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Abstract

Magnetic anomaly detection (MAD) is a passive approach for detection of a ferromagnetic target, and its performance is
often limited by external noises. In consideration of one major noise source is the fractal noise (or called 1/f noise) with a
power spectral density of 1/fa (0,a,2), which is non-stationary, self-similarity and long-range correlation. Meanwhile the
orthonormal wavelet decomposition can play the role of a Karhunen-Loève-type expansion to the 1/f-type signal by its
decorrelation abilities, an effective energy detection method based on undecimated discrete wavelet transform (UDWT) is
proposed in this paper. Firstly, the foundations of magnetic anomaly detection and UDWT are introduced in brief, while a
possible detection system based on giant magneto-impedance (GMI) magnetic sensor is also given out. Then our proposed
energy detection based on UDWT is described in detail, and the probabilities of false alarm and detection for given the
detection threshold in theory are presented. It is noticeable that no a priori assumptions regarding the ferromagnetic target
or the magnetic noise probability are necessary for our method, and different from the discrete wavelet transform (DWT),
the UDWT is shift invariant. Finally, some simulations are performed and the results show that the detection performance of
our proposed detector is better than that of the conventional energy detector even utilized in the Gaussian white noise,
especially when the spectral parameter a is less than 1.0. In addition, a real-world experiment was done to demonstrate the
advantages of the proposed method.
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Introduction

Magnetic anomaly detection (MAD) is a kind of magnetic

technology for detecting, localizing, and tracking the visually

obscured ferromagnetic targets [1–5], such as vehicles, unexploded

ordnances (UXO), and wrecks of sunken ships and submarines,

etc. Farther away from the target, the magnetic field produced by

the target can be modeled as a dipole field. Thus the total

measured magnetic field BM can be expressed as:

BM~
m0

4p
½3(M . r)r

r5
{

M

r3
�zBe ð1Þ

where Be is the geomagnetic field, M denotes the target magnetic

moment, r is the vector from the target to the measurement point

(magnetic sensor), and m0 = 4p61027 T.m/A is the permeability of

free space. Then the principle of magnetic anomaly detection is

detecting the anomaly appears in the geomagnetic field Be.

Aire Sheinker and Boris Ginzburg, et al, divided MAD methods

into two major categories: target-based method and noise-based

method [2]. The fore category is based on analyzing target signal

typical patterns [3,4], and several assumptions regarding the target

are usually required, such as: (1) the target can be represented by a

single magnetic dipole model; (2) the target moves along a straight

line passing by the magnetic sensor; and (3) the target character-

istic time t is a known priori. The later one reveals changes in the

magnetic background nature, which is assumed that the changes

are caused by the presence of a ferromagnetic target [2,5]. It

would be adaptive to the magnetic background as usual, and no a

priori assumptions regarding the target are required, which may

result in a simpler implementation and lower power consumption

[2,5].

In fact, the practical measured magnetic field BM is usually

contaminated by the external noise, such as magnetic noise and

electronic device noise. And one of the major noise sources is the

1/f fractal noise (or called 1/f noise) with a power spectral density

of 1/fa (here, a is the spectral parameter, and 0,a,2) [4], which

is non-stationary, self-similarity, and long-range correlation. Thus

the performances of the traditional detectors, for example, the

energy detector, designed for the case of the target signal

contaminated by Gaussian white noise, cannot be effectively

handled [4]. In addition, a high-order crossing approach was used

to detect the visually obscured ferromagnetic objects by revealing

the anomalies in the ambient geomagnetic field Be [2]. And a

noise-based MAD method based on adaptive minimum entropy

detector was proposed to detect any changes in the magnetic noise
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pattern [5]. However, both these two methods mostly rely on a

priori magnetic noise probability density function. In this paper, a

novel energy detection method based on undecimated discrete

wavelet transform (UDWT), which can effectively remove the self-

similarity and long-range correlation of the 1/f noise [6], is

proposed. Especially, no a priori assumptions regarding the target

or the magnetic noise probability are necessary for our proposed

method. Furthermore, different from the discrete wavelet trans-

form (DWT), the undecimated wavelet transform is shift invariant,

and then the performance of the detector is also shift invariant.

Moreover, the length of decomposed coefficient is changeless in

the UDWT case.

The rest of this article is organized as follows: In Section 2, some

basic concepts of magnetic anomaly detection and UDWT are

introduced in brief, while one possible detection circuit based on

giant magneto-impedance (GMI) magnetic sensor are also given

out. The principles of our proposed energy detector based on

UDWT are described in detail in Section 3. Some performances of

our detector are illustrated in Section 4, while our conclusions and

prospects are presented in Section 5.

