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Abstract

Objective: Enhancing structural and functional integrity of mitochondria is an emerging therapeutic option against
endothelial dysfunction. In this study, we sought to investigate the effect of fluid shear stress on mitochondrial biogenesis
and mitochondrial respiratory function in endothelial cells (ECs) using in vitro and in vivo complementary studies.

Methods and Results: Human aortic- or umbilical vein-derived ECs were exposed to laminar shear stress (20 dyne/cm2) for
various durations using a cone-and-plate shear apparatus. We observed significant increases in the expression of key genes
related to mitochondrial biogenesis and mitochondrial quality control as well as mtDNA content and mitochondrial mass
under the shear stress conditions. Mitochondrial respiratory function was enhanced when cells were intermittently exposed
to laminar shear stress for 72 hrs. Also, shear-exposed cells showed diminished glycolysis and decreased mitochondrial
membrane potential (DYm). Likewise, in in vivo experiments, mice that were subjected to a voluntary wheel running
exercise for 5 weeks showed significantly higher mitochondrial content determined by en face staining in the conduit
(greater and lesser curvature of the aortic arch and thoracic aorta) and muscle feed (femoral artery) arteries compared to the
sedentary control mice. Interestingly, however, the mitochondrial biogenesis was not observed in the mesenteric artery.
This region-specific adaptation is likely due to the differential blood flow redistribution during exercise in the different
vessel beds.

Conclusion: Taken together, our findings suggest that exercise enhances mitochondrial biogenesis in vascular endothelium
through a shear stress-dependent mechanism. Our findings may suggest a novel mitochondrial pathway by which a chronic
exercise may be beneficial for vascular function.
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Introduction

Mitochondria are multifunctional organelles. Not only are they

metabolic hubs, but they are also involved in other vital cellular

processes. In endothelial cells (ECs), the potential physiological

role of mitochondria has been somewhat neglected because their

energy supply is relatively independent of the mitochondrial

respiration, although the accuracy of this notion as it relates to

other mitochondrial functions in the cells is unknown. To this end,

emerging evidence suggests that mitochondria are essential for

maintaining various endothelial homeostasis such as ROS

signaling, Ca2+ regulation, apoptosis and cell senescence [1–9].

Furthermore, mitochondrial dysfunction has appeared to be

responsible for the range of cardiovascular diseases intimately

related with endothelial dysfunction such as hypertension and

atherosclerosis [1,3,4,8–13]. Thus, it is imperative to identify an

effective intervention to manipulate mitochondrial networks in the

endothelium.

The regular practice of physical activity is one of the most

effective non-pharmacological interventions improving endothelial

dysfunction. During the last two decades, the beneficial effects of

exercise on the vascular endothelium have been extensively

studied in various aspects of the endothelial function related to

endothelium-dependent vasodilatory, anti-inflammatory, anti-

thrombotic, and anti-apoptotic endothelial phenotypes [14–26].

Whilst exercise-induced uniaxial laminar flow has been thought to

be the central signaling mechanism for the endothelial adaptations

[27–33], a direct impact of this flow pattern on endothelial

mitochondrial adaptations in vivo is unknown.

Mitochondrial biogenesis is a complex process involving the

replication of mitochondrial DNA (mtDNA) and the expression of

mitochondrial proteins encoded by both nuclear and mitochon-

drial genomes. Peroxisome proliferator-activated receptor-c coac-

tivator-1a (PGC-1a) transactivates nuclear respiratory factor 1

(NRF-1) which, in turn, activates mtDNA transcription factor A

(TFAM) that regulates mtDNA transcription and replication. The
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activation of PGC-1a involves a dual-posttranslational modifica-

tion involving AMP-activated protein kinase (AMPK) and NAD-

dependent protein deacetylase, sirtuin 1 (SIRT1), but the specific

regulatory mechanism in ECs remains controversial [34,35]. p53-

inducible ribonucleotide reductase (p53R2) plays a crucial role in a

salvage pathway to supply dNTPs for mtDNA synthesis [36]. In

addition, upregulation of other mitochondrial contents including

respiratory chain complexes and their assembly proteins (i.e.,

COX IV, SCO1 and SCO2) are also important for preventing

dilution of the contents for a successful mitochondrial prolifera-

tion. Mitochondrial dynamics plays a crucial role in mitochondrial

quality control. Mitochondrial fission is achieved through the

action of a set of proteins, including dynamin-related protein,

Drp1, and outer-membrane receptor-like protein, Fis1. Mitochon-

dria fusion involves outer mitochondrial membrane proteins,

mitofusins 1 and 2 (Mfn1 and Mfn2) and an inner membrane

protein Opa1 [37]. Through proper fusion/fission dynamics

coordinated with contents amplification, new daughter mitochon-

dria are formed [38].

