
RESEARCH ARTICLE

Nonequilibrium Population Dynamics of
Phenotype Conversion of Cancer Cells
Joseph Xu Zhou1,2,5*, Angela Oliveira Pisco1,3, Hong Qian4, Sui Huang1,5*

1. Institute for Systems Biology, Seattle, Washington, United States of America, 2. Kavli Institute for
Theoretical Physics, University of California Santa Barbara, Santa Barbara, California, United States of
America, 3. Systems Biology Program, Faculty of Life Sciences, University of Manchester, Manchester,
United Kingdom, 4. Department of Applied Mathematics, University of Washington, Seattle, Washington,
United States of America, 5. Institute for Biocomplexity and Informatics, University of Calgary, Calgary,
Alberta, Canada

*Joseph.Zhou@systemsbiology.org (JZ); Sui.Huang@systemsbiology.org (SH)

Abstract

Tumorigenesis is a dynamic biological process that involves distinct cancer cell

subpopulations proliferating at different rates and interconverting between them. In

this paper we proposed a mathematical framework of population dynamics that

considers both distinctive growth rates and intercellular transitions between cancer

cell populations. Our mathematical framework showed that both growth and

transition influence the ratio of cancer cell subpopulations but the latter is more

significant. We derived the condition that different cancer cell types can maintain

distinctive subpopulations and we also explain why there always exists a stable

fixed ratio after cell sorting based on putative surface markers. The cell fraction ratio

can be shifted by changing either the growth rates of the subpopulations

(Darwinism selection) or by environment-instructed transitions (Lamarckism

induction). This insight can help us to understand the dynamics of the heterogeneity

of cancer cells and lead us to new strategies to overcome cancer drug resistance.

Introduction

During cancer progression, alike development and homeostatic activities, tumor

cells undergo phenotypic changes such as cell differentiation, immune activation

during inflammatory response, or epithelial to mesenchymal transition (EMT). A

switch of cell state is driven by genome-wide gene expression changes that follow

characteristic patterns. For instance, in response to a signal that promotes

differentiation, a population of immature progenitor cells expresses proteins X

and Y, which are associated with the differentiated state (‘‘differentiation

marker’’) and needed for the physiological functions of the differentiated cells (
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Fig. 1A). The gene regulatory network (GRN) coordinates the changes in the

expression levels of the genes that implement specific phenotypic states of cells.

GRN describes how the regulatory genes control one another’s expression in a

predetermined manner, which is encoded in the genome (Fig. 1B). We can thus

represent a cell state x by its expression pattern x tð Þ~ x1 tð Þ,x2 tð Þ::xn tð Þð Þ of the n

genes where xi tð Þis the expression activity of gene locus Gi quantified at the level

of the genomic locus, either in the form of transcripts or proteins. Due to inherent

nonlinearities of the dynamics of such networks, a rich structure of the state space

(space of all configurations of x tð Þ) with multiple attracting regions (‘‘multi-

stability’’ 5 coexistence of multiple stable states) arises such that each attracting

domain maps into a distinct cell phenotype or behavior, as shown in Fig. 1C. The

basins of attraction compartmentalize the network’s state space and give rise to

disjoint stable states x� tð Þ – capturing essential properties of cell types [1]. The

theory, first proposed more than 50 years ago [2,3], that (high-dimensional)

‘‘attractors’’ represent the various cell types of the metazoan organisms built the

foundation to understand cell state transition and cell population dynamics.

A cell is the elementary unit in a population whose birth, death and

transformation events underlie the population dynamics. Many studies describe

the cellular transition using a master equation either in the discrete formalism,

like Boolean networks [4,5], or in the continuous formalism of ordinary

differentiation equations (ODEs) [6–8]. The assumption of mass conservation is

generally used in models inspired by rate equations in chemistry. However, it

needs to be taken into account that cellular multiplication violates the mass

conservation. The departure from mass conservation spontaneously change the

probability density P x�ð Þ in absence of influx/efflux to/from state x�. This notion

is of central importance to understand tissue formation since the cell population

dynamics become non-equilibrium dynamics. The ratio between fractions of cells

corresponding to different phenotypes no longer unconditionally approaches a

steady state, considering both cell proliferation and cell transition. Together with

the transition rate, the net cell growth (proliferation minus death) also changes

the abundance of cells in attractor state x�i and consequently affects the occupied

ratio of attractor states, changing the overall tissue conformation.

