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Abstract

Background: A major challenges in the analysis of large and complex biomedical data is to develop an approach for 1)
identifying distinct subgroups in the sampled populations, 2) characterizing their relationships among subgroups, and 3)
developing a prediction model to classify subgroup memberships of new samples by finding a set of predictors. Each
subgroup can represent different pathogen serotypes of microorganisms, different tumor subtypes in cancer patients, or
different genetic makeups of patients related to treatment response.

Methods: This paper proposes a composite model for subgroup identification and prediction using biclusters. A biclustering
technique is first used to identify a set of biclusters from the sampled data. For each bicluster, a subgroup-specific binary
classifier is built to determine if a particular sample is either inside or outside the bicluster. A composite model, which
consists of all binary classifiers, is constructed to classify samples into several disjoint subgroups. The proposed composite
model neither depends on any specific biclustering algorithm or patterns of biclusters, nor on any classification algorithms.

Results: The composite model was shown to have an overall accuracy of 97.4% for a synthetic dataset consisting of four
subgroups. The model was applied to two datasets where the sample’s subgroup memberships were known. The procedure
showed 83.7% accuracy in discriminating lung cancer adenocarcinoma and squamous carcinoma subtypes, and was able to
identify 5 serotypes and several subtypes with about 94% accuracy in a pathogen dataset.

Conclusion: The composite model presents a novel approach to developing a biclustering-based classification model from
unlabeled sampled data. The proposed approach combines unsupervised biclustering and supervised classification
techniques to classify samples into disjoint subgroups based on their associated attributes, such as genotypic factors,
phenotypic outcomes, efficacy/safety measures, or responses to treatments. The procedure is useful for identification of
unknown species or new biomarkers for targeted therapy.
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Introduction therapies to ensure safety and avoid adverse events or unnecessary
treatment [5,6]. A main goal is to develop a procedure that can
classify patients into subgroups representing different disease
characteristics or different responses to a specific treatment. For
example, acute lymphoblastic leukemia (ALL) is a heterogeneous
data for understanding biological processes, discovering new disease, including several subtypes (T—ALL, EQA—PBX], BCR-

species, or identifying new biomarkers for safety assessment, ABL, TEL-AMLI, MLL) differing in their response to chemo-
disease diagnostics and prognostics, and prediction of treatment

Recent advances in biotechnology have generated great interest
in the development of statistical methods and data mining
techniques to analyze massive amounts of biological and medical

therapy [7-9]. Identifying important leukemia subtypes to
accurately assign patients to specific risk/treatment groups is a
difficult and expensive process, requiring the combined expertise
of hematologist/oncologist, pathologist, and cytogeneticist [9].

In food safety surveillance, serotyping of pathogen strains is
usually the first important step for identification and character-
ization of Salmonella isolates in outbreak investigations. However,
standard methods for serotype identification of strains are tedious
and time-consuming [10,11]. Considering there are over 2,500

response, etc. For example, metagenomics utilizes DNA sequence
data to detect and identify representative species in environmental
and clinically relevant samples and to discover genes or organisms
with novel or useful functional properties [1-4].

In clinical treatment, patients are heterogeneous due to
differences in genetic pre-dispositions, lifestyle, and disease
characteristics. Personalized medicine utilizes genomic predictors
of target patient population for assignment of more effective
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outbreak strains of unknown or new serotypes, development of a
procedure for early and fast screening and source tracking is
essential. PFGE (pulsed-field gel electrophoresis) genotyping
method has been used to investigate the relatedness of individual
cases, and to confirm an outbreak of a disease and determine its
possible source [10-13]. Previous works [10,11,14-16] reported
that serotypes of Salmonella isolates could be deduced and
predicted based on PFGE fingerprints. Thus, PFGE fingerprint
profiling using data mining algorithms can potentially provide a
possible alternative method for fast screening and identifying
Salmonella serotypes.

In the aforementioned applications, the primary goal is to
develop a class prediction model that can accurately identify
population subgroups (cancer or strain subtypes) for new samples.
There are three main aims: 1) classifying samples into distinct
subgroups from large and complex unlabeled multivariate data, 2)
characterizing the relationships among the subgroups identified,
and 3) developing a prediction model to classify subgroup
memberships of new samples by finding a set of predictor
variables.

Classification is the standard approach to developing a model
for class prediction of new samples. Classification is a supervised
analysis, in which each sample has a predefined class label. A
classification model builds a mathematical function for predicting
class memberships of new unlabeled samples by learning the
relationships between the class memberships of samples and their
attributes from the sampled data [17-21]. The objective of this
learning is to search for a prediction function and a least number
of predictor variable that maximizes the probability of classifica-
tion accuracy. In other words, a classification model utilizes class
label information to optimize predictive accuracy. Without class
labels, classification analysis is not viable for sample classification
and prediction. Furthermore, standard classification algorithms
are only applicable to the samples from the classes that are present
in the sampled data. The algorithms are incapable of classifying
the samples from classes other than those presented within the
dataset, such as classifying new cancer subtypes in clinical
medicine or new serotypes in pathogen identification.