Recently, potential link between shear stress and mitochondrial

biogenesis in ECs has been suggested [39–42]. Chen et al.
reported that laminar flow upregulates the key mitochondrial

biogenesis regulators including PGC-1a and SIRT1 as well as the

MitoTracker Green signals in shear-exposed ECs [39]. In

addition, a study reported that a short-term forced exercise on a

motorized treadmill significantly altered mitochondrial dynamic

protein profiles in the rat aortic tissues in a NO-dependent fashion

[40]. Here, we report that laminar shear stress (LSS) increases

mitochondrial biogenesis/dynamics and mtDNA content, and

modulates their respiratory function and bioenergetics in human

ECs. We also report that chronic voluntary running exercise

increases mitochondrial density in the mouse endothelium in a

shear stress-dependent manner. Findings from this study will help

understand the effects of aerobic exercise-mediated increase in

wall shear stress (WSS) on enhancing mitochondrial contents

which might be a guide of therapeutic approach for improving

cardiovascular health.

Materials and Methods

Cell culture and LSS protocol
Human aortic ECs (HAECs) and human umbilical vein ECs

(HUVECs) (Lonza) were cultured in EGM-2 and M199 medium

supplemented with 20% fetal bovine serum and endothelial cell

growth supplement, respectively. Cells were exposed to the arterial

levels of LSS for various time points by using a cone-and-plate

shear system once they reach at 100% confluency. Overview of the

LSS protocol is outlined in figure 1A. All experiments with

HAECs and HUVECs were conducted between the 3–7 passages.

Immunoblotting
Cells were washed three times with cold DPBS and lysed in

RIPA buffer (10 mM Tris-HCl, 5 mM EDTA, 150 mM NaCl,

1% Triton X-100, 0.1% SDS, 1% Deoxycholate, pH 7.5).

Following precipitation of insoluble fraction of the RIPA samples

by centrifugation (16,000 g for 15 min at 4uC), supernatants were

collected and subjected to Bradford assay to quantify protein

concentrations. The resulting protein samples underwent SDS-

PAGE and were transferred to Immobilon-P membrane (Milli-

pore). Subsequently, the membrane was blocked with 5% nonfat

dry milk in TBST for 20 min at room temperature and incubated

overnight with respective primary antibodies. Antibodies were

purchased from the following sources: rabbit polyclonal anti-PGC-

1a (Novus), mouse monoclonal anti-porin (anti-VDAC) (Invitro-

gen), goat polyclonal anti-p53R2 (Santa Cruz), rabbit polyclonal

anti-AMPKa (Cell signaling), rabbit polyclonal anti-phospho-

AMPKa (Cell signaling), mouse monoclonal a-tubulin (Sigma-

Aldrich). The membranes were then washed twice in TBST and

incubated with HRP-conjugated secondary antibodies for an hour

followed by washing three times with TBST. Then, membranes

were subjected to standard enhanced chemiluminescence (Thermo

Fisher Scientific) method for visualization.

mRNA isolation, cDNA synthesis, and real-time PCR
mRNAs were isolated using Dynabeads direct kit, and cDNA

synthesis were performed on poly-dT magnetic beads by reverse

transcription using superscript II (Invitrogen). mRNA expression

levels were quantified by real-time PCR using SYBR green

fluorescence. Cycle threshold (Ct) values were normalized to the

housekeeping gene HPRT1. The primer sequences used are

described in Table 1.

mtDNA content quantification
Total genomic DNAs were isolated by using the DNeasy kit

