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Abstract

Penicillium marneffei, the pathogenic thermal dimorphic fungus is a causative agent of a fatal systemic disease, penicilliosis
marneffei, in immunocompromised patients especially HIV patients. For growth and survival, this fungus has to adapt to
environmental stresses outside and inside host cells and this adaptation requires stress signaling pathways and regulation
of gene expression under various kinds of stresses. In this report, P. marneffei activating transcription factor (atfA) gene
encoding bZip-type transcription factor was characterized. To determine functions of this gene, atfA isogenic mutant strain
was constructed using the modified split marker recombination method. The phenotypes and susceptibility to varieties of
stresses including osmotic, oxidative, heat, UV, cell wall and cell membrane stresses of the mutant strain were compared
with the wild type and the atfA complemented strains. Results demonstrated that the mRNA expression level of P. marneffei
atfA gene increased under heat stress at 42uC. The atfA mutant was more sensitive to sodium dodecyl sulphate,
amphotericin B and tert-butyl hydroperoxide than the wild type and complemented strains but not hydrogen peroxide,
menadione, NaCl, sorbitol, calcofluor white, itraconazole, UV stresses and heat stress at 39uC. In addition, recovery of atfA
mutant conidia after mouse and human macrophage infections was significantly decreased compared to those of wild type
and complemented strains. These results indicated that the atfA gene was required by P. marneffei under specific stress
conditions and might be necessary for fighting against host immune cells during the initiation of infection.
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Introduction

Penicillium marneffei (has been combined in Genus Talar-
omyces based on new molecular phylogenetic analysis [1]) is a

pathogenic fungus that causes a fatal systemic mycosis in HIV-

positive persons, patients with systemic lupus erythematosus (SLE)

and patients who receive immunosuppressive drug during organ

transplantation [2,3]. Unlike other Penicillium spp., P. marneffei
is a dimorphic fungus that possesses two distinct cellular forms

regulated by temperature. At 25uC, this fungus grows as mycelia

and produces conidia, whereas, at 37uC, it grows as a yeast-like

cell dividing by fission [2,4]. Humans acquire P. marneffei via

inhalation of fungal conidia into the lungs. Once inside the host, P.
marneffei is able to multiply inside alveolar macrophages as fission

yeast cells and disseminates throughout the host body by the

hematogenous route [5,6]. For pathogenic fungi, if they are unable

to overcome the host defensive mechanisms, especially reactive

oxygen species (ROS) produced by host immune cells and other

stresses inside the host microenvironment, they cannot establish

the disease and will be eliminated from the host body [7].

However, the systems that regulate the survival of P. marneffei
under various stresses outside and inside host cells are still unclear.

Two component signaling systems are common signal trans-

duction strategies found in both prokaryotes and eukaryotes using

in response to environmental signals [8]. In fungi, these systems

include multi-step phosphorelay proteins, a sensor histidine kinase

protein, a histidine-containing phosphotransfer (HPt) protein and

a response regulator protein [9]. In unstressed cells of Saccharo-
myces cerevisiae, there is an autophosphorylation on a histidine

residue in a membrane-bound sensor kinase, Sln1. The phosphate

is transferred to an aspartate residue on the receiver domain of the

same protein and is subsequently transferred to a histidine residue

in an HPt protein, Ypd1. Phosphorylated Ypd1 transfers

phosphate to a response regulator, Skn7 or Ssk1 [9–11]. S.
cerevisiae Skn7 is a response regulator that also acts as

transcription factor and plays a role in antioxidation and cell-
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wall biosynthesis regulation [9]. In pathogenic fungi, Candida
albicans, Cryptococcus neoformans and Aspergillus fumigatus,
Skn7 functions in adaptation to oxidative stress and contribute to

their virulence [9,12]. For Ssk1, under osmotic or oxidative stress,

there is no phosphotransfer through Sln1-Ypd1-Ssk1 proteins.

Unphosphorylated Ssk1 can activate the Hog1 MAPK pathway by

binding to the MEKK protein, Ssk2. After activation, phosphor-

ylated Hog1 translocates from cytosol to the nucleus and regulates

transcriptions of genes involved in stress adaptation. In fission

yeast Schizosaccharomyces pombe, the Sty1 pathway which is an

Hog1 pathway homolog plays a role in a global stress response

[13]. Under stress conditions, Sty1 translocates to the nucleus and

phosphorylates the transcription factor Atf1 both in vitro and in

vivo. Atf1, homolog of mammalian ATF2, is a basic-region leucine

zipper (bZip)-type transcription factor that binds to the CRE

sequence (T[G/T]ACGT[C/A]A) of the target genes in response

to stress [8,14]. In filamentous fungus, Aspergillus nidulans, stress

activated kinase A, SakA (Hog1 homolog) translocates to the

nucleus to interact with AtfA (Atf1 homolog) in response to

oxidative or osmotic stress signal and AtfA also plays a role in

oxidative and heat stress responses on conidia [8,15]. For

pathogenic dimorphic fungus P. marneffei, it has been shown

that Skn7 encoding gene is involved in oxidative stress response

[16]. However, signal transductions under stress condition

throughout the stress activated kinase (SAPK) pathway or SakA

and AtfA transcription factor are not well understood.