Principles

2.1 Magnetic target signal model
The case of a static magnetic sensor sensing a moving

ferromagnetic target is illustrated in Fig. 1. Of course, the case

that the ferromagnetic target is static while the magnetic sensor

moves is in the similar way [4]. In order to model the target signal,

several assumptions regarding the target are presented: (1) The

target moves along a straight line track with a constant velocity v;

(2) The target magnetic moment M is constant in magnitude and

orientation.

Using the Gram-Schmidt procedure, the target signal s(n) can

be represented as a linear combination of three orthonormal basis

functions (OBFs) fk(n) (k = 1, 2, 3) defined as follow [2]:

s(n)~
X3

k~1

akfk(n) ð2Þ

where

f1(n)~

ffiffiffiffiffiffi
24

5p

r
1{5(nTs=t)2=3

½1z(nTs=t)2�2:5

f2(n)~

ffiffiffiffiffiffiffiffi
128

5p

r
nTs=t

½1z(nTs=t)2�2:5

f3(n)~

ffiffiffiffiffiffiffiffi
128

3p

r
(nTs=t)2

½1z(nTs=t)2�2:5

8>>>>>>>>><
>>>>>>>>>:

ð3Þ

here, the characteristic time t is defined by the ratio t = R0/v,

where R0 is the closet proximity approach (CPA) distance and v is

the velocity of the target moving along the straight track. Ts

denotes the sampling period. In reference [2], authors gave some

conclusions that: (1) The larger values of t correspond to wider

target signals; (2) Most of the target signal energy is concentrated

at low frequencies. However, neither the velocity v nor CPA

distance R0 is known a priori. Thus the characteristic time t
should be estimated, which would bring some errors into the target

model. In Ref. [3,4], authors adopt a multi-channel approach, in

which each channel is associated with a different characteristic

time t, and detection occurs whenever one or more channel

outputs rise above the given threshold.

2.2 Undecimated discrete wavelet transform (UDWT)
The wavelet transform is a signal processing technique that

represents a transient or non-stationary signal in terms of time and

scale distribution, which is an excellent tool for on-line data

compression, analysis and reducing, etc. [7,8]. In this section, we

review some basic concepts and definitions of undecimated

wavelet transform that are important in the content of this paper.

As an example, Fig. 2 shows the scheme of the three-level

decomposition algorithm based on undecimated wavelet trans-

form, which is known as a two-channel sub-band filter. Gj(k) and

Hj(k) are the decomposition high-pass and low-pass filters,

respectively. While the symbol q2 denotes up-sampling by 2.

As illustrated in Fig. 2, the time-domain signal x(n) is passed

through a series of high-pass filters Gj(k) to analyze the high

frequencies, referred to as detail coefficients cDj at jth level.

Synchronously, the signal x(n) is also passed through a series of

low-pass filters Hj(k) in order to analyze its low frequencies, called

approximation coefficients cAj. Here, the high-pass filters Gj(k) and

low-pass filters Hj(k) constitute ‘quadrature mirror filters’ and

exactly half-band filters.

2.3 Detection circuit
Recently, magnetic sensors have been extensively studied for

many years because of their potential applications in nearly all

engineering and industrial sectors, such as navigation, target

Figure 1. Diagram of a static magnetic sensor place to detect a
ferromagnetic target moving along a straight line.
doi:10.1371/journal.pone.0110829.g001

Figure 2. Three-level decomposition algorithm based on
UDWT.
doi:10.1371/journal.pone.0110829.g002
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detection and tracking, etc. [9,10]. And the development of high

performance magnetic sensors has benefited from the discovery of

the giant magneto-impedance (GMI) effect which is well known as

a magnetic phenomenon that a large change in the impedance (Z)

of a ferromagnetic conductor (ribbon- or wire-shaped) with a small

alternating current (I) can be achieved upon applying an external

magnetic field (Hex) tangential to the length of the conductor [11–

13]. Here, one possible conditioning circuit of the GMI magnetic

sensor based on peak-detecting technology is illustrated in Fig. 3.

As illustrated in Fig. 3, an asymmetrical multivibrator is

composed of CMOS inverters Q1,Q3, Rs, Cs, R and C, and the

period of its output square voltage is about T<2.26RC. Here, Rs

and Cs are low resistance and capacitor, respectively, which can

effectively restrain the input current of the CMOS inverters, and

make the output voltage waveform to be more stable. In addition,

a differential circuit (Rd and Cd) then reformed through a CMOS

inverter Q4 to apply a sharp pulse train to the amorphous wire

[14].