In population biology, notably in the study of evolution dynamics, many

researchers have modeled heterogeneous populations of distinct species that differ

in ‘‘fitness’’ [9]. One closely related mathematical theory of cell population

dynamics is Luria-Delbrück theory, initiated by Luria and Delbrück and

extensively developed later by Lea and Coulson, Kendall, Bartlett, Armitage and

Doll and many others [10,11]. Typically in these models, population heterogeneity

is due to the diversity of genotypes produced by genetic mutations instead of

multistability and non-genetic (‘‘epigenetic’’) transitions between multiple

attractor states. These classical evolution models of cell populations have played

an important role in the analysis of the somatic evolution of cancer cells, thought

to be the major driver of cancer progression [9,12]. However, these models tacitly
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assume a one-to-one mapping between genotype and phenotype and assume

random genetic mutations as the mechanism for cell phenotype switching.

Recent advances in mammalian cell reprogramming and cell transdifferentia-

tion have underscored the importance of multistability and non-genetic cell state

transitions resulting in non-genetic cell population dynamics [13,14]. Considering

such non-genetic dynamics will lead to models that differ from classical

population genetics models in the following points:

N Reversible state transitions: these transitions are often approximately

symmetrical while mutations in the traditional model are typically

irreversible;

N Frequent state transitions: transition rate often is in the same time scale as

division time or even faster, while mutation rate per locus is much slower

than the division rate.

N Transitions are not strictly non-Lamarckian. They can be induced in a

controlled (purposeful) or uncontrolled manner while mutations are

randomly directed and their rates not easily tunable.

The key focus of this paper is the dynamics of the cellular composition of a

growing cancer cell population. More specifically, we study the dynamics of the

relative abundance of distinct cancer cell subtypes. We also discuss the conditions

for a cancer cell population to maintain the fixed ratio and distinct cell types.

Figure 1. Schematic illustration of a cell population dynamics with three distinct cell states. A. Three
cell states a,b,c with distinct gene expression xa,yað Þ, xb,ybð Þ and xc,ycð Þ. B. The gene regulatory circuit of X and
Y determines three cell states a,b,c. C. Each state is associated with a growth rate ga,gb,gc respectively. Three
states transition to each other with the interconversion rates kab,kba,kac,kca,kbc,kcb.

doi:10.1371/journal.pone.0110714.g001
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Finally we study how transition and growth rates influence the subpopulation

ratio when cell population reaches equilibrium. Since the true novelty of this

research is to introduce the state-dependent growth rate to cell state transition, in

general this model can be used to describe the cell differentiation during

embryogenesis, or any cell population dynamics in which growth and transition

both play important roles in the same scale.

Cell Population Model for Transition and Growth Dynamics:

Two-Phenotypes

We start with a simple model of cancer cell population with two-phenotypes. We

assume that bimodal expression levels x tð Þ of markers X can modulate the growth

rate. The discretization of a cell population with continuously distributed gene

expression levels x tð Þ into two states, x and y, is appropriated to capture the

characteristic population dynamics. Nonlinear dynamical systems usually have

stable steady states (attractors) and the system should return to attractors under

reasonably small perturbations. The dynamics of returning to the attractors or re-

establishing the equilibrium after perturbation is usually a key property of

nonlinear dynamical systems. It helps us to understand the mechanism of many

interesting biological phenomena in biology, such as polymorphism, homeostasis

etc. Here we first establish the conditions for the co-existence of the two

phenotypes by characterizing both the existence of a steady-state ratio of these two

types and the dynamics underpinning the re-establishment of the equilibrium.

Elementary model: two-phenotype cell population dynamics

We consider the dynamics of a cell population with two interconverting states

(‘‘subpopulations’’) x and y with relative abundances Nx and Ny, which have their

own birth rates bx,by, death rates dx,dy and state transition rates kxy,kyx. The net

growth rates (the quantities readily measured) are bx{dx~gx and by{dy~gy,

respectively. The cell population dynamics including both cell growth and state

transition are described by the corresponding set of ODEs:

dNx=dt ~ gx{kxy
� �

NxzkyxNy

dNy=dt ~ kxy Nxz gy{kyx
� �

Ny

ð1Þ

Eq. (1) matrix representation is given by:

d
dt

Nx

Ny

� �
~

gx{kxy kyx

kxy gy{kyx

� �
Nx

Ny

� �
~T

Nx

Ny

� �
ð2Þ

where T is a matrix with both growth and transition terms. It is important to

emphasize that only the net growth rate can be reliably measured in cell culture. If
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l1,l2 are eigenvalues of T in Eq. (2), the general solution of this linear ODE

system is:

Nx

Ny

� �
~

A11 A12

A21 A22

� �
el1t

el2t

 !
ð3Þ

The long-term dynamic behavior of this dynamic system is then determined by

the two eigenvalues l1,l2. There are two distinct behaviors if the eigenvalues

either have opposite signs or the same sign. When the two eigenvalues have

opposite signs, i.e. l1l2v0, the growth term associated with the negative

eigenvalue decays exponentially. In this situation the two cell populations have

essentially the same growth rate, defined by the positive eigenvalue with only

different pre-factors A11 (when l1w0) and A22 (when l2w0). This indicates that

only one subpopulation can survive independently while the second subpopula-

tion lives as the derivative of the other one.