We have identified the P. marneffei sakA gene and proposed

that this gene participated in asexual development, yeast cell

production in vitro and inside macrophages, oxidative and heat

stress responses and chitin deposition along the hyphae of P.
marneffei (unpublished data). In this study, P. marneffei
transcription factor gene, atfA was isolated and the atfA mutant

was constructed to characterize the role of this gene under stress

conditions. The results demonstrated that P. marneffei atfA gene

encoded protein containing conserved bZip domain found in a

family of bZip transcription factors and this gene is partly involved

in viability under oxidative stress but not osmotic, UV and heat

stresses. In addition, this gene is also required for survival of P.
marneffei inside host macrophages.

Materials and Methods

Fungal strains and culture conditions
P. marneffei (CBS 119456) was obtained from an AIDS patient

from the Central Laboratory, Maharaj Nakorn Chiang Mai

Hospital, Thailand in 1999 [17]. The fungus was grown on potato

dextrose agar (PDA) (Difco Becton Dickinson and Company, NJ

USA) or malt extract agar (MEA) (OXOID Hampshire England)

for seven days at 25uC. The sakA and atfA mutants generated

from this isolate were maintained on media containing 200 mg/ml

of hygromycin. The sakA and atfA complemented strains were

maintained on media containing both 200 mg/ml hygromycin and

two mg/ml bleomycin (Sigma-Aldrich, St. Louis USA). For long-

term storage, mycelia of given strains were suspended in 30% (w/

v) sterile glycerol and frozen at 270uC. Conidial suspension was

prepared as previously described [18]. Briefly, following the

scraping of the colony surface with a cotton swab and the

suspension of mycelia in sterile 0.01% Tween 80, conidia were

then isolated from the mycelia by filtration through sterile glass

wool.

Molecular biology procedures and plasmid constructions
atfA sequencing and sequence analysis. The complete

genomic sequence of the atfA gene was obtained by PCR

amplification using the genomic DNA of P. marneffei strain F4 as

the DNA template. Primers AtfA-WF and AtfA-WR (Table 1) were

designed based on the genome database of P. marneffei ATCC

18224 (whole genome shotgun sequencing project; http://www.

Table 1. PCR primers used in this study.

Primer name Sequence (59 to 39) Reference

AtfA-A1 AGGAACGTACCACCACTGAA This study

59 atfARev500 CCAGCATAGCAGGACTCAGC This study

AtfA-A3 CGTTACCCAACTTAATCGCCTTGCGTACAACCTCGCAACCAAT This study and [19]

AtfA-A4 GTGTCATGTCCAGTCGAGTCC This study

HY GGATGCCTCCGCTCGAAGTA [19]

YG CGTTGCAAGACCTGCCTGAA [19]

AtfAF-RT CGCTGAGTCCTGCTATGCTG This study

AtfAR-RT GCTCGACCTTGGCTTGGAGA This study

AtfA-WF GCCATGACCTCACAATTACC This study

AtfA-WR ATTGGTTGCGAGGTTGTACG This study

AtfA-ComF GTGCGAAGCTT*GTGTCGAATTGGCCATGTTG This study

AtfA-ComR CTATAGGTACC**GACAAGGCATCGTCGACAC This study

Pm1 ATGGGCCTTTCTTTCTGGG [23]

Pm2 GCGGGTCATCATAGAAACC [23]

LPW21406_GAPDH TGGTCTAGCTCGAATCCAAG [25]

LPW21407_GAPDH GTCGACGTAGGCCTCAGTTA [25]

atfA_exon2 CCGAAGAAGATGACTGATGAAG This study

atfA_exon3 TTGCAAGCCACTGCTTCTTA This study

*HindIII restriction site sequence,
**KpnI restriction site sequence.
doi:10.1371/journal.pone.0111200.t001
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ncbi.nlm.nih.gov). The 1677-bp amplicon was sequenced in both

directions. The NCBI BLAST program (http://www.ncbi.nlm.nih.

gov) was used to search for nucleotide and protein sequence

similarities. The programs ‘nucleic acid translation’ of BioEdit

Sequence Alignment Editor Software was used to predict an open

reading frame and deduced amino acid sequences from the

nucleotide sequences. Conserved domains of AtfA putative protein

were predicted using ScanProsite tool (http://prosite.expasy.org/

scanprosite/). Deduced amino acid sequences of the atfA genes of

other fungal homologous sequences that were obtained from

GenBank databases (http://www.ncbi.nlm.nih.gov) were used for

multiple alignments. Multiple sequence alignment was generated

with the ClustalW program (http://www. ebi.ac.uk/clustalw/

index.html).

