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Abstract

The fast development of next generation sequencing (NGS) has dramatically increased the application of metagenomics in
various aspects. Functional annotation is a major step in the metagenomics studies. Fast annotation of functional genes has
been a challenge because of the deluge of NGS data and expanding databases. A hybrid annotation pipeline proposed
previously for taxonomic assignments was evaluated in this study for metagenomic sequences annotation of specific
functional genes, such as antibiotic resistance genes, arsenic resistance genes and key genes in nitrogen metabolism. The
hybrid approach using UBLAST and BLASTX is 44–177 times faster than direct BLASTX in the annotation using the small
protein database for the specific functional genes, with the cost of missing a small portion (,1.8%) of target sequences
compared with direct BLASTX hits. Different from direct BLASTX, the time required for specific functional genes annotation
using the hybrid annotation pipeline depends on the abundance for the target genes. Thus this hybrid annotation pipeline
is more suitable in specific functional genes annotation than in comprehensive functional genes annotation.
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Introduction

In recent years, the rapid development of next generation

sequencing (NGS) has broadened the application of metagenomics

in various aspects of biological research [1]. The reduction of

DNA sequencing cost has surpassed the rate predicted by Moore’s

law [2]. The nosedive of sequencing cost per nucleotide resulted in

the exponential growth of NGS data. More NGS sequences were

generated in the 1000 genomes project within its first 6 months

than the sequence data accumulated in NCBI Genbank database

over two decades [3].

The deluge of NGS data poses higher requirement on

computational resource for data analysis, which became the

bottleneck for metagenomic analysis other than the sequencing

cost. For example, illumina NextSeq 500 is able to generate 30–

120 Gb of microbiological metagenomic data within 30 hours.

But it may take months to analyze these data, for annotation of the

overall functions of these genes. Besides the time cost of

metagenomic analysis, cost of computational resources is getting

higher for handling the overwhelming increase of data generated,

not to mention the hardly quantifiable human resources needed

for metagenomic data analysis currently [2].

The common analysis of metagenomic data included annota-

tion, assembly [4], and genome binning [5]. Annotation of

metagenomic sequences is one of the most fundamental analyses to

extract taxonomy composition and functional information. Func-

tional annotation is mostly performed by similarity search or

mapping of data sequences against a reference protein database

using various algorithms (see the review of Scholz et al. [6]).

BLASTX [7] is widely applied in sequences alignments because it

is more sensitive and could be used to find distant homologous

sequences in annotation using database search [6]. However,

running a BLASTX similarity search for functional annotation is

computational intensive and time consuming in terms of CPU

time, as much as ten times higher than the cost of sequencing [1].

Efforts have been made to develop ultra-fast tools which can be

used for aligning metagenomic sequences against a reference

database based on homology search, such as BLAT [8],

RAPSearch [9], the upgraded RAPSearch2 [10] and UBLAST

[11]. The drawback of these ultra-fast tools is that some hits might

be missed. The portion of missed BLASTX hits is about 1.3–3.2%

using RAPSearch [9] and the portion of missed hits using BLAT

can reach to 20% [10]. The pre-developed Hidden Markov

Models (HMMs) is another fast approach for finding conserved

domains. However, the limitation of HMMs is that it does not

function very well for short reads [6].

Besides the development of ultra-fast tools for database search,

efforts have been made to shorten the analysis time through

constructing new specific databases and optimizing the existing

database as well. For function analysis in metagenomics study, the

NCBI-nr database is one of the most common databases. It

contains both metabolic pathway information, and functionally
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related taxonomic information. However, it would be a waste of

time and computer resources to align the whole set of

metagenomic sequences to NCBI-nr database (or other general

databases, like KEGG) for specific function or metabolic pathway

study, such as antibiotic resistance genes (ARGs) and nitrification

related genes, since genes of these specific functions only account

for a very small portion in the whole NCBI database. Using

specific databases instead of the whole NCBI database is a more

efficient approach although it needs further validation through a

two-step pipeline [12]. Among a few ARGs databases constructed

[13,14], the Antibiotic Resistance Genes Database (ARDB) has

been optimized by removing error sequences and duplicate

sequences to shorten the BLASTX time [15]. But the BLASTX

time against this optimized ARDB database is still long, especially

for large datasets.

