uses a variable velocity term q(x,t) that will

accommodate the nonlinear drift. The solution is successfully

subjected to mathematical verification.

The present work shows that vacancy velocity can be calculated

as an analytical equation (6). Fig. 2 shows the expected nonlinear

vacancy velocity toward the device ends. In addition to vacancy

velocity, (4) is also able to track the transit of the accumulation

boundary as evidenced by the change in the sign of the calculated

velocity. Equation (5) locates the accumulation boundary at any

time, while (6) quantifies the newly introduced concept of vacancy

symmetry boundary. The vacancy symmetry boundary is different

from the accumulation boundary in that it always locates itself

inside the device boundary. The normalized accumulation and

vacancy symmetry boundary are shown in Fig. 3. The present

work derives the formula for device resistance. Fig. 4 plots the

resistance-time transient showing agreement with a plot generated

using the formula from Joglekar and Wolf [5]. Equation (8) is a

computable formula for the two variable resistors that match the

dual variable resistor model from Strukov and Williams [3].

Complex plane plots are presented in Fig. 5, showing the phase

dependence for the sub-resistors R1(w) and R2(w) and demon-

strating that the total resistance R(w) is a real number. The

significance of (8) and Fig. 5 taken together is that they confirm the

observations about negative resistance made by Chua [16]. The

transition time formula (9) has the main term in full agreement

with [14,17,20], while the enhancement term suggests within

reason that switching time should also be a function of the vacancy

concentration. With proper interpretation of the results, the

enhancement term exhibits the same behavior as in [20]. A subtle

inverse relationship between switching resistance range and

vacancy concentration is computable and shown in Fig. 8.

Frequency dependence of the switching resistance range DR as

read from [18] and indirectly observable in the reduced lobe-size

of high-frequency I–V curves in literature is confirmed by Fig. 9,

where the data was generated using (8). Equations (11) and (12)

show that the model has the general form expected by Chua’s

theoretical formulation. The author classifies the model as a first

order, homogeneous, quasi-linear PDE.

A simple low-pass filter implementation is presented to

demonstrate that the resistance formula (8) is usable in a circuit

design context. The simulation result in Fig. 11 shows that the

memristor is able to function as a self-resetting, variable bandwidth

low-pass-filter as expected from its construction.

All derivations, formula manipulations and symbolic computa-

tions were done using Mathematica 7 [22] on a Windows 7 PC

with a 2.5 GHz Intel Core i5 CPU. The runtime for each

derivation, validation or plot generation program was less than five

minutes.

Conclusions

Through independent methods, this paper presents a governing

PDE and analytical solution by which the contemporary high level

dual variable resistor abstraction of the memristor from HP’s

Strukov and Williams is shown related to vacancy dynamics. The

solution satisfies the governing PDE. Through algebraic manip-

ulations, the model yields the same or enhanced versions of results

and observations already known in general literature. The

enhancements are tested against intuition, explained and where

possible compared to independent experimental data. New

insights such as vacancy velocity, vacancy symmetry boundary

and the dependence of transition time on vacancy concentration

are presented with supporting derivations. The constituent

resistors of the dual variable resistor model are quantified with

equations and the reason for the existence of a negative resistance

region in the I–V curves is demonstrated mathematically. The

model is shown to be viable for circuit analysis by using it in a

simple M-C filter. All the variables used in this modeling effort are

defined and the equations presented are unambiguously comput-

able. The values used for the various plots are tabulated in Table.

1 and were obtained from the various references or assigned a

reasonable value when not available from literature. Table 2

shows absolute transition time predictions made using (9) and

compared to reference literature. Table 3 summarizes the

memristive phenomena that are reproduced by this model. This

manuscript derives all memristive characteristics from (1) and (2),

Figure 10. Sketch of Memristor-Capacitor (M-C) filter imple-
mentation. Circuit U1 can be a digital circuit that generates and
couples noise into the power grid VCC. The circuit U2 may be an analog
circuit that expects a quiet supply VCCQ. The memristor-capacitor (M-C)
circuit serves to isolate the two.
doi:10.1371/journal.pone.0111607.g010

Figure 11. Simulated result comparing the M-C and R-C filters.
The M-C filter was initialized into its low resistance state and has the
same power-on transient performance as the R-C filter. After power on,
the M-C filter is able to attenuate noise better than the R-C filter as
visible in the inset.
doi:10.1371/journal.pone.0111607.g011
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while the external references in Table 3 develop them in a

piecemeal fashion.

The author recognizes that no single equation can claim to

model any phenomenon exactly. Models benefit from tuning

knobs that accommodate various non-idealities. The proposed

quasi-linear governing equation is meant to demonstrate a

unifying model that exhibits observed memristive characteristics

reasonably well. This manuscript hopes to have achieved that

objective with the many supporting equations, plots and compar-

ative analysis with respect to independent empirical and theoret-

ical literature.
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