Disruption and complementation of atfA. To disrupt the

atfA gene, the modified split marker recombination approach was

used [19]. Briefly, primers AtfA-A1 and 59 atfARev500 and

primers AtfA-A3 and AtfA-A4 (Table 1) were designed for

generating two DNA fragments (Figure 1A). The first fragment

generated by the AtfA-A1 and 59 atfARev500 contained 59

flanking region and approximately 500 bp of the atfA gene,

whereas the second fragment generated by AtfA-A3 and AtfA-A4

included 39 flanking sequences fused to the incomplete sequences

of plasmid pAN7-1 [20] that contained the hygromycin resistance

(hph) gene. The first fragment (1.9-kb amplicon) was cloned into

Figure 1. Strategy for deletion of the atfA gene by replacing the entire atfA ORF with two DNA fragments using modified split
marker method. (A) For the first DNA fragment, PCR amplification of 500 nucleotides of the atfA gene with 59 flanking region from genomic DNA of
wild type is performed. The PCR product is ligated to pAN7-1 containing the hph gene. The DNA fragment containing 500 nucleotides of the atfA
gene with 59 flanking region and the hph gene without terminator (hph) is obtained by digestion of recombinant plasmid with HindIII and BamHI. For
the second fragment, 39 atfA flanking region of atfA is amplified and PCR product is used as a template with pAN7-1 in the second round PCR.
Product form this PCR step consists of 39 atfA flanking region and the truncated sequence of the hph gene (ph) with terminator. Two DNA fragments
are then transformed into P. marneffei wild type to generate atfA mutant strain. The primers used for mutant construction and the predicted results
of three homologous recombinations of 59 and 39 atfA flanking regions and hph gene at the P. marneffei atfA locus in split marker recombination
method are shown (B) The restriction map demonstrates recognition sites of EcoRV (EV) used in Southern blot analysis to detect the deletion of atfA
gene in the atfA mutant strain (DatfA) comparing to the wild type strain (WT). The positions of probe that is specific to both 39 flanking region of atfA
gene (grey bar) and hph gene (empty bar) are identified. EV represents EcoRV. (C) Result of Southern blot hybridization. Probe containing 0.8 kb
fragment of 39 flanking region of atfA gene and 1.5 kb fragment of hph gene hybridized with 5.6 kb fragments of EcoRV-digested DNA from the wild
type strain and hybridized with a 11 kb fragment of EcoRV-digested DNA from the atfA mutant strain.
doi:10.1371/journal.pone.0111200.g001
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SfoI site of pAN7-1 plasmid to give pANatfA59 flank and the

second fragment was used as template for the second round PCR

with pAN7-1 using primers AtfA-A4 and YG (Table 1) to generate

3.1-kb fragment containing truncated fragment of the hph gene

and 39 flanking region of the atfA gene. P. marneffei protoplasts

were transformed with 2–5 mg of the HindIII-BamHI fragment

from pANatfA59 flank containing 59 flanking region with 500 bp

of the atfA gene and the hph gene and the 3.1-kb fragment

generated by primers AtfA-A4 and YG. The atfA mutants were

screened on brain heart infusion agar (BHA) (OXOID Hampshire

England) containing 200 mg/ml hygromycin (Sigma-Aldrich, St.

Louis USA) and the selected mutants were confirmed by PCR and

Southern blot analysis. To ensure a complete absence of atfA
transcript, RT-PCR was performed using primers AtfAF-RT and

AtfAR-RT (Table 1).

The atfA complementation construct was generated by

amplification of the atfA coding region plus 2.5 kb of promoter

and 1.7 kb of 39 flanking region using primers AtfA-ComF

containing HindIII site and AtfA-ComR containing KpnI site

(Table 1). The 5.7-kb PCR product was digested with HindIII/

KpnI and ligated into HindIII/KpnI digested pJL43b1 [21] that

contained bleomycin resistance gene (ble) generating pJLatfA. The

plasmid pJLatfA was transformed into the atfA mutant strain using

protoplast transformation method. After transformation, the

complemented strains were screened on BHA containing both

200 mg/ml hygromycin and 2 mg/ml bleomycin (Sigma-Aldrich,

St. Louis USA). The selected strains were confirmed by using PCR

amplification using primers AtfAF-RT and AtfAR-RT (Table 1)

and Southern hybridization (Figure 2A).

Expression analysis. RNA was isolated from vegetative

hyphal cells of P. marneffei wild type strain grown at 25uC for

three days in Sabouraud dextrose broth (SDB) (Difco Becton

Dickinson and Company, NJ USA), from asexual developing

conidia collected from cultures grown on PDA at 25uC for seven

days and from yeast cells grown in brain heart infusion (BHI)

(OXOID Hampshire England) at 37uC for six days [22]. For

expression under stress conditions, RNA was isolated from

conidia, mycelia and yeast cells of P. marneffei wild type strain

that were incubated at 39uC or were added to one mM hydrogen

peroxide (H2O2) for one hour. The RNA was extracted using

NucleoSpin RNA II (MACHEREY-NAGEL, GmbH & Co.KG

Düren, Germany). RNA was treated with rDNase according to the

manufacturer’s instructions prior to RT-PCR analysis and a no

cDNA synthesis control was performed to ensure for non DNA

Figure 2. Strategy for construction of the atfA complemented strain. (A) The restriction map demonstrates recognition sites of EcoRV (EV)
and BssSI (BsI) used in Southern blot analysis to detect the presence of atfA gene in the atfA complemented strain (AC1) comparing to the wild type
strain (WT). The grey bar indicates the position of probe that is specific to the atfA gene. (B) Southern blot hybridization of genomic DNA from the
wild type (F4) and the atfA-complemented (AC1) strains using probe in Figure 2A. Probe (a 0.9 kb fragment of atfA) hybridized with 5.6 kb fragment
and unpredicted fragment (10.0 kb fragment) of EcoRV- and BssSI-digested DNA from the wild type strain, respectively. For the atfA complemented
strain, probe hybridized with unpredicted fragment (3.5 kb fragment) and 7.5 kb fragment of EcoRV- and BssSI-digested DNA from the atfA
complemented strain, respectively.
doi:10.1371/journal.pone.0111200.g002
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contamination. cDNA synthesis was performed using a Thermo

Scientific RevertAid First Strand cDNA Synthesis Kit (Fermentas,

Burlington, Canada). 18S rRNA was amplified using the primers

Pm1 and Pm2 ([23], Table 1) and used as a loading control.