A previous study proposed a hybrid approach for taxonomic

annotation [16]. It used multiple alignment processes (UBLAST

and BLASTX) to accelerate homology search and achieve rapid

identification of taxonomic assignments for metagenomic data. In

the present study, we first compared the time consumed and

annotation results of two ultra-fast alignment tools, i.e. RAP-

Search2 and UBLAST in ARGs annotation. Then we evaluated

the hybrid approach which uses UBLAST and BLASTX to

achieve fast functional annotation of metagenomic sequences for

specific functional genes. UBLAST is used for ultra-fast identifi-

cation of potential matched sequences and BLASTX is applied for

more accurate identification and final annotation of the target

sequence from the potential matched sequences selected by

UBLAST. This hybrid pipeline was demonstrated very efficient

and accurate for sequence annotation using specific functional

protein database, such as the optimized ARDB [15], customized

arsenic resistance database [17] and nitrogen-metabolism genes

database extracted from KEGG.

Materials and Methods

Datasets used in the tests
The six tested datasets came from three samples, i.e. influent

(INF), activated sludge (AS) and anaerobic digestion sludge (ADS)

collected from Shatin wastewater treatment plants in Hong Kong

(There is no specific permission required for the collection of

samples. This sampling site is located at N 22u249, E 114u129,

Hong Kong, and the field studies did not involve any endangered

or protected species). These samples covered a wide range of

abundances of the target genes tested in this study. Influent was a

composite sample from three influent samples collected in

November and December in 2011 and January in 2012. AS was

collected from an aeration tank in March 2012 and ADS was

collected from an anaerobic digester in March 2012. The details of

ADS samples could be found in our previous publication [18].

DNA extraction was performed using FastDNA Spin kit for Soil

(MP Biomedicals, CA, USA). High throughput sequencing was

performed by the Beijing Genomics Institute (BGI, Shenzhen,

China) using illumina Hiseq 2000.

ITags were generated from the paired-end reads using a

customized python script. In detail, one of the paired-end reads

was converted into its reverse-complement counterpart. If the

reverse-complement counterpart and the corresponding paired-

end read had an overlap longer than 10 bp, these two reads were

merged into a longer itag [18]. For each sample, 10 million reads

and 10 million itags were used for the evaluation. The test datasets

were deposited in MG-RAST with the accession numbers of

4579259.3 (R_AS_1), 4579258.3 (T_AS), 4579255.3 (R_ADS_1),

4579254.3 (T_ADS), 4579256.3 (R_INF_1) and 4579257.3

(T_INF).

Tools used in the hybrid annotation pipeline
UBLAST is one of the tools in USEARCH (version 7.0). The

free version of 32-bit USEARCH was downloaded from http://

www.drive5.com/usearch/. Search acceleration setting ‘‘-accel’’ of

UBLAST was tested using the value of 0.5, 0.8 and 1. Default

termination options (‘‘-maxaccepts’’ and ‘‘-maxrejects’’) were used

in all of the tests. Potential matched sequences were extracted from

the metagenomic dataset using Perl. Version of BLASTX program

is 2.2.28+. Commands used in the tests were listed in Text S1.

Results and Discussion

Comparison of RAPSearch2 and UBLAST in ARGs-like
sequences annotation

The previously reported hybrid approach uses UBLAST as the

first identifier for potential matches in the database [16].

RAPSearch2 was also one of the ultra-fast tools in database

search and only have a small portion of missed sequences when

compared to direct BLASTX [9,10]. Therefore, we made a

comparison of annotation result from RAPSearch2 and UBLAST

to evaluate their speed and annotation accuracy first.

All the tests in the present study were performed using 1 thread

on a 16-core workstation (Lenovo ThinkStation-D20: CPU

2.40 GHz616 threads; Memory 96 GB). Six datasets of different

sequence lengths (read or merged itag) were used to evaluate the

performance of RAPSearch2 and UBLAST by comparing the

time consumed and the annotation results against the optimized

ARDB which contained 2998 protein sequences with the size of

1.2 million amino acids (aa) [15]. The six datasets came from three

samples, including influent (INF), activated sludge (AS) and

anaerobic digestion sludge (ADS) from a wastewater treatment

plant. Three of the datasets were illumina reads of 100 bp (R_INF,

R_AS and R_ADS) and the other three datasets (T_INF, T_AS

and T_ADS) were itags (162,178 bp) merged from the paired-

end illumina reads.

UBLAST was 11,15 times faster than RAPSearch2 (Table 1)

in the search of ARGs-like sequences. It only took about 8 min to

search 10 million metagenomic reads against the optimized ARDB

while RAPSearch2 took 93 min under the same condition. For

itags of longer sequence length, it took 11,14 min to finish the

alignment process of 10 million itags by UBLAST, doubling the

time used for reads alignment against the optimized ARDB.

Searching itags using RAPSearch2 took 164,177 min for the

same search.