When the two eigenvalues have the same signs, i.e. l1l2w0, we need to

consider whether they are either positive or negative. If both eigenvalues are

positive, the two subpopulations survive together. In the long term both

populations will grow with the same rate, defined by the larger eigenvalue. Finally,

if both eigenvalues are negative, then both subpopulations become extinct

together. Mathematically, since the product of the two eigenvalues is the

determinant of the matrix T, the condition for the two eigenvalues having the

same sign can be written as:

kxy

gx
z

kyx

gy
v1: ð4Þ

Therefore, if the growth rates for both phenotypes are much greater than the

state conversions, i.e. kxy=gx,kyx=gy, then the two subpopulations can both

survive on their own. However, if one of the two populations has a transition rate

larger than its division rate, this population can only survive as a ‘‘derivative’’ of

the other (as it depends on the ‘‘backflow’’ from the other). This simple

mathematical observation has consequences in non-genetic drug resistance

(persistors) [15,16]. If the conversion rates of both subpopulations are much

larger than their respective growth rates, the distinction of the two discrete cell

phenotypes becomes blurred. Interestingly, in this case none of the subpopula-

tions can survive alone. We can consider these two populations as a single one

with a mean growth rate of kyxgxzkxygy
� �

=(kyxzkxy). Thus, by examining

transition rates in regimes never considered in mutation-based population

dynamics (because mutations are rare), we enter a dynamical regime that is

relevant for cell population dynamics in which non-genetic phenotype conver-

sions dominate.

We can determine the population ratio rbetween the two subpopulations in this

regime. Since in the long term both populations growth is given by the term with

Growth and Transition Dynamics for Cancer Cell Populations

PLOS ONE | DOI:10.1371/journal.pone.0110714 December 1, 2014 5 / 19



the larger eigenvalue, i.e. l2, their ratio is essentially A21/A22. The dynamics of

r~Nx=Ny follow

dr
dt

~
Ny

dNx

dt
{Nx

dNy

dt
Ny

2 ~ gx{gy{kxyzkyx
� �

rzkyx{kxyr2 ð5Þ

Therefore, the steady-state ratio fraction of r is

r�~
kyx

kxy
{1{d

� �
z

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kyx

kxy
{1{d

� �2

z4 kyx=kxy

s( )
=2 ð6Þ

in which we denote d~ gy{gx
� �

=kxy as the differential net growth rate of y with

respect to that of x divided by the transition rate from x to y. While the

population ratio r~Nx=Ny becomes stationary, both populations of x and y can

grow indefinitely. This result deviates from classical population dynamics in

which the coexistence of two populations of different growth rates is not stable

due to one-direction conversion (mutation). In fact, recent work on clonal

(isogenic) cancer cell populations showed that they typically consist of several

interconverting discrete sub-populations associated with biologically relevant

functional properties, such as stem-like behavior, drug–efflux capability [14,17]

and differentiation [13]. The exponential growth at a constant ratio r* also agrees

with the observation that cells which are continuously passaged in cell culture

keep the fixed ratio between sub-types; the total population (NxzNy) growth rate

is then given by:

gtotal~
gxr�zgy

r�z1
ð7Þ

The question now is: Can we quantify the different influences on the observed

cell fixed ratio from the growth and transition rates? A possible biological

interpretation is that changes in gx and gy relative to each other represent

differential fitness in a given environment, which could promote Darwinian

selection. Along the same line, changes in kxy,kyx can represent Lamarckian

instruction in the sense that a given environment may impose differential

transition rates between different phenotypes. This offers a simple mathematical

framework to describe the relative contribution of Darwinian selection and

Lamarckian instruction in shifting population ratios during tumor progression

under chemotherapy.

Re-equilibrium of two-phenotypes cell population

It is easy to obtain the time-course for the dynamics of the re-equilibrium of the

subpopulations by finding the integral solution for Eq. (5). For the convenience of
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integration, we change the variable r to u and integrate it from the initial cell

population ratio r 0ð Þ to the ratio r tð Þ at any arbitrary time t:ðr(t)

r(0)

du
kyx

kxy
{ dz1{

kyx

kxy

� �
u{u2

~at ð8Þ

Since
kyx

kxy
{ dz1{

kyx

kxy

� �
u{u2~ r�{uð Þ

kyx

kxyNr�
zu

� �
, where r� is given by

Eq. (6), we have

1

r�z
kyx

kxyNr�

0
BB@

1
CCA
ðr(t)

r(0)