Cluster analysis is the standard data mining technique for
identification of structures and patterns in the data by partitioning
samples into disjoint subgroups and finding their relationships.
There are hierarchical and non-hierarchical clustering algorithms.
The hierarchical algorithm clusters the objects into a tree-like
dendrogram [22]. The hierarchical clustering method can provide
the relationship among the samples or the clusters; however, it is
mefficient for determining subgroups when the number of samples
is large. The non-hierarchical clustering algorithms divide objects
into a pre-specified number of groups; k-means [23] and self-
organizing maps (SOM) [24] are two commonly known
algorithms. Specification of the number of subgroups is a challenge
when the number of subgroups is large.

Clustering techniques provide a global analysis of samples by
partitioning samples with similar attributes in the same cluster.
Each sample is assigned to one and only one cluster, based on all
attributes. In many applications, such as gene expression
experiments, functionally related genes may exhibit a similar
pattern only in a subset of patients with certain medical conditions,
not in all patients; also, some genes may involve more than one
function or no function at all, and associate with more than one
condition or no condition. A primary goal in these applications is
to identify those subsets of co-expressed/co-regulated genes with
associated subsets of samples with similar conditions. Cluster
analysis cannot effectively identify the substructures between a
subset of genes and a subset of samples. Biclustering analysis
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provides an approach to identify substructures in the sampled
data. Biclustering techniques identify biclusters by simultaneously
clustering both samples and attributes [25-39]. Each bicluster is
defined as a subset of attributes associated with a subset of samples.
For an overview of biclustering methods see the reviews of
Madeira and Oliveira [28] and Kriegel et al. [32]. Alternatively,
Baker el al. [40,41] developed GeneWeaver system aiming to
integrate multiple data sources to identify associations between
phenotypes and gene sets. The system was capable of demon-
strating the clustered genes and phenotypes as hierarchical
associations. Recently, Zhang et al. [42] further developed an
approach to finding maximum bicliques in bipartite graphs, which
was incorporated into the GeneWeaver system. Bicluster analysis
can be viewed as an application of GeneWeaver to identify
substructures in single study.

Both cluster and bicluster analyses are unsupervised analyses, in
which samples do not have a predefined class label. These two
methods are effective techniques for subgroup identification and
characterization, but, are inefficient for subgroup prediction.
Several supervised biclustering procedures have been proposed for
classification of labelled sample datasets [43-46]; these methods
incorporate label information into the process of building
biclusters. More discussion in the use of cluster/bicluster analysis
for prediction and supervised biclustering procedures are given in
the Discussion section.

In this paper, we propose a composite modeling approach for
subgroup identification and prediction via a bicluster analysis. The
proposed approach combines an unsupervised biclustering tech-
nique to identify potential sample subgroups in the first step, and a
supervised classification technique to predict sample subgroup
memberships in the second step. The proposed composite model
neither depends on any specific biclustering algorithm or patterns
of biclusters, nor on any classification algorithms. Any biclustering
methods can be used in the first step of bicluster identification.
This paper uses a SVD-based biclustering algorithm to identify
constant biclusters [39]; this method has been shown to perform
well in extensive comparisons with various biclustering methods,
and found to be generally superior in terms of sensitivity and
specificity. The primary focus of this paper is subgroup classifi-
cation and prediction. Three well-known classification algorithms
are considered in the second step of subgroup classification and
prediction: support vector machine [17,18], random forests[19],
and diagonal linear discriminant analysis [21]. The proposed
composite model for subgroup identification and prediction is
applied to a synthetic dataset and three real datasets for
illustration.

Methods

Consider a two-way data matrix with rows representing the
measured attributes and columns representing samples. Many
singular value decomposition (SVD) approaches for bicluster
analysis of microarray data have been proposed and demonstrated
to be effective [34-39]. In this paper, a SVD-based biclustering
method [39] was used to identify substructures between subsets of
attributes and subsets of samples. An advantage of SVD-based
biclustering methods is that the biclustering results do not depend
on the random starting seeds. In the proposed approach, first a set
of biclusters was identified using the SVD-based biclustering
method [39], followed by generating a set of binary classifiers,
each built from one of the biclusters identified. A composite model
is then developed to classify samples into disjoint subgroups
described below.
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Figure 1. Subgroup-specific binary classifier. For each bicluster
C;={G;, S}, a subpopulation-specific genomic binary classifier m;(G,) = i{s
€ S3}, is built to predict where or not a sample is in the subpopulation S;,
where | is an indicator function.
doi:10.1371/journal.pone.0111318.g001

Subgroup Identification and Prediction via Bicluster Analysis

Denote the collection of biclusters identified as C={Cy,
Co,...,Cx}. Each bicluster C; consists of a subset of samples S;
that have similar attributes G; (i = 1,.,k). Thus, each S; represents a
subgroup in the sampled population. A subgroup-specific binary
classifier m; can be built to determine whether or not a sample s
with the attribute g is in the associated subgroup S;, that is,
my(g|G;) =1{s € S;}, where I is an indicator function (Figure 1). A
composite classification model M, which consists of the collection
of the binary classifiers M = {my, ..., my}, is developed to partition
samples into several disjoint subgroups described below.