ARGs-like sequences were first selected using E-value cutoff of

1e-5 in the alignment process and then further identified using the

cutoff of sequence identity $90% and hit length $25 aa. The

ARGs-like sequences identified using UBLAST and RAPSearh2

were compared with those identified using direct BLASTX.

UBLAST searching shared more ARGs-like sequences with

BLASTX while the ARGs-like sequences shared by RAPSearch2

and BLASTX were less (Table 1). For example, out of the 6,646

ARGs-like sequences in the sample R_INF identified using

BLASTX, 6,566 of them (98.8%) were shared with the UBLAST

results, while only 6,301 (94.8%) were shared by RAPSearch2.

Similar results were found for the other 5 datasets, demonstrating

that ARGs-like sequences obtained using UBLAST may overlap

with most (averagely.97.0%) of those obtained by BLASTX,

more than those using RAPSearch2. Nevertheless, the annotation

results from UBLAST were different from BLASTX, neither were

the results from RAPSearch2. Among the 6,566 shared sequences
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from UBLAST and BLASTX in R_INF, only 2,466 sequences

have the same annotation (the same accession number of ARGs

sequences). In the shared sequences from RASearch2 and

BLASTX, only 1,973 sequences have the same annotation result.

Steps and cutoff used in the hybrid annotation pipeline
According to the comparison result of RAPSearch2 and

UBLAST, UBLAST was preferred for the primary selection of

potential matches. Although ARGs-like sequences obtained using

UBLAST may overlap with most of those obtained by BLASTX,

the detail annotation of ARGs-like sequences using UBLAST was

largely inconsistent with that obtained using BLASTX. Among the

sequences shared by UBLAST and BLASTX, only 36.2%,45.8%

of them were annotated to the same reference sequence (with the

same accession number) in the optimized ARDB database

(Table 1). UBLAST uses an index of seeds in the database for

the search [11] while BLASTX parses every reference sequence in

the database in the search of target sequences. Therefore,

UBLAST can achieve ultra-fast database search but may have

annotation results different from those obtained by BLASTX and

need to be subjected to BLASTX again for accurate similarity

search.

The hybrid pipeline included the following steps (Figure 1). The

potential matched sequences will be first selected according to the

cutoff of E-value using UBLAST. E-value is the only cutoff used in

the selection of potential matched sequences since the application

of the other cutoffs, i.e. sequence identity and hit length, would

reduce the coverage of target sequences through the selection of

UBLAST. These potential matched sequences are then extracted

from the metagenomic data and finally subjected to BLASTX

using all the cutoffs of E-value, sequence identity and hit length for

the accurate identification and annotation of the target sequences.

This hybrid annotation pipeline has its unique advantage in the

annotation of metagenomic sequences using small specific protein

database, such as database of ARGs. The first step of UBLAST

can significantly reduce the amount of potential matched

sequences which need further BLASTX search for accurate

annotation. In the present study, starting with 10 million

sequences in each dataset, UBLAST against the optimized ARDB

screened out 9,797 to 24,760 potential matched sequences in the

datasets of reads and 41,461 to 66,982 potential matched

sequences in the datasets of itags, accounting for just 0.1% to

0.7% of the 10 million sequences (Table S1).

The number of potential matched sequences depended on the

abundance of the target genes in the sample. For example, ARGs

abundance was the highest in influent datasets, having 6,646

ARGs-like sequences using direct BLASTX in R_INF and 6,972

in T_INF. Correspondingly, the number of potential matched

ARGs-like sequences obtained using UBLAST were also the

highest in influent datasets, i.e. 24,760 potential ARGs-like

sequences in R_INF and 66,982 in T_INF. On the contrary,

ARGs abundance was the lowest in AS datasets, only 322 and 254

ARGs-like sequences were identified by direct BLASTX in R_AS

and T_AS, respectively. Thus the numbers of potential matched

ARGs-like sequences in R_AS and T_AS using UBLAST were

also the lowest (Table S1).

The comparison of potential matched ARGs-like sequences

identified by UBLAST using only the cutoff of E-value 1e-5 and

ARGs-like sequences using direct BLASTX showed that the

potential matched ARGs-like sequences covered over 99.4% of the

ARGs-like sequences identified by BLASTX (Table S1), indicating

that only a small portion of (,0.6%) target sequences was missed

in UBLAST selection, compared to the benchmark using direct

BLASTX.
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As mentioned, the annotation results using UBLAST and

BLASTX were very different, only 36.2%,45.8% of the target

sequences had the same annotation result (the same accession

number of the reference sequence in the database) using the

optimized ARDB. Therefore, BLASTX was used for the final

annotation of selected target sequences in the third step of the

hybrid annotation pipeline. After the ultra-fast selection of

potential matched sequences by UBLAST, only a small portion

of sequences needed to be annotated using BLASTX. The time

required for BLASTX was largely reduced and thus the total time

required for target functional genes identification and annotation

was reduced significantly using the hybrid annotation pipeline.