Expression of sakA was determined using the primers AtfAF-RT

and AtfAR-RT (Table 1).

For real time PCR, RNA was extracted from conidia of P.
marneffei wild type strain that were incubated at 25uC or 42uC,

250 rpm for 0, 10, 20, 30 and 40 minutes. cDNA synthesis was

performed and the samples were amplified in reaction mixtures

containing FastStart DNA Master SYBR Green I Mix reagent kit

(Roche, Basel, Switzerland) using a ABI 7900 HT Fast Real-Time

PCR System (Applied Biosystems, Foster City, CA, USA). Real-

time PCR was performed using standard qPCR conditions [24]

including 40 cycles of 95uC for 15 s, followed by 60uC for one

minute and dissociation curve (95uC for 15 s, followed by 60uC for

15 s and 95uC for 15 s) in the control software of SDS 2.4 (Applied

Biosystems, Foster City, CA, USA). Primers atfA_exon2 and

atfA_exon3 (Table 1) were designed and used for atfA gene

expression. Glutaraldehyde-3-phosphate dehydrogenase

(GAPDH) gene were amplified using primers

LPW21406_GAPDH and LPW21407_GAPDH ([25], Table 1)

and gene expression levels of this gene were used to normalize the

amounts of input RNA. The relative quantitative expression levels

were calculated using the 22DDC
T method [26]. Three indepen-

dent experiments were performed and unpaired t-test (http://

graphpad.com/quickcalcs/ttest1.cfm?Format=SD) was used for

data analysis.

Phenotypes of P. marneffei
Morphologies of P. marneffei wild type and the atfA mutant

were characterized under the microscope using slide culture

technique on PDA incubated at 25uC for four, seven and ten days.

To visualize chitin deposition and cell wall, fungi were stained with

calcofluor white (CFW) and observed under a fluorescence

microscope (Nikon Eclipse 50i, Tokyo, Japan).

For yeast cell induction at 37uC, conidia of wild type and the

atfA mutant were inoculated on Sabouraud dextrose agar (SDA)

and in SDB and incubated at 37uC for ten days and six days,

respectively. Yeast cell morphologies were visualized under a

microscope (Nikon Eclipse 50i Tokyo, Japan).

Stress susceptibility of P. marneffei atfA deletion mutant
In osmotic, oxidative, cell wall and cell membrane stress

susceptibility studies of conidia, the drop dilution assay was used.

Conidia of P. marneffei wild type, atfA mutant and atfA
complemented strains were isolated and were counted using a

hemocytometer chamber. For drop dilution assay, series of ten-

fold dilutions derived from a starting solution of 16107 conidia/ml

to 16103 conidia/ml were spotted in aliquots of five microliters

onto minimal medium (MM) plates [27] supplemented with/

without sorbitol, NaCl, H2O2, tert-butylhydroperoxide (t-BOOH),

menadione (Md), CFW, sodium dodecyl sulphate (SDS), ampho-

Figure 3. atfA expression during phase transition. RNA was isolated from P. marneffei strain F4 cells including conidia collected from cultures
grown for seven days on PDA at 25uC, three days in SDB at 25uC (mycelia), and six days in BHI broth at 37uC (yeast). 18S rRNA was used as loading
control of each growth phase.
doi:10.1371/journal.pone.0111200.g003

Figure 4. Morphology of P. marneffei atfA mutant compared
with wild type strain. (A) Colonies of wild type (F4) and atfA mutant
(SC) on PDA incubated at 25uC for seven days. (B to D) Conidia isolated
from wild type (F4) and atfA mutant (SC) were inoculated on SDA and
SDB and were incubated at 37uC for ten days and six days, respectively.
Scale bar represents five micrometers.
doi:10.1371/journal.pone.0111200.g004
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tericin B and itraconazole and then incubated at 25uC or 37uC for

five days.

For heat stress condition, conidia from wild type, atfA mutant

and atfA complemented strains were collected and drop dilution

assay was performed on MM agar plates at 39uC for five days. For

viability at 42uC, conidia of each strain were inoculated into BHI

broth and incubated at 42uC, 250 rpm. After one hour, conidia

were diluted and plated on SDA for colony forming unit count. A

number of colonies on control plate at 25uC were used as the

baseline for calculation of % survival at 42uC.

UV susceptibility was done as previously described [28].

Approximately one hundred conidia of wild type, sakA mutant

and atfA mutant were spread on SDA plates and were exposed

under different doses of UV light (254 nm) including 0, 2000,

4000, 6000 and 8000 microjoules/cm2 using CL-1000 Ultraviolet

crosslinker (UVP, Upland, CA, USA). Plates were incubated at

25uC for three to four days and colony forming units (CFUs) on

plate zero microjoules/cm2 were used as the baseline values for

calculating the percentage survival of conidia at different UV

doses.

All stress susceptibility experiments were performed in triplicate.

Survival of P. marneffei inside macrophages
To investigate survival of P. marneffei atfA mutant inside

macrophages, the intracellular survival assays were done as

previously described [3]. J774 mouse monocyte macrophages

(Sigma-Aldrich, St. Louis USA) were maintained in Dulbecco’s

Modified Eagle Medium: DMEM (Gibco-life technologies, New

York USA) supplemented with 10% fetal bovine serum and THP-

1 human monocytes (American type culture collection, ATCC)

were grown in RPMI-1640 medium (Gibco-life technologies, New

York USA) containing 10% fetal bovine serum at 37uC, 5% CO2.