For a given sample s with the attribute g, each component
binary classifier predicts whether or not the sample s belongs to its
corresponding subgroup, where there are k predictive outcomes.
Denote yes as “1” and no as “0”. Suppose the composite
classification model consists of five binary classifiers (my,...,ms)
with the corresponding subgroups (S, ..., Ss). For example, the
outcome (1,0,0,0,0) of the composite model implies that the sample
is in Sy, (0,0,1,1,0) implies that the sample is in S; and Sy, and
(0,0,0,0,0) implies that the sample is not in any of the five
subgroups. For k binary classifiers, there are ok possible patterns of
predictive outcomes. Each pattern represents a subgroup. How-
ever, when k is modest or large, many patterns would contain very
few samples or no samples at all. When the number of patterns is

Figure 2. A synthetic 300 x100 data matrix consists of two main bicluster regions with the size of 50 x50 having 10 overlapping
columns. The columns represent 100 samples consisting of 4 subgroups: S1 (columns 1-40, blue), S2 (columns 41-50, red), S3 (columns 51-90,
green), and S4 (columns 91-100, black); the first 100 rows represent attributes: G1 (rows 1-50), G2 (rows 1-100), G3 (rows 51-100), and G4 (rows 1-

100).
doi:10.1371/journal.pone.0111318.g002
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large, a minimum of n* = 5-10 samples may be set as the criterion
to form a (major) subgroup for further analysis. The patterns that
contain less than n* samples are referred to as minority subgroups.

Binary classifiers can be developed using any classification
algorithms. This paper uses the three well-known algorithms:
support vector machine (SVM) [17,18], random forests (RF) [19],
and diagonal linear discriminant analysis (DLDA) [21]. These
three algorithms were shown to perform well and have been the
most popular classification algorithms for class prediction of high
dimensional data [47].

In the development of a classification model, the most important
consideration is to unbiasedly evaluate its “performance”. The
common measures of performance are sensitivity (the proportion

Table 1. Upper panel, frequency distributions of classification patterns identified by the SYM composite model (m1, m2, m3, m4)
for the synthetic training dataset consisting of 4 subgroups, S1, S2, S3, and S4; Lower panel, performance of the SYM composite
prediction model for the test dataset of 1,000 simulated samples.

Subgroup S1 S2 S3 sS4 Total

Pattern (n=40) (n=10) (n=40) (n=10) (n=100)

Training

0010 40 0 0 4 44

0100 0 0 40 2 42

111 0 10 0 1 11

0110 0 0 0 1 1

0111 0 0 0 1 1

1011 0 0 0 1 1

Sensitivity 1 1 1 0 0.90

Specificity 0.93 0.99 0.97 1 0.98

Test

Sensitivity 1.000 0.994 1.000 0.654 0.964

Specificity 0.968 0.997 0.963 0.999 0.990

Table values are the averages over 1,000 repetitions.

doi:10.1371/journal.pone.0111318.t001

of correct positive classifications out of the number of true
positives), specificity (the proportion of correct negative classifica-
tions out of the number of true negatives), and accuracy (the total
number of correct classifications out of the total number of
samples). Procedures with both high sensitivity and high specificity
will have high accuracy. To obtain unbiased estimates, the current
sampled data are divided into a training set and a separate test set
[48]; the training set is used for model development, and the test
set is used for performance assessment. The split-sample and cross-
validation methods are commonly used to evaluate performance of
a classifier. The split-sample method randomly splits the data into
two subsets from either the entire data or a designated test dataset.
Split-sample validation is useful when the sample size is large.

Figure 3. Lung Cancer data: three biclusters are identified, 55 x40, 18 x22 and 4x10, using top 100 genes.

doi:10.1371/journal.pone.0111318.g003
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Cross validation involves repeatedly splitting the sampled data into
a training set and test set to generate different training and test
sample partitions to repeatedly estimate “accuracy” measures.
Leave-one-out is a cross validation in which one sample is left out
as a test set while all the other samples constitute the train set. The
“accuracy” measures are estimated after all samples are tested.
This paper uses both leave-one-out and split-sample for perfor-
mance evaluation.

Results

Simulation Experiment
A simulation experiment was conducted to illustrate the
proposed approach using asynthetic dataset of size 300 (rows)x100

composite models.

Table 2. Subgroup classification for the 111 lung cancer patients of the GSE3141 dataset using the composite model with the
SVM, RF and LDA algorithms, and K-means (2-means, 3-means and 4-means) cluster analysis.
Squamous

Subgroup cell
Methods pattern Adenocarcinoma carcinoma
SVM 000 39 6

010 2 0

100 12 52
RF 000 38 5

010 2 1

100 13 50

110 0 2
DLDA 000 35 4

010 7 2

100 11 37

110 0 15
2-Means 0 42 6

1 11 52
3-Means 0 32 3

1 14 3

2 7 52
4-Means 0 33 4

1 9 2

2 6 22

3 5 30

Total 53 58
doi:10.1371/journal.pone.0111318.t002

(columns). The dataset consisted of two main bicluster regions with
the size of 50 x50 having 10 overlapping columns. The first main
bicluster consisted of rows 1-50 and columns 1-50, and the second
bicluster consisted of rows 51-100 and columns 41-90. The
remaining columns 91-100 were in neither biclusters. The
bicluster (signal) data were generated from the normal distribution
N (11,1.22) and background data were generated from the normal
random variable N (6, 1). For masking purpose, random signals
were also generated in the first 100 attributes for the last 10
samples. This dataset can be summarized as four biclusters as
follows. The columns represent 100 samples consisting of 4
subgroups: S1 (columns 1-40, blue), S2 (columns 41-50, red), S3
(columns 51-90, green), and S4 (columns 91-100, black); the first