Evaluations of time consumed by hybrid annotation
pipeline and direct BLASTX

The hybrid annotation pipeline using UBLAST and BLASTX

is very efficient in annotating specific functional genes. Taking the

annotation of ARGs-like sequences using the optimized ARDB as

an example, the hybrid annotation pipeline finished searching of

10 million reads in 8 min and 10 million itags in 14 min, i.e.

90,177 times faster than direct BLASTX for reads and 44,67

times for itags (Table 2).

The comparison of the time required by the hybrid annotation

pipeline and BLASTX were conducted using other two much

larger functional gene databases, i.e. a database of arsenic

resistance genes containing 103,954 protein sequences with total

size of 30 million amino acids [17], and a database of genes in

nitrogen metabolism containing 63,791 protein sequences with the

total sized of 27 million amino acids. The hybrid annotation

pipeline was 103,136 times faster in reads annotation and 44,67

times faster in itags annotation using the arsenic resistance genes

database than direct BLASTX. For the other database of genes in

nitrogen metabolism, it was 63,80 times faster for reads and

51,55 times for itags.

The time consumed by the hybrid annotation pipeline varied

with datasets of different samples, even when the sizes of datasets

are the same. It depends on the abundance of target genes in the

sample datasets. Between the two tools used, BLASTX is the speed

limiting step since it takes much more time than the ultra-fast

UBLAST. If there are more potential matched sequences, the time

required for BLASTX will increase and consequently the total

time required for the hybrid pipeline increases. Among the three

kinds of target genes demonstrated in the present study,

abundances of ARGs-like sequences had the largest variation,

which were 20 times higher in influent (R_INF and T_INF) than

in AS and ADS (R_AS, T_AS, R_ADS and T_ADS) (Table S1).

Time used by UBLAST for R_INF, R_AS and R_ADS were

similar, while time for the following BLASTX for R_INF was

about 70% longer than that for R_AS and R_ADS (Table 2).

The time required for direct BLASTX depends on the size of

dataset and the size of the reference database. If the sizes of dataset

and the database are fixed, the time required for direct BLASTX

is fixed, even for different samples. Different from direct BLASTX,

the time required for the hybrid annotation pipeline mainly

depends on the abundance of target sequences in the original

dataset. Thus, this hybrid annotation pipeline will be more

favorable for the annotation of specific functional genes, whose

abundance is low in the metagenomic dataset.

Evaluation of annotation accuracy from the hybrid
annotation pipeline

The results using the hybrid annotation pipeline were very

similar to the results using direct BLASTX, as shown in Table 3.

All of the sequences from the hybrid pipeline were included in the

results from direct BLASTX in the annotation results using the

three different databases. For ARGs annotation, only a small

portion of sequences was missed in the hybrid annotation pipeline

compared to the results of direct BLASTX. For the dataset R_AS,

320 out of the 322 ARGs-like sequences identified using direct

Figure 1. Process of the hybrid annotation pipeline using UBLAST and BLASTX. The potential matched sequences are firstly identified
through ultra-fast UBLAST using the cutoff of E-value, and then the potential matched sequences are extracted. Further identification and annotation
of these potential matched sequences are performed by BLASTX using cutoff of E-value, sequence identity and hit length.
doi:10.1371/journal.pone.0110947.g001
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BLASTX could be obtained using the hybrid pipeline, only 2

sequences missed. For the dataset R_ADS, the results using the

hybrid pipeline and direct BLASTX were identical. For the

dataset R_INF with the highest ARGs abundance, 22 sequences

were missed among the 6,646 ARGs-like sequences obtained by

direct BLASTX. The missing sequences only accounted for 0.3%.

Similar differences were found for itags, only 1 and 2 sequences

missed by the hybrid pipeline for the datasets of T_AS and

T_ADS, respectively, and 32 (0.5%) ARGs-like sequences missed

for the dataset T_INF which had the highest abundance of ARGs.

The percentage of the shared ARGs-like sequences from the

hybrid pipeline and direct BLASTX were over 99.4% for all tested

datasets using the optimized ARDB (Table 3). A dataset of

drinking water, which was known to have low microbial diversity

[19], was also tested to compare the identification of ARGs using

the hybrid approach and the direct BLASTX. The identified

target sequences and their annotations are identical for the two

different approaches, which proved that the hybrid annotation

approach is suitable for identification of the specific functional

genes in environmental samples, regardless high or low microbial

diversity.