(QIAGEN) and mtDNA contents were assessed by semi-quanti-

tative PCR. The relative ratio between mitochondrial DNA (COX

I; cytochrome c oxidase subunit I, COX II; cytochrome c oxidase

subunit II, or ND II; NADH dehydrogenase subunit 2) compared

to nuclear DNA (18s rRNA) amount was calculated. Primer

sequences were as follows:

COXI (human)

Sense, 59- CATAGGAGGCTTCATTCACTG – 39

Antisense, 59- CAGGTTTATGGAGGGTTCTTC – 39

COXII (human)

Sense, 59- CCATAGGGCACCAATGATACTG – 39

Antisense, 59- AGTCGGCCTGGGATGGCATC – 39

NDII (mouse)

Sense, 59- CCTATCACCCTTGCCATCAT – 39

Antisense, 59- GAGGCTGTTGCTTGTGTGAC – 39

18s rRNA (human and mouse)

Sense, 59-CTTAGAGGGACAAGTGGCGTTC-39

Antisense, 59-CGCTGAGCCAGTCAGTGTAG-39

MitoTracker staining
Live HAECs exposed to either static (STT) or LSS were

incubated with 200 nM pre-warmed MitoTracker Green FM or

MitoTracker Red CMXRos (Molecular Probes) solution at 37uC
for 30 min. After removal of the incubation solution, cells were

washed three times with pre-warmed PBS and then mounted in

Hank’s balanced salt solution. For quantitative analyses, more

than 100 images per each group were acquired using an epi-

fluorescence upright microscope with a 63x objective oil lens. For

MitoTracker Green FM staining, excitation/emission wavelengths

were set at 470/525 nm (FL filter Set 38, Zeiss), and for

MitoTracker Red CMXRos staining, excitation/emission wave-

lengths were set at 587/647 nm (FL filter Set 64HE). Images were

initially acquired using an AxioCam MRm and AxioVision image

processing system (Zeiss), and the fluorescence intensities were

assessed using Image J software (NIH).

Mitochondrial respiration
HUVECs were subjected to intermittent LSS at 20 dynes/cm2

for up to 72 hours while the STT control group was maintained in

the absence of LSS. Cells were subcultured as needed to avoid

becoming over-confluent for the duration of experiments. Cells

were then harvested and the oxygen consumption was measured

using a Clark-type oxygen electrode in complete media. Final
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oxygen consumption was normalized to the number of cells (nmol

O2/min/108 cells).

Lactate production measurement
Lactate concentration in cell culture medium was measured by

a colorimetric enzymatic assay according to the manufacturer’s

instructions (Sigma). Briefly, when cells were grown at <80%

confluency, cell culture medium was replaced with fresh basal

M199 medium. Then, media samples were collected at 12, 24, and

36 hours after incubation and filtered through 10 kDa molecular

weight cut-off spin columns (Milipore) before being subjected to

lactate assays. Lactate concentration was normalized to corre-

sponding viable cell numbers determined by trypan blue exclusion

quantification.

Microarray analysis
To gain insight into global patterns of metabolic gene

expression, microarray analysis was performed. RNA was isolated

by using RNeasy kit (QIAGEN). Microarray analysis were

performed from STT (n = 4) and LSS (n = 6) exposed HUVECs

by using Affymetrix whole-genome arrays containing 45,101

probe sets corresponding to <34,000 genes. Heat map was created

with Gene-E ver. 3.0.214 (Broad Institute, Inc).

Ethics statement
This study was carried out in strict accordance with the

recommendations and the Guide for the Care and Use of

Laboratory Animals of the National Institutes of Health. The

protocol was approved by the Temple University Institutional

Animal Care and Use Committee (Permit Number: 4159). All

sacrifices were performed under isoflurane anesthesia, and all

efforts were made to minimize suffering.

Experimental animals and voluntary wheel exercise
After three days of acclimation period, twenty inbred C57Bl/6J

mice were randomly assigned to either sedentary (SED) (n = 10) or

voluntary wheel (VW) running exercise (n = 10) group. VW group

animals were individually housed in a rat-sized cage with a metal

wheel with a diameter of 11.5 cm (Prevue) fitted with digital

magnetic counter. SED group animals were singly housed in the

same sized cage without the running wheel. All animals were given

water and food (Purina chow) ad libitum. VW running exercise

began at an age of 8 to10-week-old and continued for 5 weeks.