Table 3. Subgroup classification for the 97 breast cancer patients (46 from patients who developed distant metastases within 5
years and 51 from patients who continued to be disease-free after a period of at least 5 years) using the SVM, RF, and DLDA

Subgroup pattern SsVmM Random Forest DLDA
(0,0) 57 64 47
(,1) 6 4 15
(1,0) 31 27 28
(1,1 3 2 7
Logrank test for (0,1) vs (1,0) subgroups 0.284 0.519 0.599

doi:10.1371/journal.pone.0111318.t003
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Figure 4. Breast Cancer data: two biclusters are identified, 45x27 and 13x18, using 6391 genes 100 of which are demonstrated.

doi:10.1371/journal.pone.0111318.g004
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Figure 5. The prediction model divided the 97 patients into
four subgroups using SVM. The logrank test for differences among
the four subgroups (0,0), (0,1), (1,0), and (1,1) was 0.003.
doi:10.1371/journal.pone.0111318.g005
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100 rows represent attributes: G1 (rows 1-50), G2 (rows 1-100),
G3 (rows 51-100), and G4 (rows 1-100) (Figure 2).

Applying the SVD-based biclustering method [39] to the
permutated dataset, four bicluster regions were identified. The
dimensions of the four biclusters, C;, C,, Cj3, and C, were
100x16, 50x51, 50x58, and 100x15, respectively. Three
classification algorithms were then used to develop four binary
classifiers m;, mp, mj3, and my. There were 16 possible patterns.

Table 1 (upper panel) lists those 6 patterns with their
frequencies from the SVM algorithm, where the column labels
the true sample subgroup. Among the 16 possible patterns, there
were major subgroups (n=5) and three minor subgroups (n<<5),
and the remaining 10 patterns have no samples. Three major
subgroups were (0,0,1,0), (0,1,0,0), and (1,1,1,1) identifying S;, S3,
and S, respectively. The sensitivity and specificity are shown in
the last two rows. The overall accuracy is 0.90. All the subgroups
§,—S5 were identified correctly. A test dataset consisting of 1,000
samples were generated for performance evaluation. The four
subgroups were generated according to the probabilities 0.4, 0.1,
0.4, and 0.1 in contrast to the training set where the numbers of
four subgroups were fixed at 40, 10, 40, and 10. The sensitivity
and specificity for the 1,000 simulated samples were calculated for
cach of the four subgroups. The procedure was repeated 1,000
times. The averaged sensitivity and specificity over the 1,000
repetitions were shown in Table 1 (lower panel). The averaged
accuracy is 0.974. The sensitivity was 0.654 for S4; since the

October 2014 | Volume 9 | Issue 10 | e111318
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samples sample size was 1,000, the number of S4 samples was
about 100 in each evaluation. Unlike the analysis of training
samples, sufficient number of data from S4 was generated to form
a subgroup and identified.

Tables S1 and S2 are the results from the RF and DLDA
algorithms, respectively. The performances of the three algorithms
are similar, in general. All three algorithms show high sensitivity
and specificity in identifying (test) the §; and S5 samples. S, has
the attributes across two subgroups S; and S3. S4 was designed to
have indefinite attributes and difficult to be identified. The pattern
corresponding to S, is (1,1,1,1) using SVM and DLDA, and the
pattern is (1,1,0,0) using RF. SVM appears to perform slightly
better than RF and DLDA. For Sy, as expected, the sensitivity is
low 1n all three algorithms.

Analysis of a lung cancer dataset

A public lung cancer microarray dataset was used to evaluate
the performance of the proposed procedure and compare with k-
means cluster analysis. The dataset was from a study (GSE3141) of
using gene expression signatures to identify patterns of oncogenic
pathway deregulation in lung cancer subtypes [49]. The original
GSE3141 dataset was retrieved from the Gene Expression
Omnibus [50]. The dataset consisted of 111 lung cancer samples
with 53 adenocarcinoma (AD) and 58 squamous cell carcinoma
(SQ) subtypes. This analysis was performed to distinguish these
two lung cancer subtypes assuming no information on the sample
subtypes. In the analysis, a quantile normalization algorithm was
performed to remove the systematic biases. For each probe,
standard error was calculated across all samples and ranked

PLOS ONE | www.plosone.org

Table 4. Frequency distributions of classification patterns identified by the SYM composite model (m;-m;,) for the Salmonella
PFGE training dataset consisting of five serotypes.

13

Subgroups 4,5,12:i- Oranienburg Thompson Typhi Total
(n=5) n=1113 Hadar n=982 n=997 n=990 n=972 n=5054
0000000000 27 73 126 49 142 417
1000000000 653 0 0 0 0 653
1000000100 211 0 0 0 0 211
1000001000 212 0 0 0 0 212
0000001000 6 0 0 0 0 6
0100000000 0 0 0 0 829 829
0010000000 0 1 0 940 0 941
0001000000 0 0 34 0 0 34
0000100000 0 0 215 0 0 215
0001100000 0 0 593 0 0 593
0001110000 0 0 10 0 0 10
0000110000 0 0 9 0 0 9
0000010000 0 905 10 1 1 917
0000000100 2 0 0 0 0 2
0000011000 2 0 0 0 0 2
0010010000 0 3 0 0 0 3

Correct 1082 905 861 940 971 4759
identification

Sensitivity 0.967 0.922 0.864 0.950 0.999 0.942
Specificity 1 0.997 1 1.000 0.932 0.982
Sixteen classification patterns are identified; 13 of the 16 have frequencies of at least 5 (last column). The last two rows show the sensitivity and specificity of the model
performance.

doi:10.1371/journal.pone.0111318.t004

decreasingly. The top 100 probes with the largest standard errors
were selected as attribute variables.