1
r�{u

z
1

kyx

kxyNr�
zu

2
664

3
775du~at

r tð Þ{r�

r tð Þz
kyx

kxyNr�

~
r 0ð Þ{r�

r 0ð Þz
kyx

kxyNr�

exp {kxy r�z
kyx

kxyNr�

� �
t

� �
ð9Þ

r tð Þ~
r� r 0ð Þz kyx

kxyNr�

� �
z

kyx

kxyNr�
r 0ð Þ{r�ð Þexp {kxy r�z

kyx

kxyNr�

� �
t

� �

r 0ð Þz
kyx

kxyNr�
{ r 0ð Þ{r�ð Þexp {kxy r�z

kyx

kxyNr�

� �
t

� �

This result suggests that the re-equilibrium time is in the order of

kxyr�z
kyx

r�

� �{1

. We can also benchmark this equation with two extreme cases

whose transition rates are obvious. The initial rate for re-equilibrium starting with

a pure subpopulation y, i.e., r 0ð Þ~0, is given by:

d
dt

Nx

NxzNy

� �
r~0

~
dr
dt

� �
r~0

~kyx ð10Þ

while the initial rate for re-equilibrium starting with pure x, i.e., r~?, can be

written as:

d
dt

Ny

NxzNy

� �
r~?

~{
gx{gy{kxyzkyx
� �

rzkyx{kxyr2

1zrð Þ2

 !
r~?

~kxy ð11Þ

In the general case, re-equilibrium rate is a dynamic process that combines both

Eq. (10) and (11). Eq. (5) also predicts that there are two types of re-equilibrium
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dynamics. The right-hand-side of Eq. (5) reaches its maximum at

rmax~
gx{gy{kxyzkyx

2kxy
ð12Þ

with the rate

dr
dt

� �
r~rmax

~
gx{gy{kxyzkyx
� �2

4 kxy
zkyx ð13Þ

Therefore, if gx{gywkxy{kyx, i.e. the difference of growth rates is larger than

the difference of transition rates, one expects that the re-equilibration can be

described by a sigmoidal curve along time. The rate for re-equilibrium increases

with time until r~rmax, followed by a decreasing rate. This is shown in Fig. 2A

and 2C. However, if gx{gyvkxy{kyx, i.e. the difference of growth rates is smaller

than the difference of transition rates, the rate of re-equilibrium dynamics,

starting at r50, decreases monotonically with time. In this case, the time course of

re-equilibration follows a exponential saturation kinetics (monotonically

increasing before reaching the saturation), as shown in Fig. 2B and 2D.

Cell Population Model for Transition and Growth Dynamics:

M-Phenotypes

During the development of multicellular organisms, usually more than two cell

types are formed. This introduces qualitatively new properties not seen in the

classical two-state transition model. To study this phenomenon, we extended our

Figure 2. The re-equilibrium of the cell subpopulations after cell sorting can have different dynamical
behaviors. A. Cell differential growth rates are bigger than cell differential transition rates. The time derivative
of cell ratio is non-monotonic before reaching the fixed ratio r�. B. Cell differential growth rates are smaller
than the cell differential transition rate. The time derivative of cell ratio is monotonically decreasing before
reaching the fixed ratio r�. C. Cell re-equilibrium dynamics is sigmoidal for the condition shown in A. D. Cell re-
equilibrium dynamics is logistical for the condition shown in B.

doi:10.1371/journal.pone.0110714.g002
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mathematical formalism above to m cell phenotypes:

dNx1

dt
~ g1{k12{ � � �{k1mð ÞNx1zk21 Nx2z � � �zkm1 Nxm

� � �
dNxi

dt
~ gi{ki2{ � � �{kimð ÞNxizk1i Nx1z � � �zkni Nxm

� � �
dNxm

dt
~ gm{km1{ � � �{km m{1ð Þ

� �
Nxmzk1m Nx1z � � �z k m{1ð Þm Nxm{1

ð14Þ

Here Nx1 , . . . ,Nxi , . . . ,Nxm are the respective number of cells of m phenotypes in

the cell population. Each phenotype has a respective growth rate g1, . . . ,gi, . . . ,gm;

kij are the state transition rates from cell phenotype i to phenotype j. Since this is a

linear system, the right-hand-side can be decomposed as a sum of a diagonal

matrix and a Markov matrix. The matrix form of Eq. (14) can be written as:

d
dt

Nx1

..

.

Nxm

8>>><
>>>:

9>>>=
>>>;

~

g1{k12{ � � �{k1m . . . km1

..

.
P

..

.

k1m . . . gm{km1{ � � �{km m{1ð Þ

2
6664

3
7775

Nx1

..

.