For infection, J774 macrophages were seeded into a 24-well

tissue culture plate (TPP, Trasadingen, Switzerland) at a

concentration of 46105 cells per well and incubated at 37uC,

5% CO2 for 24 hours before adding fungal conidia. THP-1

monocytes were seeded to a 24-well tissue culture plate at a

concentration of 16106 cells/well and allowed to differentiate to

macrophages in RPMI supplemented with 100 nM phorbol 12-

myristate 13-acetate (PMA) and incubated at 37uC, 5% CO2 for

72 hours. After incubation, culture media were replaced with fresh

culture media containing conidia of wild type, atfA mutant and

atfA complement strains at a concentration of 16106 cells/well

(multiplicity of infection: MOI of 2.5 for J774 and MOI of 1 for

THP-1). Cells were incubated for two hours to allow adhesion and

phagocytosis of the conidia. After two hours, each well was washed

with media containing 240 U/ml of nystatin (Sigma-Aldrich, St.

Louis USA) to kill extracellular conidia. Nystatin was replaced by

fresh media and incubated for 24 hours. After incubation, infected

macrophages were lysed with 1% Triton X-100 (Sigma-Aldrich,

St. Louis USA). Cell lysates were diluted and plated on SDA and

incubated at 25uC for colony forming unit (CFU) count. The

CFUs harvested from cell lysates at two hours were used as the

initial inocula that acted as the baseline values for intracellular

survival analysis. CFUs harvested at 24 hours were used for

calculation of the percentage recovery of fungal conidia inside

macrophages. The experiments were performed in triplicates and

analyzed using standard t-tests (http://www.graphpad.com/

quickcalcs/ttest1.cfm?Format=SD).

Nucleotide sequence accession number
The nucleotide sequence of the atfA gene was submitted to the

GenBank database under accession number KF636750.

Results

P. marneffei atfA encodes a putative bZip transcription
factor

The atfA gene of P. marneffei strain F4 has 1,536 nucleotides,

with three introns. The 1,230 nucleotide mRNA predicted a 409-

amino-acid protein with a molecular mass of 43.5 kDa with high

similarity to bZip transcription factor. This protein revealed

99.76% identical to the analogous P. marneffei ATCC 18224

(EEA27441), 67.24% identical to A. fumigatus Af293 AtfA

Figure 5. Susceptibility to oxidative stresses of P. marneffei. Growth of P. marneffei wild type (F4), the atfA mutant (SC) and atfA
complemented strain (AC1) at 25uC and 37uC on MM agar supplemented with 2 and 0.5 mM t-BOOH (B and F), 2 and 1 mM H2O2 (C and G), and
0.25 mM and 25 mM menadione (D and H). Five microliters of cell dilutions (56104 to 5 cells) were inoculated on MM agar containing each
compound. (A) and (E) represent MM control plates at 25uC and 37uC, respectively.
doi:10.1371/journal.pone.0111200.g005
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(EAL92448), 65.77% identical to A. oryzae RIB40 AtfA

(XP_001819834), 65.04% identical to AtfA of A. nidulans FGSC

A4 (CBF83765) and 29.83% identical to Atf1 of S. pombe 972h-

(NP_595652). The conserved basic-leucine zipper (bZip) domain

found in the bZip transcription factor family was shown at amino

acid 352–405. This suggested that P. marneffei atfA gene encoded

a member of the putative bZip transcription factor.

To investigate the expression of atfA in P. marneffei, RNA was

isolated from wild type vegetative hyphae grown for three days in

SDB at 25uC, asexual development (conidiation) collected form

cultures grown for seven days on PDA at 25uC and yeast cells

grown for six days in BHI broth at 37uC. The atfA transcript was

detected by reverse transcriptase (RT)-PCR. Comparing with 18S

rRNA loading control, atfA transcript determined during asexual

development (conidia) was less than those cells during vegetative

hyphal growth (mycelia) at 25uC and during yeast growth at 37uC,

respectively (Figure 2). The amount of atfA transcript was not

increased in conidia, mycelia and yeast under both heat shock at

39uC and oxidative stress with one mM H2O2 (Figure 3).

atfA deletion does not affect asexual development and
yeast cell production

To determine the functions of the atfA gene in P. marneffei, the

atfA mutant strain was constructed by replacing the open reading

frame of the atfA gene with the hph cassette using modified split

marker method (Figure 1A). The transformant lacking the atfA
gene was screened by PCR using primers specific to atfA and hph
genes. Five clones were selected and the result from Southern blot

hybridization showed that one clone, denoted SCDatfA, contained

a single copy of the hph gene integrated within the atfA gene

(Figure 1B and 1C).

To confirm the function of the atfA gene, atfA complemented

strains were constructed. Plasmid containing promoter, atfA
coding sequence and 39 region of atfA was transformed into the

atfA mutant strain (SCDatfA). After transformation, three clones

including AC1, AC2, and AC3 were selected and PCR

amplification using primers AtfAF-RT and AtfAR-RT (Table 1)

demonstrated that all clones contained atfA gene. However,

Southern blot analysis showed that only AC1 revealed a single

copy of the atfA gene (Figure 2A and 2B) and this clone was used

in further studies.