Blood vessel isolation
Mice were euthanized two days after the end of 5-weeks of VW

exercise period. For the preparation of RNA, protein, and DNA,

Figure 1. Increased mitochondrial biogenesis markers by LSS in HAECs. (a) An overview of LSS protocol used. HAECs were exposed to
exercise-mimicking LSS at 20 dyne/cm2 for 48 hrs, and then, recovery (Rec) LSS at 5 dyne/cm2 was followed for another 24 hrs. (b) Effect of LSS on the
mRNA and protein expression of mitochondrial biogenesis markers. mRNA expression of NRF-1, SCO1, SCO2, TFAM, and COX IV were assessed by
real-time PCR and protein contents of PGC-1a, VDAC, and p53R2 were analyzed by western blot. (c) Effect of LSS on the mRNA expression of
mitochondrial dynamics markers. mRNA expression of Mfn1, Mfn2, OPA1, Fis1, and Drp1 were assessed by real-time PCR. (d) Effect of LSS on mtDNA
contents. Relative mtDNA contents are expressed as a ratio of COX I and II to 18s rRNA. (e) Effect of LSS on mitochondrial mass. Mitochondria were
labeled with MitoTracker Green in live HAECs. Representative fluorescence micrographs under STT (left panel) and after 48 hrs of LSS at 20 dyne/cm2

(right panel) are shown. Bar = 50 mm. The MitoTracker Green fluorescence intensities were analyzed using the Image J (NIH) software. All
densitometry analyses values are shown as mean 6 SE; * P,0.05 vs. STT; ** P,0.01 vs. STT.
doi:10.1371/journal.pone.0111409.g001

Table 1. Primer Sequences for Real-Time PCR.

Species Genes Primer sequences (59 – 39)

Sense Antisense

human NRF-1 CCAAGTGAATTATTCTGCCG TGACTGCGCTGTCTGATATCC

SCO1 GGCACAGCCAGTGCATTCCTGCCTG GCATCACACTCGTGATCAATATCCTC

SCO2 GCAGCCTGTCTTCATCACTGTGGACC CCGCACACTGTCTGAGATCTGCTC

TFAM AGCTAAGGGTGATTCACCGC GCAGAAGTCCATGAGCTGAA

COX IV ACGAGCTCATGAAAGTGTTGTG AATGCGATACAACTCGACTTTCTC

HPRT1 GACACTGGCAAAACAATGCAG AGTCTATAGGCTCATAGTGC

MFN1 AGTAACAGGATTGGCGTCCG CGTTTCCTCCTATCATGGTCACC

MFN2 ATGCATCCCCACTTAAGCAC CCAGAGGGCAGAACTTTGTC

OPA1 GGCTCTGCAGGCTCGTCTCAAGG TTCCGCCAGTTGAACGCGTTTACC

DRP1 CACAGGAGGAGGTGGACAGC CGCCTCCTTCAGTGCGTGGT

FIS1 ATGGAGGCCGTGCTGAAC TCAGGATTTGGACTTGGA

mouse PGC-1a ACGGTTTACATGAACACAGCTGC CTTGTTCGTTCTGTTCAGGTGC

NRF-1 GAACGCCACCGATTTCACTGTC CCCTACCACCCACGAATCTGG

TFAM CTGATGGGTATGGAGAAGGAGG CCAACTTCAGCCATCTGCTCTTC

p53R2 CCAGGTTACCATGGTTGTGG CCAGTGCACTCAGTAGCTGTG

SCO1 CTAGCTTAGCACAATAGCAAGGGCAGGCTAC CCCAGGAATGCAGTTATGACATGACAGCAAAGGCAG

SCO2 CAGCCTGTCTTCATCACTGTGGA GACACTGTGGAAGGCAGCTATGTGCC

TIF CTGAGGATGTGCTGTCTGGGAA CCTTTGCCTCCACTTCGGTC

doi:10.1371/journal.pone.0111409.t001
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abdominal aorta was isolated after whole body perfusion with ice-

cold PBS at a pressure of approximately 100 mmHg. For en face
staining, several different regions of blood vessels including aortic

arch, thoracic aorta, femoral artery, and mesenteric artery were

isolated after the perfusion with ice-cold PBS and a fixative, 2%

paraformaldehyde.