Nxm

8>>><
>>>:

9>>>=
>>>;

~

g1

P

gm

2
664

3
775

m|m

z

{k12{ � � �{k1m. . . km1

..

.
P

..

.

k1m . . . {km1{ � � �{km m{1ð Þ

2
6664

3
7775

m|m

0
BBB@

1
CCCA

Nx1

..

.

Nxm

8>>><
>>>:

9>>>=
>>>;

~ GzKð Þ

Nx1

..

.

Nxm

8>>><
>>>:

9>>>=
>>>;

~T

Nx1

..

.

Nxm

8>>><
>>>:

9>>>=
>>>;

ð15Þ

Here G is a positive diagonal matrix with growth rates gi and K is a Markov

matrix consisting of transition rates kij. The sum of each column of K is zero due

to the flux conservation principle. This means that there are at least one zero

eigenvalue for the Markov matrix, which guarantees that there exists a steady state

N1, � � � ,Nmf g� if the system is a transition-only dynamical system (G50). If

growth rates are not zeroes, there will be a steady state for cell relative ratio instead

of an absolute cell number N1, � � � ,Nmf g�, shown in the following equation. We

can then establish the mathematical relationship between the growth and

transition rate, which is necessary to maintain distinct epigenetic phenotypes and

the fixed cell ratio. If the matrix T has m eigenvalues l1,l2, . . . ,lm, then the

general solution of Eq. (15) is

(15)
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Nx1

..

.

Nxm

8>><
>>:

9>>=
>>;~C0zel1t

X1
1

..

.

X1
m

8>><
>>:

9>>=
>>;zel2t

X2
1

..

.

X2
m

8>><
>>:

9>>=
>>;z � � �zelmt

Xm
1

..

.

Xm
m

8>><
>>:

9>>=
>>; ð16Þ

Here C0 are constants determined by the initial conditions of the dynamical

system. Each subpopulation Ni is the linear combination of some exponential

growth functions. Therefore, there is no nontrivial steady-state N1, � � � ,Nmf g� as it

does in the case of the transition-only dynamics, i.e. this linear system represents

an ideal world with ample nutrients in which cells can grow indefinitely.

The co-existence or co-extinction of m distinct cell subpopulations requires m
eigenvalues that satisfy either l1, � � � ,lmw0 or l1, � � � ,lmv0. Since we want the

cell population to maintain the distinct phenotypes, the growth rates for all

phenotypes need to be much larger than the sum of the state conversions: forP
i=1

k1i=g1, � � �
P
i=k

kki=gk, � � �
P

i=m
kmi=gm, the m subpopulations can survive on

their own. However, if one of the m populations has a transition rate larger than

its growth rate, this population can only survive as a ‘‘derivative’’ of the others (as

again it depends on the ‘‘backflow’’ from the others). If, on the other hand, all

subpopulations have conversion rates much larger than their growth rates, the

distinction of multiple discrete cell phenotypes becomes blurred. In this situation

there will be only one cell population with subpopulations quickly transitioning

between each other, and because of that none of the subpopulations can survive

on its own.

Biological Examples and Interpretation

In this section we are going to exemplify the concepts described above using

experimental data of cancer cell population dynamics. It is well known that

individual tumors harbor numerous cellular phenotypes and each phenotype has

different biological properties, such as growth rates, migration abilities and drug

responses. For example, cancer stem cells are usually associated with tumor-

initiation, metastasis and drug resistance. One of the biggest challenges that cancer

research faces is drug resistance. There are two hypotheses about the origin of the

resistance to chemotherapy or radiotherapy [18]. The first hypothesis proposes

the pre-existence of drug-resistant subpopulations, which are able to survive in

the presence of the drug and to expand during and after the drug treatment. The

second hypothesis assumes that cancer cells are phenotypically plastic and capable

of transiting between drug-sensitive and drug-resistant states. In our previous

studies [19] we have modeled the response of acute leukemic cells HL60 to

chemotherapeutical drugs to distinguish these two possible mechanisms of drug

resistance. Given that constitutive expression of ABC transporters is usually

associated with multidrug resistance, we measured expression and activity of the

Growth and Transition Dynamics for Cancer Cell Populations
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ABCB1/MDR1 transporter before and after drug treatment. We found that within