To investigate colony morphologies, conidia of the wild type

and the mutant strains were inoculated on PDA and SDA and the

plates were incubated at 25uC and 37uC, respectively. The result

showed that atfA mutant strain had colony morphology similar to

those of the wild type strain at both temperatures (Figure 4A, 4B).

In addition, yeast cell production of the atfA mutant was also

undistinguishable from the wild type strain (Figure 4C, 4D).

atfA gene participates in oxidative but not osmotic stress
responses of P. marneffei conidia

To determine the function of the atfA gene on stress response,

the growth of wild type, atfA mutant and atfA complemented

strains on media supplemented with or without different stressors

were evaluated. For oxidative stress at 25uC, atfA mutant strain

was more slightly sensitive to two mM t-BOOH (Figure 5B)

comparing to the wild type and complemented strains. However,

growths of all strains were undistinguished under stresses from

both two mM H2O2 and 0.25 mM menadione (Figure 5C and

5D). At 37uC, a slightly higher susceptibility to t-BOOH (0.5 mM)

was observed in the mutant (Figure 5F) and no difference among

the mutant, wild type, and complemented strains under one mM

H2O2 and 25 mM menadione stresses (Figure 5G, 5H).

For osmotic stress, growths of P. marneffei wild type, atfA
mutant and atfA complemented strains on media supplemented

with NaCl or sorbitol were not different at both 25uC and 37uC
(Figure 6A to 6F).

atfA expression is increased under heat shock condition
but does not play a major role in heat stress response of
P. marneffei conidia and is not regulated by SakA

In a previous study, the functions of the stress-activated kinase A

(sakA) gene of P. marneffei were identified. The results demon-

strated that sakA gene played a role in oxidative and heat stress

responses of conidia and the yeast cell production at 37uC in P.
marneffei (unpublished data). In this study, expressions of sakA

Figure 6. atfA gene is not involved in osmotic and heat stress responses in P. marneffei. Five microliters of cell dilutions (56104 to 5 cells) of
wild type (F4), atfA mutant (SC) and atfA complemented (AC1) strains were inoculated on MM agar supplemented with 0.5 and 0.25 M NaCl (B and E)
and 1 M sorbitol (C and F). (G) MM agar was incubated at 39uC. (A) and (D) represent MM control plates at 25uC and 37uC, respectively.
doi:10.1371/journal.pone.0111200.g006
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and atfA genes in conidia of P. marneffei wild type incubated at

42uC for 10, 20, 30 and 40 minutes were evaluated. The results

revealed that the expressions of both genes were increased at every

time point (Figure 7A). However, growth of conidia from atfA
mutant at 39uC was similar to the wild type, and atfA
complemented strains (Figure 6G) and viabilities of all strains

were not significantly different when the temperature was

increased to 42uC (Figure 7B). To investigate whether SakA

regulates the expression of atfA gene under heat stress at 42uC,

conidia of sakA mutant were incubated at 42uC for 20 minutes

and the relative expression level of atfA gene were identified. The

result demonstrated that deletion of sakA gene did not affect the

increase of atfA expression under heat shock stress. On the other

hand, the expression of atfA in sakA mutant was significantly

higher than the wild type strain under this kind of stress

(Figure 7C).

atfA gene participates in stability of cell membrane but is
not involved in chitin deposition and response to cell
wall stress

To investigate the function of P. marneffei atfA in cell wall

integrity, wild type, atfA mutant and atfA complemented strains

were grown on PDA at 25uC and the cells were stained with CFW

(an anionic dye that binds to nascent chitin chain) after four and

seven days of incubation to visualize cell wall and chitin

deposition. The results demonstrated that all strains showed

normal chitin deposition along their hyphae (Figure 8A). In

addition, the response of conidia from the atfA mutant to cell wall

disrupted agent CFW was similar to those of wild type and atfA
complemented strains (Figure 8C and 8I). This suggested that atfA
gene may not play any role in chitin deposition and cell wall

integrity of P. marneffei. For the role of atfA gene on cell

membrane stability, all strains were grown on media containing

membrane disrupting agent (SDS) [29] and antifungal agents

Figure 7. Gene expressions and survival of P. marneffei under heat stress at 426C. (A) Relative RNA expression of sakA and atfA genes of
conidia from P. marneffei wild type determined by real-time PCR. Conidia were incubated at 42uC for 10, 20, 30 or 40 minutes. Total RNA was
extracted from conidia and subjected to real-time PCR. Expression level of heat stress cells is presented as relative value to the expression level from
no stress cells which is given a value of 1. GAPDH gene expression level was used to normalize amounts of input RNA. (B) Survival of conidia from P.
marneffei wild type (WT), atfA mutant (DatfA) and complemented strains (DatfA + atfA) after incubating in BHI at 42uC for one hour. (C) Relative RNA
expression level of atfA gene of conidia from P. marneffei wild type (WT), sakA mutant (DsakA). Conidia were incubated at 42uC for 20 minutes and
total RNA was extracted and subject to real-time PCR. Results were obtained from three independent experiments and standard error bars of the
mean bars are shown (p,0.05).
doi:10.1371/journal.pone.0111200.g007
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(amphotericin B and itraconazole). The results showed the

sensitivity of the mutant to SDS at both 25uC and 37uC
(Figure 8D and 8J). Only the sensitivity to amphotericin B was

observed at 37uC when compared to the wild type and

complemented strains (Figure 8L). Growth of all strains was not

different in the presence of itraconazole at both 25uC and 37uC
(Figure 8G and 8M).