En face immunostaining
Isolated blood vessels were post-fixed at 0.4% paraformalde-

hyde overnight at room temperature. The vessels were then

washed five times with PBS and permeabilized by using 0.3%

Triton-X in 2% BSA/PBS. Mitochondrial contents were assessed

by using anti-VDAC (1:100) (Abcam) antibody and Alexafluor488-

conjugated anti-rabbit secondary antibody (Invitrogen). EC were

identified by co-staining using anti-CD31 (1:100) (Millipore)

antibody conjugated to the Alexafluor647-conjugated anti-ham-

ster secondary antibody (Jackson ImmunoResearch). Primary

antibodies were incubated overnight at 4uC with gentle agitation.

After rinsing in 2% BSA/PBS, secondary antibodies were

incubated for 2 hours at room temperature. Immunostained

vessels were placed on slide glass and cut longitudinally and

mounted in ProlongGold with DAPI solution (Invitrogen). The

fluorescence was analyzed under fluorescence microscope (Ax-

ioimager, Zeiss) with 64x oil objective lens.

Statistics
The results are presented as mean 6 SE for a minimum of three

independent experiments in triplicate. Depending on how many

conditions were compared, either two tailed t-test analysis or one-

way ANOVA with the Fisher’s least significant difference test was

conducted. P,0.05 was considered statistically significant for all

analyses.

Results

LSS enhances mitochondrial biogenesis in human ECs
As shown in figure 1B, we observed that LSS upregulates

mRNA and protein expression of key genes that are related to

mitochondrial biogenesis in HAECs. mRNA expressions of NRF-

1, TFAM, COX IV, SCO1 and SCO2 were significantly

increased in the ECs exposed to LSS. As well, protein expressions

of PGC1a, p53R2, and VDAC were increased when cells were

exposed to LSS. To confirm the LSS-induced increase in

mitochondrial biogenesis, we stained HAECs with MitoTracker

Green FM, a fluorescence dye which stains mitochondria in a

mass-dependent fashion, and observed two-fold increase in

mitochondrial mass in LSS-exposed HAECs (Fig. 1E). As shown

in figure 1D, mtDNA contents were also significantly increased by

LSS. In addition, expression of both profusion (Mfn1 and Mfn2)

and profission (Drp1 and Fis1) factors were significantly increased

after LSS exposure (Fig. 1C).

Next, we sought to examine whether LSS-induced mitochon-

drial biogenesis was functionally relevant to the mitochondrial

bioenergetic properties. As shown in figure 2A, the rate of oxygen

consumption was significantly enhanced in HUVECs after being

exposed to LSS for 72 hours. To evaluate a potential occurrence

of metabolic shift from glycolytic to aerobic metabolism in these

cells, we evaluated cellular lactate production and performed gene

expression array experiments on a number of genes related to the

glycolytic pathways. Cellular lactate production was significantly

suppressed in the LSS-exposed ECs compared to the STT-

exposed ECs (Fig. 2D). Moreover, among the twenty-one genes

related to glycolysis pathway, the vast majority of genes were

down-regulated under LSS (Fig. 2C and Table S1). Notably, these

genes include key rate-limiting enzymes for glycolysis such as

hexokinase II (HK2) and phospohofructokinase (PFK)-related

genes (i.e., PFKFB1, PFKFB2, and PFKP). Mitochondrial

membrane potential (DYm), which was determined by Mito-

Tracker Red CMXRos, was significantly decreased in LSS-

exposed ECs compared to STT-exposed ECs (Fig. 2B).

Five weeks of VW running induces mitochondrial
biogenesis in blood vessel and it is mediated by
exercise-induced increase in WSS on vascular
endothelium

Given our observation that LSS is positively related to

mitochondrial biogenesis in vitro, we hypothesized that exercise-

mediated increase in WSS would enhance mitochondrial biogen-

esis in mouse endothelium. As shown in figure 3A, expressions of

genes that are related to mitochondrial biogenesis were analyzed

in abdominal aorta isolated from SED and VW group mice.