The proposed approach was performed on the data matrix of
100 genes by 111 samples. The bicluster analysis identified 32
biclusters. A cutoff of at least 10 samples was used to eliminate
small biclusters, such as sizes of 2 X2 or 2 x3, resulting in 3 clusters
(Figure 3). The sizes of the three biclusters were 55 x40, 18 x22,
and 4x10. A composite model M = {m;, mp, m3} was built based
on the three biclusters. The leave-one-out cross (LOU) validation
was used to classify each sample into one of the possible 8
subgroups.

Table 2 shows the results from the composite models and k-
means methods for k=2, 3, 4. Note that unlike the composite
model using LOU, all 111 samples were used in the k-means
analysis. The SVM algorithm identified three patterns (0,0,0),
(0,1,0), and (1,0,0), while RF and DLDA identified four patterns
(0,0,0), (0,1,0), (1,0,0), and (1,1,0). The classifier m; generated from
the bicluster C; appears to be associated with the SQ subtype.
Note that the classifier mj3 by itself or in combination with m; and
m, assigned none samples in a subgroup. That is, all samples,
including 10 samples from C3 were not in C3, as predicted by ms.
Based on the majority rule, SVM, RF, and DLDA correctly
identified 41, 40, and 42 out of the 52 AD subtypes, respectively.
All three algorithms identified 52 out of the 58 SQ subtypes. The
performance between the composite models and 2-mean are
generally similar. The 52 SQ subtypes identified by the 2-means
and by the three composite models are identical. The 42 AD
subtypes identified by 2-means contained those 41, 40, and all 42
ADs identified by the SVM, RF, and DLDA composite models,

October 2014 | Volume 9 | Issue 10 | e111318
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Figure 6. Hierarchical cluster analysis of the 14 subgroups identified from the test dataset using the average linkage distance. The
14 subgroups consist of 5 major subgroups: 1. Thompson (0010000000); 2. Typhimurium (0100000000); 3. Decoy (0000000000); 4. Oranienburg
(0001000000, 0000100000, 0001100000, 0001110000, 0000110000); 5. Hadar (0000010000, 1000010000) and 14,[5],12:i- (1000000000, 1000000100

1000001000, 0000001000).
doi:10.1371/journal.pone.0111318.g006

respectively. Using n*=5, SVM identified two subgroups,
including 39 AD and 52 SQ subtypes; RF identified two subgroups
of 38 AD and 50 SQ subtypes; DLDA identified four subgroups
with 42 AD and 52 SQ) subtypes.

In the 4-means analysis, Groups 0 and 1 were from the split of
Group 0 in the 2-means analysis, and Groups 2 and 3 were from
the split of Group 1. However, the results of the 3-means analysis
were peculiar. For example, there were 32, 14, and 7 adenocar-
cinomas for Groups 0, 1, and 2, respectively. Comparing with the
4-means analysis, the 32 consisted 21, 9, and 2 from Groups 0, 1,
and 2, respectively; similarly, the 14 consisted of 12 and 3 from
Groups 0 and 2, respectively.

Analysis of the breast cancer dataset

The dataset of van’t Veer et al. [51] contained 97 breast cancers
(46 from patients who developed distant metastases within 5 years
and 51 from patients who continued to be disease-free after a
period of at least 5 years). The outcome was cancer-related
survival time with 6391 genes as predictor variables.

Two biclusters with dimensions of 45x27 and 13x18 were
identified from the 6391 genes and 97 patients (Figure 4). Two
patients belonged to both biclusters; two binary classifiers, m; and
my, were developed. The leave-on-out cross validation analysis
divided the 97 patient into 4 subgroups. Table 3 shows the results
from the composite models. The m; classifier identified low risk
group patients and my identified high risk group patients. Figure 5
shows the plots of the survival time for four subgroups from the
SVM model. Figures SI and S2 are the plots from the RI and

PLOS ONE | www.plosone.org

DLDA composite models, respectively. The logrank tests for the
differences between the two major subgroups (0,1) versus (1,0)
were 0.284, 0.510, and 0.599 for SVM, RF, and DLDA,

respectively.

Analysis of the Salmonella isolate dataset

The Salmonella isolate dataset consisted of 45,924 PFGE
isolates covering 32 mostly encountered serotypes published by
Zou et al. [16]. The sample isolates were genotyped by the Pulsed-
Field Gel Electrophoresis (PFGE) with DNA bands representing
the presence and absence of a feature in a location as a fingerprint
of isolates. Each isolate has 60 or 61 bands. Five serotypes,
14,[5],12:1-, Hadar, Oranienburg, Thompson, and Typhimurium,
were randomly selected for data analysis. Each serotype consisted
of about 2,000 isolates. The analysis was to illustrate the use of the
proposed composite model to identify the five serotypes and their
subtypes, if any, and evaluate its performance as compared with
the k-means clustering and SVM and RF classifications when the
test set contained isolates from the serotypes that are not observed
in the training set. The DLDA algorithm was not considered in
this example since the PFGE fingerprints were binary features.