sakA and atfA genes are not required for response under
UV stress but play a role in P. marneffei survival inside
both mouse and human macrophages

To demonstrate the roles of sakA and atfA genes under UV

stress, P. marneffei wild type, sakA and atfA mutant conidia were

exposed to different doses of UV light. The results showed that the

survival of all strains after exposure to UV light were not

significantly different (Figure 9). Previous study, the role of sakA
gene on survival of P. marneffei conidia inside macrophages was

identified. The results showed that this gene is required for conidia

to survive inside both mouse and human macrophages (unpub-

lished data). In this study, to investigate the role of atfA gene for

survival of P. marneffei inside macrophages, both mouse (J774)

and human (THP1) macrophages were infected with conidia from

P. marneffei wild type, atfA mutants, and atfA complemented

strains. Twenty four hours post-infection, the survival of atfA
mutants was significantly decreased in both cell types comparing

to wild type and atfA complemented strains (Figure 10A and 10B).

Discussion

In this study, we have shown that P. marneffei atfA encodes a

protein in a bZip transcription factor family and plays a role in

oxidative stress response and survival inside macrophages of the

conidia. Responses to environmental stress are significant factors

for many pathogenic fungi to survive outside and inside host cells

and establish the disease. In this study, sensitivity of the conidia

isolated from P. marneffei atfA mutant to osmotic stresses (NaCl

and sorbitol), and cell wall stress (CFW) are similar to those of wild

type and complemented strains. These results suggest that P.
marneffei atfA might be involved in specific stress responses other

than the highly osmotic and the cell wall stress responses. For

osmotic stress response, P. marneffei atfA mutant seemed to

tolerate both NaCl and sorbitol better than the wild type and

complemented strains. This might occur from compensation of the

Figure 8. Deletion of atfA does not affect chitin deposition and cell wall integrity. (A) P. marneffei wild type (F4), atfA mutant (SC) and atfA
complemented (AC1) strains were grown for seven day at 25uC on PDA and stained with CFW day four and day seven to visualize cell wall and septa.
Scale bar represents five micrometers. (B to M) five microliters of cell dilutions (56104 to 5 cells) of wild type, atfA mutant and atfA complemented
strains were inoculated on media supplemented with 5 mg/ml CFW(C and I), 0.004% SDS (D and J), 10 mg/ml and 4 mg/ml amphotericin B (F and L)
and 8 mg/ml and 0.8 mg/ml itraconazole (G and M). (B and E) and (H and K) represent MM control plates at 25uC and 37uC, respectively.
doi:10.1371/journal.pone.0111200.g008
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SakA pathway homolog. It has been shown that A. nidulans
possesses two functional Hog1-type MAPKs including SakA/

HogA and MpkC [30]. Similar to HogA, MpkC can be

phosphorylated by the MAKK protein (PbsB) and overexpression

of mpkC gene can inhibit the high susceptibility to osmotic stress of

A. nidulans hogA mutant [30,31]. In A. fumigatus, two Hog1

orthologues, SakA and MpkC participate in response to oxidative

and nutritional stresses, respectively [32]. In addition, A.
fumigatus sakA also shares a conserved role in osmotic stress

response as in S. cerevisiae such that A. fumigatus sakA controls

the transcription of protein DprB required for osmotic and pH

stress [33]. This indicates that overcompensation of P. marneffei
atfA mutant strain to osmotic stress might come from the

activation of the stress signaling pathway or transcription factor

other than SakA-AtfA pathway.

Under stress from SDS, a membrane perturbation agent and

antifungal agent amphotericin B, a polyene which irreversibly

binds to ergosterol resulting in disruption of fungal membrane

integrity and cell death, survival of conidia of the mutant is less

than those of the wild type and complemented strains (at both

25uC and 37uC for SDS and 37uC for amphotericin B). This

indicates the participation of this gene in cell membrane integrity.

For heat stress response, it reveals that at 42uC, the mRNA

expression level of atfA gene in P. marneffei conidia is significantly

increased in both wild type and sakA mutant strains. This suggests

that heat shock stress might activate the expression of this gene

independently from sakA. One possibility is that there is a crosstalk

between the SakA pathway and another MAP kinase pathway in

P. marneffei that is activated under heat stress and this MAPK

pathway can stimulate the expression of atfA gene in the absence

of sakA. In yeast S. cerevisiae, many stress conditions including low

pH, hyperosmotic, oxidative and heat stresses can activate both

Hog1 and cell wall integrity (Slt2/Mpk1) pathways [34]. However,

deletion of atfA gene does not affect the susceptibility to heat stress

at both 39uC and 42uC. Thus, the heat shock stress could activate

the expression of atfA gene, but atfA gene does not play a major

role in heat stress response in P. marneffei. In S. cerevisiae, it has

been shown that there is cross protection among different stressors.

Heat shock transcription factor (HSF1), MSN2 and MSN4

transcription factors play a major role in heat shock stress

response and heat shock can stimulate tolerance to oxidative and

osmotic stresses [35]. In A. nidulans, AtfA plays a role in response

against oxidative and heat stresses but not osmotic stress of conidia

[8]. In Aspergillus oryzae, two genes encoding bZip type proteins

similar to ATF/CREB, atfA and atfB have been reported [36].