the HL60 cell population there are two subpopulations, MDR1Low and MDR1High,

which respectively correlate with low or high survival in the presence of drug (

Fig.3). The two subpopulations can spontaneously interconvert among them-

selves, with a stable co-existence ratio of 98:2 (MDR1Low: MDR1High) without

drug (Fig.3A) and 60:40 with drug (Fig.3B). Our results have showed that the

response to drug was predominantly controlled by the change in transition rate,

rather than by differential growth rates. Here we expanded our conceptual

Figure 3. HL60 cell population dynamics. Leukemia cell line HL60 has two subpopulations, MDRHigh and MDRLow, based on their abilities to retain
CalceinAM fluorescent dye (flow cytometry profiles), as measured by flow cytometry. The flow cytometry histograms correspond to a snapshot of the cell
population at a given time point. In this particular case the parameter is the accumulation of a fluorescent dye, CalceinAM, which works as a surrogate for
ABC transporters activity and multidrug resistance: if the cells retain the dye, ABC transporters are not active and the cell is sensitive to drug; if the cells do
not accumulate the dye, ABC transporters are active and the cell is resistant to drug treatment. A. In the absence of drug the two subpopulations co-exist at
a stable cell ratio, MDRHigh52% and MDRLow598%. B. When the cells are treated with 10 nM of vincristine for 72 h the proportions change to
MDRHigh540% and MDRLow560%. For further details please refer to Pisco et al [17].

doi:10.1371/journal.pone.0110714.g003
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approach to study state transitions in a breast cancer experimental system with

three possible phenotypes [20].

Three-phenotype transition between breast cancer stem cells and

differentiated cancer cells

Breast cancer cell lines SUM159 and SUM149 show three different behaviors,

based on putative cell-surface markers: stem-like cells (CD44high CD24neg

EpCAMlow), basal cells (CD44high CD24negative EpCAMnegative) and luminal cells

(CD4low CD24high EpCAMhigh) [20]. Gupta et al [18] have shown that SUM159’s

cell population is predominantly basal, with an associated fixed cell ratio of 97.3%

basal (B), 1.9% stem (S) and 0.62% luminal cells (L). On its turn, cell line

SUM149 predominately consists of luminal cells, with a respective proportion of

3.3% basal (B), 3.9% stem (S) and 92.8% luminal cells (L). In the study, the

authors demonstrated that if the three different cell states are FACSorted based on

their surface markers, and the relatively pure cell subpopulations were allowed to

grow in regular culture conditions, all sorted pure cell subpopulations quickly

recovered the initial cell population ratio. It is then important to ask why tumors

maintain this heterogeneity with fixed ratio and what are the mechanisms leading

the quick relaxation of the sorted cell sub-populations back to the initial ratio.

Gupta et al [20] used a Markov model to describe the re-equilibrium dynamics

of cell subpopulations. Although the Markov model is able to explain the

existence of stable cell fractions’ ratio and can also capture the dynamics of the cell

states, there are two disadvantages when comparing to a ODE model. First, the

Markov model re-scales the total cell population to 1 at each time step, masking

the influence of different growth rates of subpopulations. The probability of

remaining in the same state in the Markov model, which corresponds to the

growth rate in ODE model, will give the cell ratio for steady state conditions but

cannot predict the effective growth rate of the whole cell population. Second, re-

equilibrium is guaranteed in a Markov process as long as the probability of

transitions is conserved (e.g., each row of the probability transition matrix add up

to 1). However, there are some subtle connections between the growth rates and

the transition rates, which are missed by the Markov model, such as that the

growth rate and the transition rate need to satisfy condition in Eq. 6 to reach the

steady state, and the conditions for co-existence or derived existence of different

subpopulations. The quantitative model developed in Section 3 is used to address

these questions. We are able not only to examine the requirement for reaching a

fixed ratio between different cell subpopulations, but also to characterize the

condition of its existence in a multiple-cell-type and continuously growing cell

population. If we assume for the subpopulations rx~Nx=Nz and ry~Ny=Nz,

by the chain rule of differentiation
drx

dt
~

Nz
dNx

dt
{Nx

dNz

dt
Nz

2 ,
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dry

dt
~

Nz
dNy

dt
{Ny

dNz

dt
Nz

2 , the dynamics of rx,ry follow:

drx

dt
~{k23rxry{k13r2

xz g1{g3{k12zk31zk32ð Þrxzk21ryzk31{k13

dry

dt
~{k13rxry{k23r2

yz g2{g3{k21zk31zk32ð Þryzk12rxzk32{k23

8>><
>>: ð17Þ

In order to get the steady state of cell ratios, we set
drx

dt
~0,

dry

dt
~0 in Eq. (17)

above. This leads to a dual quadratic equation, which has no analytical solution in

general. However, this can be solved with numerical methods.

Even if the population ratios rx,ry become stationary, the absolute cell number

of the subpopulations, Nx,Ny and Nz can increase indefinitely. In the situation

where growth rates are smaller than transition rates k12zk13wg1,k21zk23wg2,

k31zk32wg3, the transition matrix is predominantly a Markov matrix that

satisfies the flux conservation principle as it has only one positive eigenvalue while

all others are negative. All cell subpopulations grow exactly at a single growth rate

l1 and their ratios will be determined by the initial constants C0 (see Eq. (16)).