Elevated mRNA expressions of mitochondrial biogenesis markers

which include PGC-1a, NRF1, TFAM, p53R2, and SCO1 were

observed in VW group mice compared to SED. Also, western blot

analysis revealed that phosphorylated AMPKa and VDAC were

increased by three-fold in VW group compared to SED (Fig. 3B).

Furthermore, greater mtDNA content was found in VW group

compared to SED (Fig. 3C). We also hypothesized that differential

hemodynamic flow in different vessel beds may lead to distinct

responses depending on their geometrical location in the vascular

tree. En face staining experiment revealed that the level of VDAC

protein in greater curvature, lesser curvature, thoracic aorta, and

femoral artery was higher in VW group compared to the SED

group (Fig 4). VW running elicited greater mitochondrial adap-

tation in lesser curvature compared to greater curvature. The

greatest increase in mitochondrial content was observed in femoral

artery. In mesenteric artery, decreased level of mitochondrial

content was observed in VW compared to SED group.

Discussion

Here, we report that LSS enhances mitochondrial biogenesis,

mitochondrial dynamics, and mtDNA copy number in primary

cultured human ECs. Consistent with these findings, we also

demonstrate that voluntary aerobic exercise training increases

mitochondrial content in the endothelium in a region-specific

fashion. In addition, we found that a long-term shear-exposure is

sufficient to improve mitochondrial respiration and to alter

substrates metabolism from anaerobic glycolysis to oxidative

phosphorylation-dependent mechanisms in ECs. These findings

are particularly important because potential metabolic contribu-

tions of the endothelial mitochondria have been widely neglected

as they are highly glycolytic cells containing relatively small

number of mitochondria (only 2-5% of the entire cytoplasmic

volume) compared to other energy demanding tissues [43].

Furthermore, studies have demonstrated that, under stress

conditions, fatty acids are the major substrate for ATP generation

in ECs suggesting an important contribution of mitochondria-

dependent metabolism for endothelial homeostasis [44]. To this

end, our data suggest that LSS-induced mitochondrial biogenesis

may have important implications for preventing endothelial

dysfunction although future researches are needed to investigate

the effect of LSS (or aerobic exercise training) on the energy

metabolism and the substrate utilization in ECs in vivo.

In this study, we also demonstrated that a long-term LSS at a

physiological level decreased DYm. This result is consistent with a

previous report showing that shear stress induces a decrease in

DYm and an increase in the endogenous ATP [45]. In contrast, a
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Figure 2. Effect of LSS on endothelial metabolism. (a) Enhanced mitochondrial respiration in LSS-exposed HUVECs. Oxygen consumption of
HUVECs was measured after the intermittent LSS exposure for up to 72 hours. Representative strips of the oxygen consumption measured (left
panel). Normalized values to the number of cells (right panel). (b) Effect of LSS on DYm in ECs. DYm was estimated by using MitoTracker Red CMX
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short-term shear stress increases DYm in ECs suggesting a

biphasic temporal response [46]. DYm is regulated primarily by

the balance between electron flux through the respiratory chain

(Complexes I, III, and IV), ATP synthesis (coupled respiration),

and proton leakage across the inner membrane (uncoupled

respiration). Maintenance of DYm at physiological range is

important for regulating mitochondrial ROS production. It has

been postulated that there is a U-shaped curve describing the

Figure 3. Effect of five weeks of voluntary wheel (VW) exercise on mitochondrial biogenesis markers in mice abdominal aorta (AA).
(a) Effect of VW running on mRNA expression of mitochondrial biogenesis markers in AA. mRNA expressions of PGC-1a, NRF1, TFAM, p53R2, SCO1,
and SCO2 were examined by real-time PCR. Values were normalized to the level of housekeeping gene, TIF. (b) Effect of VW running on protein
expression of mitochondrial biogenesis markers in AA. Tissue extracts of the AA from SED and VW group mice were subjected to western blot. The
amount of phosphorylated- AMPKa was normalized by the amount of AMPKa protein. Protein content of mitochondrial biogenesis marker VDAC was
also measured. The loading volume was normalized by the expression level of a-tubulin. (c) Effect of VW running on mtDNA content in AA. mtDNA
contents were compared in between SED and VW run mice. Relative mtDNA content are expressed as a ratio of NADH dehydrogenase subunit 2 (ND
II) to 18s rRNA. All densitometry analyses values are shown as means 6 SE. Data shown represent results from a total of 5 mice per group; * P,0.05
vs. SED; ** P,0.01 vs. SED.
doi:10.1371/journal.pone.0111409.g003