AtfB reveals a short N-terminal region comparing to AtfA and play

a role in heat stress response and development of conidia under

high osmotic stress. Nevertheless, atfB homolog in P. marneffei
has not been reported.

Reactive oxygen species (ROS) produced by host immune cells

such as macrophages, neutrophils and other phagocytic cells are

toxic to some fungal pathogens and are able to eliminate these

pathogens from the host body [37]. Therefore, to protect

Figure 9. Susceptibility of conidia from P. marneffei wild type,
sakA mutant (DsakA) and atfA mutant (DatfA) to UV light. Conidia
of each strain were plated in duplicate on SDA and exposed to different
UV light radiation at 0, 2000, 4000, 6000 and 8000 microjoules/cm2.
Data are from three independent experiments and standard error bars
of the mean bars are shown (p,0.05).
doi:10.1371/journal.pone.0111200.g009

Figure 10. Survival of P. marneffei inside macrophage. Mouse (A) and human (B) macrophages were infected with conidia of P. marneffei wild
type (F4), atfA mutant (DatfA) and atfA complemented (DatfA + atfA) strains. Percent recovery was calculated from number of colonies recovered after
two hours and 24 hours post-infection. Data are from three independent experiments and standard error bars of the mean bars are shown (p,0.05).
doi:10.1371/journal.pone.0111200.g010
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themselves from host immunity, the stress response systems that

can send the signal inside fungal cells to produce enzymes or

molecules used to detoxify ROS are required. The results from this

study demonstrated that atfA gene was involved in response to

only organic hydroperoxide, t-BOOH but not for H2O2 and

menadione. In addition, P. marneffei atfA mutant strain seemed

to grow better than the wild type and complemented strains under

H2O2 stress. This result indicated that atfA gene did not play a

major role in oxidative stress response and P. marneffei might use

different transcription factors to sense different ROS. P. marneffei
possesses, Skn7 functioned as transcription factor and response

regulator, that is involved in response to H2O2 [16]. In other fungi

such as S. cereivsiae and Alternaria alternata, Skn7 was also found

to regulate the expressions of genes in response to H2O2 and t-
BOOH stress [38–40]. H2O2 is a byproduct of aerobic aspiration

and widely used as a model for oxidative stress condition. This

molecule can be detoxified to H2O and O2 by catalase. t-BOOH is

a simple organic alkylhydroperoxide that is frequently used to

generate lipid oxidation. Glutathione peroxidase is used to reduce

this toxic substance but not catalase [35,41]. It has been shown

that cellular signaling response of budding yeast S. cerevisiae
activated by H2O2 is different from that is induced by t-BOOH

[35,42]. Whereas Yap1, a bZip transcription factor of the AP-1

family plays a crucial role for tolerance to H2O2, diamide and

cadmium in S. cerevisiae, the other transcription factor Cad1 is

activated under t-BOOH treatment [35,42]. In citus pathogen A.
alternata AP1 is associated with the detoxification of ROS and

pathogenesis [40]. Further study should be done to investigate the

effect of atfA gene on transcription of glutathione peroxidase gene

under t-BOOH stress.

Because the induction of the MAPK pathway results in the

transcriptions of genes responding to environmental stresses, it is

interesting to understand the relationship between the MAPK

protein and the transcription factor inside the nucleus. The

functional analysis of P. marneffei sakA (hog1 homolog) was

performed and the results showed that this gene participated not

only in heat stress response and oxidative tolerance to H2O2 and t-
BOOH of the conidia but also involved in asexual development,

yeast cell production at 37uC, and chitin deposition along the

hyphae (unpublished data). In this study, the susceptibilities of

different strains of P. marneffei to murine and human macro-

phages were done. Both sakA and atfA mutants were more

susceptible to these phagocytic cells comparing to wild type and

complemented strains indicating the involvement of sakA and atfA
genes in survival of P. marneffei conidia inside macrophages.

However, the result from macrophage infection experiment was

not correlated with oxidative susceptibility test. In P. marneffei, it

has been shown that after phagocytosis by macrophages of

immunocompetent host, the fungus are cleared via nitric oxide

(NO) which is stimulated by T-cell derived IFN-c [43]. Therefore,

P. marneffei atfA might be involved in response against RNS

generated by host macrophages rather than ROS. The outcomes

from this study showed that atfA gene participated in a part of the

systems regulated by sakA gene including tolerance to hydroper-

oxide (t-BOOH) and survival inside macrophages. This indicates

that sakA might interact with other MAPK proteins or other

transcription factors to control gene expressions that are not

dependent on the atfA. In S. pombe, the Sty1/Wis1 pathway is

involved in osmotic, oxidative and heat stress responses and the

control of mitotic initiation. It has been shown that S. pombe Atf1

directly binds and is phosphorylated by the Sty1 MAP kinase

under these stress conditions. However, deletion of atf1 did not

have any effect on the timing of mitotic initiation [44].

It has been shown that the regulation of ATF function is

conserved. In mammalian, transcription factor ATF-2 is con-

trolled by SAPK pathway similar to Atf1 of fission yeast S. pombe
and AtfA of A. nidulans [8,44]. The results from this study and

previous study demonstrated that AtfA of P. marneffei might play

a role downstream of SakA signaling pathway under certain

stresses (SDS, t-BOOH and macrophage infection). However,

further study on the interaction between SakA and AtfA under

these stress conditions should be performed to help us understand

more clearly the stress signaling pathways in dimorphic fungi.
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