Therefore, the subpopulations virtually correspond to the same cell type with

different expression levels for biomarker X and none of them can survive as an

independent cell type. In practice, such rapid transitions will manifest as

fluctuations of gene expression profiles, contributing to the observed population

heterogeneity in snapshots. As explored in Pisco et al. [19], changes in gx and gy

can represent differential fitness in (mutation-less) Darwinian selection whereas

changes in kij can represent Lamarckian instruction.

By putting together the growth-transition linear ODE model of Eq. (14) with

the steady-state population fraction of rx,ry of Eq. (17), we can estimate the

growth rates gx,gy,gz and the state transition rates kijfi=j,i~x,y,z; j~x,y,z):

There are in total nine unknown variables (3 growth rates and 6 transition rates)

but we have only 2 equations (with rx~
1:9

0:62
,ry~

97:3
0:62

for SUM159 cell lineage

and rx~
3:3

92:8
,ry~

3:9
92:8

for SUM149 cell lineage). The solutions are undetermined

because there were no measurements for growth rates or re-equilibration time for

each cell population. However, since the cell fraction ratios are experimentally

measured at day 0 and at day 6 [18], we can run parameter scanning to find the

values which fit the ratios best at day 0 and day 6. The basic procedure of

parameter scanning include two steps: first, the range of scanning values and the

increments are estimated for each parameter; second, a large parallel trial-and-

error test was performed to find the parameters that better fit the re-equilibration

data.

The cell population model with growth and inter-conversion is shown in

Fig. 4A. The growth rates and transition rates for SUM159 cell line, obtained from
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the parameter scanning, are listed in Table 1. The eigenvalues

l1~0:86,l2~0:31,l3~0:17 are the values that provide the best fit of the

experimental data. As we showed in Section 3, the distinctive cell subpopulations

and the co-existence or co-extinction of them requires three eigenvalues to satisfy

all l1,l2,l3w0. Therefore, these three cell types can co-exist. Another criteria is to

check whether the growth rates for all phenotypes are much faster than the sum of

the state conversions, i.e.0:33z0:14v0:69,0:012=0:85; 0:42z0:04v0:73, such

that the three subpopulations can all survive on their own. The same procedure

was applied for the SUM 149 cell lineage to obtain the growth rates and the

transition rates, as shown in Table 1. By computing the eigenvalues

l1~0:94,l2~0:90,l3~0:09 we concluded that the subpopulations of SUM149

can also co-exist. When we check the relationship between the growth rates and

Figure 4. Three-phenotypic breast cancer cell population dynamics with both growth and transition from model simulation. A. Illustration of cell
growth and transition for breast cancer cell line with three distinct cell phenotypes: luminal cell, basal cell and mammary stem cell. B1-B6. After FACS
sorting, each isolated subpopulation of cell line SUM159, stem-like, basal and luminal cells, re-equilibrate to the stable cell-state ratio r�. Upper panels are
the dynamics for cell numbers of three subpopulations; Lower panels are the dynamics for the cell ratios of three subpopulations. C1-C6. After FACS sorting,
each isolated subpopulation of cell line SUM149, stem-like, basal and luminal cells, re-equilibrate to the stable cell-state ratio r�. Upper panels are the
dynamics for cell numbers of three subpopulations; Lower panels are the dynamics for the cell ratios of three subpopulations.

doi:10.1371/journal.pone.0110714.g004
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the transition rates, we have0:05z0:3v0:69,0:01z0:02=0:91,0:03=0:95,

showing that the three subpopulations can all survive on their own as well.

The dynamics for re-equilibrium of SUM159 cell line are shown in Fig. 4B1-B6.

We can clearly see that after cell sorting each cell sub-population quickly re-

equilibrated to the stable steady-state ratio r*5 NX:NY:NZ<1.9:97.3:0.62 within 12

days. However, since SUM149 cell line generally has much slower transition rate,

the population slowly re-equilibrated to the stable steady-state ratio until the end

of the 140 days time-course, as shown in Fig. 4C1-C6. Our computational results

for both cell lines qualitatively agree with the experimental data and the Markov

model simulation results presented in Gupta et al [18], which showed that

SUM159 cells quickly returned to the equilibrium while SUM149 cells were far

from reaching the equilibrium at day 6. Moreover, the ODE model revealed more

information about cancer population dynamics. First, the ODE model computes

the results for the cell population in real number, which is the gold standard for

cancer drug evaluation. Second, we decided whether each cancer subpopulation

can survive independently or as the derived one from other subpopulations. This

finding has important implications during drug design, as it can inform which

population is the more appropriated to target.