The data were first randomly divided into a training and a test
dataset for each serotype. The bicluster analysis identified 10
biclusters and built 10 binary classifiers (m;—m,() from the training
dataset. The SVM and RF composite models then were applied to
each training sample; 16 patterns were identified. The SVM
model identified 16 patterns. Based on n*=5 as a cutoff, 13
subgroups were identified (Table 4). Note that the classifier mg
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and my¢ by itself or in combination with other classifiers assigned
no samples into a subgroup. The interpretation (and presentation)
of the performance was based on the known serotypes; in the
analysis, the serotype was determined by majority rule. The
sensitivities were from 86% to 99%, specificities were high at least
99%, except the Typhimurium with 93.2%. The overall accuracy
was 94.2% and specificity was 98.2%.

The RF model identified 15 patterns, one less than the SVM
model (Table S3). The difference is in the serotypes 4,5,12:i-
identification. In the SVM classification, there were two patterns
(1000000000) and (1000000100) with 653 and 211 for a total of
864 isolates, respectively. In the RF classification, there was no
(1000000100) pattern, instead, the pattern (1000000000) consisted
of 898 isolates. In addition to mg and m;(, mg assigned no samples
into a subgroup. Based on n*=5 as a cutoff, 12 subgroups were
identified. The sensitivities were from 86% to 99%, specificities
were 93% to 100%. The overall sensitivity (accuracy) was 94.2%
and specificity was 98.2%.

The SVM and RF composite models were applied to the test
dataset, which included 1,000 additional samples (named
“Decoy”) from the serotypes other than the five training serotypes.
The analysis of the test dataset classification described below is for
the SVM composite model, the results for the RF composite model
are given in Table S4.

The SVM model identified 24 classification patterns from the
10 binary classifiers m;—m;,. Based on the n*=5 as a cutoff, 14
subgroups were identified (Table 5), where 13 of the 14 were
identical to the 13 subgroups that were identified in the training
data. The additional subgroup consisted of 8 Hadar isolates. The
serotypes and their associated binary classifiers were: 4,5,12:1-: m,,
my, (m;, my) (m; mg); Hadar: mg (m;, mg); Oranienburg: my, ms
(my, m;) (ms, mg) (my, ms, mg); Thompson: mg; Typhimurium:
my. The sensitivities between the training and test datasets were
similar for the data of the five training serotypes. The overall
specificity was lower since there were 1,000 additional “Decoy”
isolates (Table 4 and Table 5). For the “Decoy” serotype, the
sensitivity and specificity were 74.7% and 91.7%, respectively.
The accuracies were 95.9% and 96.1% by excluding and
including the “Decoy” isolates, in the calculation, respectively.
The relationships among the 14 subgroups were further analyzed
using the hierarchical cluster using the Euclidean distance function
and the average agglomeration method (Figure 6). The 14
subgroups identified all 5 major serotypes and their subtypes,
and the “Decoy” serotype: 1. Thompson (0010000000); 2.
Typhimurium (0100000000); 3. Decoy (0000000000); 4. Oranien-
burg contained 5 subtypes (0001000000, 0000100000,
0001100000, 0001110000, 0000110000); 5. Hadar contained 2
subtypes (0000010000, 1000010000); 6. I4,[5],12:i- contained 4
subtypes (1000000000, 1000000100, 1000001000, 0000001000).

The PFGE test data were further analyzed using the k-means
clustering to identify serotypes and their subtypes, and the SVM
and RF algorithms to predict serotypes (including 1,000 Decoy
isolates). Table 6 shows the sensitivity, specificity and accuracy of
the three procedures. The k-means analysis was performed for
k=5 to 15; only the results for k=5, 6, 10, and 15 are presented.
The k-means analysis was also based on majority rule to determine
the serotype. The k-means’ performances were similar except for
k=5, in which the number of clusters were mis-specified. It
appears that k-means has generally better performance than the
composite model, except when a smaller k is specified. The SVM
has much better performance than either the composite model or
k-mean methods for the test dataset without Decoy data, the
accuracy is more than 99%. The SVM is unable to predict the
Decoy data since their serotypes are not in the training classes.
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Currently, PFGE is routinely used molecular subtyping method
by CDC (Centers for Disease Control and Prevention) and state
health labs in the US for Salmonella surveillance and outbreak
mvestigation [52], the ability to rapidly identify the serotype or a
subtype of a Salmonella isolate is essential. The same serotype may
have different subtypes, such as Salmonella Newport, and Dublin
etc. These subtypes are closely related with their gene composition
and variations. Current routine serotyping methods cannot
provide sufficient information for subtype classification. The
serotype subtype classification is important for the studies of
genetic diversity and evolution. The composite model not only
contributes to the PFGE-based characterization and surveillance
of Salmonella isolates in outbreak investigations, also provides a
better understanding of Salmonella genetic diversity and epide-
miology.