On the other hand, the amorphous wire usually does not have a

bipolar response near-zero magnetic. To shift the operation point

to the linear part of the characteristic, a bias magnetic field Hdc is

generated by the basis circuit and the offset coil winding around

the amorphous wire, and its strength can be adjusted by

controlling the DC current provided by the bias circuit [15,16].

The response signal induced in the amorphous wire due to the

GMI effect are developed by the external magnetic field Hex,

which is then converted to DC voltage through a peak detector

composed by the Schottky diode D, Rp, and Cp. After passing the

low-passing filter (Rp and Cp), the output voltage Vout is generated

through a differential instrumentation amplifier AD620 with zero

adjustment, and then connected to the input of signal processing

and detection system.

Multiple measurements show that our GMI magnetic sensor

exhibits a linearity error about 0.98%FS in the measuring range of

62.0 Oe, and its sensitivity can achieve about 748 mV/Oe.

Besides, the bandwidth of our sensor is more than 2.0 kHz at -

3 dB can be observed, and its average noise power spectral density

is about 1.3 nT/Hz1/2. In other words, as the measurement

bandwidth of our GMI magnetic sensor is 2.0 kHz, its

corresponding magnetic field resolution is 58 nT. For its good

performance, this GMI magnetic sensor can be utilized to

detecting the magnetic anomaly signal appears in the weak

magnetic fields.

UDWT-Based Energy Detection Algorithm

Consider the detection of a magnetic anomaly signal with

unknown velocity v, CPA distance R0 and magnetic moment M,

an energy detector based on UDWT is presented in this paper,

and its block diagram is shown in Fig. 4.

Then the problem that whether the target magnetic anomaly

signal exists in the output of the GMI sensor can be posed as a

binary hypothesis as follows:

H0 : x(t)~v(t)

H1 : x(t)~s(t)zv(t)

�
ð4Þ

here x(t) denotes the output signal of the GMI magnetic sensor, s(t)
is the magnetic anomaly signal, while v(t) is the 1/f background

noise. Apparently, hypothesis H0 denotes only background noise

exits in the measurement signal x(t), while hypothesis H1 indicates

there are both the target signal and noise [17–19].

Wornell [6,20] points out that the orthonormal wavelet

decomposition can play a role of a Karhunen-Loève-type

expansion to the 1/f-type signal by its decorrelation abilities. In

other words, the wavelet coefficients xj
m can approximate to be

independent and considered as zero-mean normally distributed

random variable. Thus, the two hypotheses given above can be re-

expressed as:

H0 : xm
j ~vm

j

H1 : xm
j ~sm

j zvm
j

(
ð5Þ

where xj
m, vj

m and sj
m represent the wavelet coefficients of x(t), v(t)

and s(t) at mth scale, respectively, and subscript j denotes the jth
wavelet coefficient. Assuming vm

j ~N (0,s2
v), then the expression

for the mean under H1 becomes:

E(xm
j )~E(sm

j zvm
j )~sm

j ð6Þ

and the variance is derived as follows:

E½(xm
j )2�~E½(sm

j zvm
j )(sm

i zvm
i )�

~E½(sm
j sm

i zvm
j vm

i zvm
j sm

i zsm
j vm

i )�
ð7Þ

On account of the vj
m and sj

m are uncorrelated, the last two

terms are zero and the first two terms are non-zero only when i = j,

Figure 3. The conditioning circuit of the GMI magnetic sensor.
doi:10.1371/journal.pone.0110829.g003
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then the above expression simplifies to:

E½(xm
j )2�~E½(sm

j sm
i zvm

j vm
i )�~(sm

j )2zs2
v ð8Þ

Based on the mentions above, it can be seen that under H1, the

variance of the distribution is the same as under H0, but with a

mean given by Eq. (6). In other words, the hypothesis can be re-

written as:

H0 : xm
j ~N (0,s2

v)

H1 : xm
j ~N (sm

j ,s2
v)

(
ð9Þ

Based on Neyman-Person criterion and the energy detector

[21,22], then the detection statistic T(x) can be defined as:

T(x)~
PN
j~1

(xm
j )2 ð10Þ

Here, N is the length of the signal x(n). Considering that the

probability distribution shown in Eq. (9), the two hypotheses can

be manipulated into the following form [13]:

H0 : T(x)=s2
v~x 2

N

H1 : T(x)=s2
v~x ’2N (l), and l~

XN

j~1

(sm
j )2=s2

v

8>><
>>: ð11Þ

here x2
N denotes an N degrees of freedom central chi-square x2

distribution, and x ’2N (l) implies an N degrees of freedom non-

central chi-square x ’2 distribution, while its non-centrality

parameter is l. Assuming c is the given detection threshold and

P[N] is the probability function, then the probability of false alarm

PFA can be given by:

PFA~P T(x)wcDH0½ �~P
T(x)

s2
v

w

c

s2
v

DH0

� �

~Q
x2

N
(

c

s2
v

)

ð12Þ

While the probability of detection PD can be expressed as:

PD~P T(x)wcDH1½ �~P
T(x)

s2
v

w

c

s2
v

DH1

� �

~Q
x ’2

N
(l)

(
c

s2
v

)

ð13Þ

In addition, the variance s2
v of the 1/f background noise is

unknown and changed in practice, but it usually can be replaced

by its maximum likelihood estimation (MLE) which is expressed

as:

ŝs2
v~ 1

N

XN

j~1

(vm
j )2 ð14Þ

Based on Eq. (12), then the threshold c can be obtained as:

c~ŝs2
v
:Q{1

x2
N

(PFA) ð15Þ

In other words, detection occurs when the detection index value

exceeds the above threshold c, as is depicted in Fig. 4.

Results

In this section, some computer simulations have been

performed to evaluate the presently proposed detection algorithm.

The input signal x(t) that fed to the detector depicted in Fig. 4 was

obtained by adding the noise samples with power spectral density

of 1/f to a signal of a magnetic target moving with a constant

velocity v.

4.1 Selection of decomposition scale
Different decomposition scales have different computation, and

the larger scale usually implies the more computation. Therefore,

an appropriate scale is very critical to ensure that the proposed

detector have a good real-time performance.

Considering the stronger relativity existing in the 1/f noise, the

chosen wavelet function should be orthogonal which can simplify

the calculation process, especially make the coefficients between

inner and external scales have small relevance after wavelet

decomposition [23–26]. Therefore, a set of quasi-orthogonal bi-

orthogonal filters, which can be implemented by DSP chip [27], is

selected as the quadrature mirror filters in this paper, and their

coefficients are shown in Table 1 [23]. Here, H(k) and G(k) (here

k = 211, 210,???, 10, 11) denote the decomposition low-pass and

high-pass filter mentioned in Fig. 2, respectively.

In order to select an appropriate scale m, some simulations

about the probability of detection PD with different wavelet

decomposition scale m and given probability of false alarm PFA are

evaluated, which of the results are shown in Fig. 5. At the same

time, the probability of detection PD in theory with the

corresponding probability PFA in the Gaussian white background

noise also given out [17]. Here, the 1/f noises are generated based

on the fractional Brown mention [24,25], and the magnetic

anomaly signals are simulated based on Eq. (2). The length N of

the simulative input signal x(n) is 1024, while the length NS of

magnetic anomaly signal s(n) is about 51. In addition, the spectral

parameter a of simulative 1/f noise is 1.0, and each Monte Carlo

simulation is repeated at least 1000 trials.

Figure 4. Block diagram of the detection system based on UDWT.
doi:10.1371/journal.pone.0110829.g004
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Table 1. Coefficients of quasi-orthogonal bi-orthogonal filters (values6!2).

k H(k) G(k) k H(k) G(k)

0 0.561285256870 0.560116167736

21 0.286503335274 20.296144908701 1 0.302983571773 20.296144908701

22 20.043220763560 20.047005100329 2 20.050770140755 20.047005100329

23 20.046507764479 0.055220135661 3 20.058196250762 0.055220135661

24 0.016583560479 0.021983637555 4 0.024434094321 0.021983637555

25 0.005503126709 20.010536373594 5 0.011229240962 20.010536373594

26 20.002682418671 20.005725661541 6 20.006369601011 20.005725661541

27 0 0.001774953991 7 20.001820458916 0.001774953991

28 0 0.000736056355 8 0.000790205101 0.000736056355

29 0 20.000339274308 9 0.000329665175 20.000339274308

210 0 20.000047015908 10 0.000050192775 20.000047015908

211 0 0.000025466950 11 20.000024465734 0.000025466950

doi:10.1371/journal.pone.0110829.t001

Figure 5. The probability of detection PD versus signal-to-noise ratio (SNR) with wavelet decomposition scale m and various
probability of false alarm PFA: (a) PFA = 1026; (b) PFA = 1025; (c) PFA = 1024; (d) PFA = 1023; (e) PFA = 1022; (f) PFA = 1021.
doi:10.1371/journal.pone.0110829.g005
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As illustrated in Fig. 5, it can be seen that the performance of

the energy detector based on three-level UDWT decomposition is

not only better than that of the detectors based on two-level and

four-level UDWT decomposition with different probability of false

alarm PFA, but also better than that in theory at the background of

Gaussian white noise. Accordingly, the scale m is selected to 3 in

this paper.