We tried to increase the percentage of overlapped sequences by

loosening the E-value cutoff and increasing the search sensitivity in

UBLAST. Taking the annotation of ARGs-like sequences as an

example, the number of potential matched sequences increases

about 3 folds from E-value 1e-5 to E-value 1e-1 in the dataset

R_33, as shown in Figure 2. The increase of UBLAST sensitivity

(controlled by –accel parameter in UBLAST) also increased the

number of potential matched sequences, but the influence of

sensitivity in UBLAST was not as significant as E-values.

Nevertheless, the percentage of the shared target sequences did

not change in ARGs annotation even the highest sensitivity setting

in UBLAST and a loose E-value cutoff of 1e-1 were used (Table

S2) while the analysis time would increase by 4,6 folds.

The abundances of arsenic resistance gene and genes in

nitrogen metabolism were much higher than ARGs in the test

datasets. For datasets of reads in the search of arsenic resistance

genes, the percentages of the shared annotated sequences between

the hybrid pipeline and direct BLASTX were high, ranging from

99.5% to 99.9% in the direct BLASTX. The percentages for

shared itags were slightly lower, which were 98.2%,99.8%

(Table 3). For genes in nitrogen metabolism, the percentages of

shared annotated sequences were 99.8% for reads and

99.5%,99.8% for itags (Table 3).

We also tested different E-value and search sensitivity in

UBLAST for the search of arsenic resistance genes and genes in

nitrogen metabolism. Increasing UBLAST sensitivity and E-value

only added a few new sequences shared by UBLAST and direct

BLASTX (Table S2), having little contribution in the total

overlapped sequences while time cost was increased by several

folds, i.e. 13,20 folds, and 10,20 folds for arsenic resistance

genes, and genes in nitrogen metabolism, respectively (Table S2).

Limitation of the hybrid annotation pipeline using
UBLAST and BLASTX

This hybrid annotation pipeline is very efficient in the specific

functional annotation of large datasets of metagenomic sequences.

But it still has a couple of limitations. First, it uses two alignment

Table 2. Time consumed of single BLASTX and the hybrid annotation pipeline.

Data Database Single BLASTX* Hybrid annotation pipeline*
Fold increase
in speed

BLASTX time/min UBLAST time/min BLASTX time/min
Total time
consumed/min

R_INF_1 The optimized ARDB
(2,998 protein sequences)

1,522 8 9 17 90

R_AS_1 1,597 6 3 9 177

R_ADS_1 1,524 7 3 10 152

T_INF 2,102 14 34 48 44

T_AS 2,276 11 23 34 67

T_ADS 2,320 12 25 37 63

R_INF_1 Arsenic (103,954
protein sequences)

18,969 101 84 185 103

R_AS_1 18,422 82 75 157 117

R_ADS_1 19,086 85 55 140 136

T_INF 28,084 141 349 490 57

T_AS 27,191 133 329 462 59

T_ADS 29,612 147 367 514 58

R_INF_1 Nitrogen_KEGG
(63,791 protein sequences)

21,228 89 250 339 63

R_AS_1 22,115 86 244 330 67

R_ADS_1 21,841 85 188 273 80

T_INF 30,528 156 434 590 52

T_AS 30,629 159 437 596 51

T_ADS 33,567 169 445 614 55

*Both BLAST and UBLAST were performed using 1 thread. Sensitivity parameter in UBLAST was set as –accel 0.5.
doi:10.1371/journal.pone.0110947.t002
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tools and contains three steps, including the selection of potential

matched sequences by UBLAST, extraction of potential matched

sequences from the dataset and the final identification and

annotation using BLASTX. But this could be easily solved by

programming. Second, this hybrid pipeline only has advantage in

functional annotation using a specific protein database, and not

suitable for the comprehensive functional annotation using large

database, such as NCBI-nr. Because the number of potential

matched sequences cannot be reduced through the ultra-fast

UBLAST when using the comprehensive functional database.

Third, this hybrid annotation pipeline would miss some sequences

compared with the direct BLASTX, but the portion of these

sequences is very low (,1.8%) as demonstrated using three protein

databases in the present study.

Conclusions

The hybrid annotation pipeline was evaluated for specific

functional genes annotation in this study. It utilizes the ultra-fast

speed of UBLAST to achieve the fast selection of potential

matched sequences for subsequent BLASTX, which was proved to

be much more efficient compared to direct BLASTX of specific

functional genes annotation for metagenomic data. The portion of

missed sequences was very small (,1.8%). The application of this

hybrid annotation pipeline was demonstrated using six datasets

with three protein databases.
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