Discussion

Cluster analysis has been the primary data mining technique for
dividing samples into disjoint subgroups where the samples in a
cluster contain all attributes that characterize the cluster. Bicluster
analysis techniques are being developed to identify which subsets
of attributes are associated with which subsets of samples [34-39].
A bicluster analysis divides the samples into disjoint subgroups,
where each sample in the subgroup corresponds to one or more
subsets of attributes; and where there may be one additional
subgroup formed by the samples not in any biclusters which are
not associated with any subset of attributes. Both cluster analysis
and bicluster analysis are powerful techniques for classifying
samples into subgroups, but they are inefficient for prediction
purpose. Either method can predict new samples by pooling the
current samples with new samples then performing the same
analysis. However, the subgroup membership of a current sample
before and after the pooling may be different. Alternatively, either
method may also assign the new sample using a classification
algorithm such as k-NN (k-Nearest Neighbors) to develop a
prediction model; note that k-NN requires specification of k and a
distance measure between the new samples and the subgroups.

In the analysis of the lung cancer and PFGE datasets, Tables 4
and 5 show that k-means can outperform the proposed procedure
when the number of clusters are correctly specified; however, it is
often difficult to determine k when the sample size or the number
of subgroups is large such as the PFGE data. Clustering analysis
does not perform well if there is a subgroup of samples that are
made of diverse subtypes, e.g., Decoy subgroup. The major
advantages of the proposed procedure over k-means are: 1) it does
not require pre-specifying the number of clusters, and 2) it uses a
subset of attributes for each bicluster, instead of entire set of
attributes, to develop a binary classifier. The composite model
further identifies the relationships among subgroups based on their
patterns of partition. Figure 6 clearly shows six distinct classes
representing five serotypes and their sub-serotypes, and an
unknown serotypes group. Finally, the hierarchical clustering tree
can provide relationships among the clusters by a cutoff’ however,
there seems to have no standard criterion or algorithm for
choosing a cutoff; the cutoff is often made by visual inspection.
When the number of samples and/or the number of clusters is
large, such as the PFGE data, the visual inspection becomes
infeasible.

Biclustering algorithms have been extended to supervised
biclustering classification for labelled sampled data [43-46]. There
are the CCC-biclustering algorithm to classify good versus poor
responders [43], the co-clustering algorithm to discriminate
between two sample classes (Class A versus Class B) [44], the
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subspace co-expression analysis to discover differential co-expres-
sion patterns to classify normal versus cancer samples [45], and the
LAS (large average submatrix) to classify five breast cancer
subtypes [46]. These methods are supervised biclustering-based
classifiers (or class-discriminant biclusters) [43], classification
algorithms which were developed while optimizing the class
discriminative ability from the label information. A two-class
supervised biclustering algorithm can be extended to a multiclass
classification algorithm. However, classification algorithms are
unable to characterize the subgroup relationships without further
analysis. The composite model considers unlabeled data; the
objectives are not only to classify samples into subgroups and
predict new samples but also to characterize the relationships
among subgroups. Recently, Geraci et al. [53] proposed “Butter-
fly”, a discrete dynamic system, for visualization, clustering, and
classification of unlabeled data. Butterfly provided a 2D repre-
sentation of the relationship between samples according to a set of
variables. The system first generated a set of 2D cluster models,
after performing a feature reduction step, and evaluated by binary
classifiers, and finally showed the visual representation of the top
classification models On the other hand, the composite model is a
general procedure applicable for two-class or multiclass prediction
using biclusters with or without feature reduction.

In the proposed approach, a binary classifier is developed to
predict whether or not a sample is in the associated bicluster. For
the samples that are assigned into two or more biclusters, the
composite model will separate those samples into a new subgroup.
Some classifiers, either by itself or in combination with other
classifiers, may assign only a small number samples, or none, into a
subgroup. The PFGE analysis appeared to support some
comments of Odibat and Reddy [44] that the biclustering
approach itself is inadequate for subgroup discrimination. The
Oranienburg serotype consisted of at least 5 subtypes (Table 5). It
would need three biclusters, C4, C;, and Cg, to identify
(discriminate between) these subtypes. For example, the two
biclusters C5 and Cg in combination identified seven Oranienburg
isolates. In addition, the bicluster Cq and C;y were not shown in
any of the 14 patterns.

The composite model uses k biclusters as a basis to generate up
to 2" disjoint subgroups. Those small biclusters are too small to be
considered as representative subgroups for further partition. The
composite model assigns each sample to one and only one
subgroup, including those samples in the small biclusters. In the
lung cancer example, the composite model was composed of three
binary classifiers from three “large” biclusters of at least ten
samples, out of the 32 biclusters identified. These three binary
classifiers could generate up to 8 subgroups. However, only three
subgroup patterns were identified. The smallest subgroup (0,1,0)
contained only two samples (Table 2). Similarly, in the breast
cancer example, two “large” biclusters were used. There were two
small subgroups containing three and six samples. In the PFGE
example, the composite model identified 16 subgroups based on
10 biclusters in the training dataset (Table 4). The numbers of the
samples in the three smallest subgroups were 2, 2, and 3. The
model identified 24 patterns in the training dataset (Table 5). The
total number of samples for 10 smallest subgroups combined was
15, less than 2 on the average. The composite model is capable of
identifying small subgroups.