4.2 Detection performance
In this section, the receiver operating characteristics (ROC) with

various spectral parameters a of our proposed detector would be

obtained by utilized Monte Carlo simulations, and each simulation

consisted of at least 1000 independent trials. As the same as the

above section, the length N of the simulative input signal x(n) is

1024, and the length NS of magnetic anomaly signal s(n) is about

51, while SNR is 0 dB.

As illustrated in Fig. 6, it can be achieved that: (1) When the

spectral parameter a is less than 1.0, the simulation detection

performance of our proposed energy detector based on UDWT is

better than that of the convention energy detector utilized in

Gaussian white noise background [17]; (2) While the spectral

parameter a is larger than 1.0, the detection performance of our

detector is also better than that of the convention energy detector

utilized in Gaussian white noise when the probability of false alarm

PFA is larger than 0.15. These are may profited from the wavelet

transform can effectively improve the output SNR [28,29], i.e. the

SNR of the coefficients xj
m shown in Fig. 4.

4.3 Experiment results
A test signal was produced by a moving magnetic target on a

background of a real magnetic noise at a sampling rate of 1.0 kHz,

which is shown in Fig. 7(a). Fig. 7(b)–(d) denote the first-, second-

and third-level approximation coefficients (cA1, cA2, and cA3) of

three-level UDWT decomposition, respectively. It is noticeable

that the coefficients cAj (j = 1, 2, 3) are of length N, which is the

Figure 6. ROC curves of our proposed detector with different spectral parameters a when SNR = 0dB.
doi:10.1371/journal.pone.0110829.g006

Figure 7. A magnetic target signal contaminated by real
background noise: (a) Test signal; (b)–(d) First-, second-, and
third-level approximation coefficients, respectively.
doi:10.1371/journal.pone.0110829.g007
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same as the length of input signal x(n), instead of N/2 as in the

DWT case.

As illustrated in Fig. 7(a), the test target signal is difficultly

distinguish from the real background noise, while the operation

become easy based on the coefficients cA3 shown in Fig. 7(d).

Apparently, the output SNR is improved by the operation of

UDWT. Although the value of spectral parameter a usually is an

unknown priori in the real world magnetic noise, which even may

not be exactly constant or somewhat vary with frequency [4], the

detector based on UDWT employing a fixed set of quasi-

orthogonal bi-orthogonal filters may handle it.

Discussion and Conclusions

MAD is one of the most important geophysical techniques for

detection and localization of the obscured ferromagnetic targets.

Recently, MAD methods presented in the literatures can be

divided into target-based method and noise-based method.

However, the fore category is based on some priori assumptions

of the magnetic anomaly target signal, such as the characteristic

time t. The later one needs know the magnetic background noise

probability. In addition, many methods can be only utilized in the

case of Gaussian white noise. In this study, we aimed at developing

an energy detector based on UDWT to detect the magnetic

anomaly signal not only contaminated by Gaussian white noise,

but also by 1/f noise. In fact, after wavelet transforming by

employing a set of quasi-orthogonal bi-orthogonal filters, not only

the self-similarity and long-range correlation of the 1/f noise can

be effectively removed, but also the signal-to-noise ratio (SNR) of

the magnetic anomaly target signal can be improved. Besides, any

priori information, such as the characteristic time t, magnetic

background noise probability or the spectral parameter a, is not

required necessarily. Based on the simulation results of ROC with

various spectral parameters a at the case of SNR is 0 dB, it can be

seen that the detection performance of our proposed detector is

better than that of the convention energy detector utilized in

Gaussian white noise background, especially when the spectral

parameter a is less than 1.0. Finally, for a real world magnetic

noise, an experiment result shows that the operation based on

UDWT is an effectiveness method for improve the SNR of the

target signal. Our further research in magnetic anomaly detection

will not only address the improvement of magnetic sensor and

energy detector, but also focus on try other detection algorithms.
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