Ros. Representative fluorescence micrographs for each condition are shown. Bar = 100 mm. The fluorescence intensities were analyzed using the
Image J (NIH) software. (c) Heat map showing the expression of glycolysis markers by microarray analysis. Genes upregulated are presented in yellow
and downregulated are in blue (upper panel). Average fold change of each of those glycolysis markers identified by microarray analysis are shown in
a bar graph (lower panel). (d) Lactate concentration measured in cell culture medium at 12, 24, 36 hrs of post LSS or STT. Values were normalized to
viable cell number. Data shown as means 6 SE; * P,0.05 vs. STT; ** P,0.01 vs. STT.
doi:10.1371/journal.pone.0111409.g002
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relationship between DYm and ROS formation [47]. Further-

more, numerous studies have shown that hyperpolarization of the

mitochondria (above ,2140 mV) triggers release of superoxide

predominantly at complex III [48]. We observed that UCP2

expression is dramatically elevated under the same shear paradigm

used in this study (unpublished data). Combined with evidence

that UCP2 inhibits formation of ROS [49], it is plausible that the

depolarization of the mitochondria would prevent ROS release.

Together, shear stress may improve cellular redox state, at least in

part, by modulating DYm in favor of reduced mitochondrial ROS

production which compliment other shear-mediated mechanisms

such as a down-regulation of NAD(P)H oxidase activity [50] and

an increase in antioxidant system [51,52].

Different vascular beds are exposed to distinct flow patterns

depending on their structural and functional properties. For

example, in the aortic arch, greater curvature is exposed to a high-

grade unidirectional shear stress where lesser curvature is exposed

to a low-grade oscillatory shear stress [53]. Lesser curvature has

been shown to be predisposed to atherosclerotic plaque formation.

In sedentary mice, we observed that mitochondrial content is

higher in the greater curvature compared to the lesser curvature,

suggesting a direct correlation between flow pattern and

mitochondrial content in the endothelium.

It is well known that a process termed ‘blood redistribution’

occurs during exercise [54,55]. At rest, only 15–20% of cardiac

output is redirected to skeletal muscle and the majority of it goes to

the other organs. Once exercise commence, however, 87% of

blood is redirected to exercising muscles. Muscle blood flow has

been shown to be increased up to 80-fold [56,57]. Corresponding

to this concept, amount of blood extracted by the celiac,

mesenteric, and renal arteries is decreased during exercise

[27,54,55,58,59]. Interestingly, we observed the greatest adapta-

tion in muscle feeding (femoral) artery (Fig. 4D) whereas the

endothelial mitochondrial content in the mesenteric artery was

found even lower in VW than SED.

During exercise, the magnitude of WSS is increased to higher

levels ranged from 15 to 30 dynes/cm2 in human arteries

[29,30,33]. As an attempt to investigate underlying mechanisms

of EC response to shear stress, and to better understand the effect

of hemodynamics in endothelial/vascular health in vivo, several in
vitro shear systems have been developed. Effects of the enhanced

shear stress have been tested in numerous studies using an in vitro
flow system, and these findings are consistent with those

determined by in vivo studies [60]. In this study, we used 20

dyne/cm2 of high LSS as an exercise-mimicking flow condition, as

it is within the range of arterial level shear stress [61].

In conclusion, our data support an idea that aerobic exercise

enhances mitochondrial integrity in vascular endothelium which is

essential for endothelial function. Shear stress seems to modulate

signal transduction pathways towards mitochondrial biogenesis.

Therefore, regulation on mitochondrial remodeling may represent

one of the mechanisms whereby exercise-mediated increase in

WSS confers a vasculoprotective effect. Future research is

warranted to investigate the downstream and upstream of the

shear-sensing mechanism and clinical implications of the shear

stress-induced mitochondrial remodeling in preventing endothelial

dysfunction.
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