Specification of the threshold n* can be based on the sample size
and study objectives. For example, in personal medicine applica-
tions, patients are typically classified as high-risk versus low-risk or
responders versus non-responders. The subgroups are identified
for treatment recommendation. Different cancer subtypes or risk
groups are subjected to different treatments. In the lung cancer
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example, the treatments for the two subtypes are different. In the
breast cancer example, patients in the high risk group would be
recommended to more aggressive treatment. In both examples, n*
was set at ten. In the PFGE example, the primary objective was to
develop a model to identify/predict serotypes/subtypes of
unknown isolates. Knowing that there were many subtypes, n*
was set at five. Ten biclusters were used to develop ten classifiers.
The three small “subgroups” with sizes 2, 2, and 3 can be further
investigated, if necessary.

In this paper, a minimum of five samples is recommended,
n*=25. In the lung cancer example, three biclusters with sample
sizes of 40, 22, and 10 were used to generate subgroups. Cluster Cs
consisted of 10 samples. As discussed, the prediction results by ms
were that all 10 samples were outside the Cs bicluster. These 10
samples were assigned primarily based on the classifiers m; and
my. In other words, biclusters G and Cy were sufficient to develop
the composite model in the sample assignment. In general, the
samples from small biclusters are likely to be assigned to some
larger biclusters. An explanation is that there are much more
samples outside the bicluster region than the samples inside; a
binary classifier tends to favor the majority class prediction in
order to maximize total accuracy. Smaller biclusters (n<<5) can be
used to develop a composite model. However, classifier developed
by a small bicluster is likely to predict that the samples are outside
the bicluster. This problem is known as class-imbalanced
classification [54]. Furthermore, for large binary data matrix,
there may be hundreds of 2x2, 2x3, 3x2, and 3 x3 biclusters.

The notion of the composite modeling approach via biclusters
for class prediction is intuitive and straightforward. For a given
bicluster, a sample is either inside or outside the bicluster. There
are k predicted outcomes for each sample. Each predicted pattern
represents a subgroup. In the simulation experiment, four
biclusters C;—C4 were identified. The sizes of C;—C,; were
100x16, 50x51, 50x58, and 100x15, respectively. Samples 1—-
50 and samples 41-90 were in biclusters C3 and Cy, respectively;
and samples 41-50 appeared in all four biclusters C;—Cy. Table 1
shows that the composite model performed well in classification of
the sample 1-90 since the four binary classifiers were developed
based on the four biclusters. Samples 91-100 were not in any of
the four biclusters, these samples are not associated with any
subsets of attributes. In the PFGE data, there were 10 biclusters
with the sizes: 8x1097, 13x813, 9x938, 10x596, 5x787,
10x938, 5x175, 3x178, 3x468, and 2x109. There were many
overlapping biclusters. These biclusters represented relative large
numbers of samples with small numbers of attributes. On the other
hand, in the lung data, the three biclusters with the sizes of 55 x40,
18%x22, and 4x10 were smaller biclusters relatively. In the
simulation, lung cancer and PFGE examples, where the subgroups
were known, the SVD-based biclustering algorithm was able to
capture the critical subgroup structures. The composite model
appeared to perform reasonable well. In the proposed approach,
any types of bicluster patterns and any biclustering methods can be
used to develop a composite model. However, the performance of
a composite model highly depends on the biclusters used to
generate binary classifiers. A good biclustering method is essential
for the next step of subgroup classification and prediction.

The three classification algorithms, SVM, RF, and DLDA, are
considered for the development of a composite prediction model.
The SVM and RF have been the most popular and successful
classification algorithms and applied to numerous areas of
applications. These two algorithms can be applied to high
dimensional data without feature selection. DLDA is a variant of
the Fisher’s linear discriminant analysis. DLDA has been shown to
be robust against imbalanced class size data [54], where the
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numbers of samples in the bicluster and outside differs substan-
tially. When the class sizes are imbalanced, the standard
classification algorithms, such as SVM and RF, will favor majority
class prediction resulting in poor performance. Among the three
algorithms, SVM appears to perform consistently well.

Personalized medicine is the goal of much current research. A
general aim is to identify a set of molecular biomarkers that can
match disease of an individual patient with an optimal therapy.
Several procedures have been proposed utilizing the classification
and regression tress [19] for subgroup identification. These
procedures partitioned the entire covariate space into subsets of
patients that are homogeneous with respect to the set of covariates
[55-58]. This paper proposes a composite prediction model as an
alternative procedure to classify samples into subgroups according
their associated attributes. Unlike the supervised classification tree
approach, the proposed procedure is an unsupervised approach.
The procedure provides an approach to classifying patients into
subgroups of having different outcomes of interest, such as
genotypic factors, phenotypic outcomes, efficacy/safety measures,
or responses to treatments; the relationships among the subgroups
identified can be further examined [59,60]. However, the
approach presented does not consider outcome measures that
are associated with specific drug treatment. In other words, the
applications focus on the prognostic model, not predictive model,
in the context of personalized medicine [48].

Supporting Information

Figure S1 The prediction model divided the 97 patients into
four subgroups using RF. The logrank test for differences among
the four subgroups (0,0), (0,1), (1,0), and (1,1) was 0.717.

(TTF)

Figure 82 The prediction model divided the 97 patients into
four subgroups using DLDA. The logrank test for differences
among the four subgroups (0,0), (0,1), (1,0), and (1,1) was 0.186.
(TIF)

Table S1 Upper panel. Frequency distributions of classification
patterns identified by the RF composite model (m1, m2, m3, m4)
for the synthetic training dataset consisting of 4 subgroups, S1, S2,
S3, and S4. Lower panel. Performance of the RF composite
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