Discussion and Conclusion

Influence of the growth term in the cell population dynamics

We discuss the consequences of introducing the growth rate term for the steady

state transition ratio r�~kyx=kxy in our two-phenotype model. Here r� is the ratio

of cell numbers in the phenotype space, where each phenotype is determined by a

state x of the cell’s molecular network. The dynamics of state x are captured by

the transition rates kxy,kyx as well as the growth rates gx,gy, which vary from state

to state. It offers both a rationale and a framework to understand the genotype-to-

phenotype mapping problem in complex organisms [1,21–26]. If the growth rate

is not included in Eq. (1) the steady state is simply given by the ratio r�~kyx=kxy.

The re-equilibrium is guaranteed in any situation, independent from the initial

population ratio and from the transition rates. When the growth rate is

considered, there is no unconditional re-equilibrium for any transition rate. The

growth rates gx,gy and transition rates kyx,kxy have to satisfy the condition defined

Table 1. The estimated values of growth rates and transition rates for breast cancer cell lines SUM159 and SUM149 to reach stable cell fraction ratio r� after
FACS sorting.

g L g S g B K LS K LB K BL K BS K SL K SB

SUM159 0.73 0.69 0.85 0.04 0.42 0 0.012 0.14 0.33

SUM149 0.95 0.69 0.91 0.03 0 0.02 0.01 0.30 0.05

g L ,g B,g S are growth rates of the subpopulation Luminal, Basal and cancer stem cells. K ij , i~L,B,S; ,j~L,B,Sð Þ are transition rates between two breast cancer
cell subpopulations.

doi:10.1371/journal.pone.0110714.t001
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in Eq. (6). Also, to maintain two distinct cell subpopulations, it needs to satisfy

the condition given by Eq. (4), i.e. transition rates kyx,kxy have to be much smaller

than the growth rates gx,gy; otherwise, we will be in the presence of a cell

population with two indistinguishable subpopulations that can quickly transit

between each other. In our ODE model for the breast cancer cell population

dynamics, transition rates are indeed much smaller than the growth rate to

guarantee independent existence of each cell population.

Selection vs. instruction dualism

By uniting the dynamics of reversible transitions between distinct cell phenotypes

with their growth rates, we can capture the contributions for the evolution of the

cell population from both Darwinian selection and Lamarckian induction. This

has fundamental implications because evolutionary dynamics is commonly used

to explain the changes that happen at tissue level during tumor progression [27–

33]. Since an attractor state confers a discrete, stable phenotype that can be

inherited across cell divisions to future generations, we enter the new realm of

non-genetic (mutation-less) Darwinian evolution. The fact that a cell phenotype

(attractor) transition can be triggered by environmental perturbation also permits

the consideration of Lamarckian evolution in cell populations during tumor

progression, for which there are increasing evidences [19,20,34–40]. The general

formalism combining state transitions and differential growth also reconciles the

old debate between the selective (‘‘stochastic’’ or ‘‘permissive’’) vs. the instructive

modes of cell fate determination during development [41–44]. Moreover, directed

cell-to-cell interactions between cells in distinct states x mediated by the

expression of communication signals (cytokines), which are a function of x, and

affect proliferation and phenotype switching, can also be readily considered to

incorporate non-cell autonomous effects in population dynamics [45].

The study of tissue change at the granularity of cell population dynamics also

has direct impact on our understanding of the elementary principles of evolution.

The macroscopic change of a population’s property X in a particular environment

S in one direction can in principle be achieved by two mechanisms. Mechanism

(i) is selection - in the presence of S, cells that ‘‘happen’’ to be state y have a higher

growth rate (gywgx). There is no actual change of gene expression state in any cell

as this is a population level change. A core element of this process is randomness

because the direction of change comes from the environment S. Mechanism (ii) is

instruction: S induces a gene expression pattern change x?yð Þ in individual cells

that confers a new phenotype. This is an individual cell level event, a change of the

molecular network state of a cell. In evolution this dualism obviously maps into

that of Darwinism vs. Lamarckism (in the case when the S-induced property

endures and confers advantages in coping with S). Here we deal with a scheme of

change and not its material cause [32]. Eq. (6) shows that fundamentally, in terms

of schemes, Lamarckism and Darwinism are just the two sides of the very same

dynamical process: (1) for gx{gy?kxy{kyx, (i.e. the difference of growth rates is

far bigger than the difference of transition rates) Darwinian mechanism
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dominates in the dynamics of cell population ratio; (2) for the opposite case,

when gx{gy=kxy{kyx, Lamarckian mechanism determines the cell population

ratio. Depending on the ‘‘half live’’ of the new induced state (relative stability) we

would have inheritance of an acquired trait for at least several generations. In

general the Darwinian scheme is invoked by default to explain cell differentiation,

developmental processes and cancer origination. We propose that the alternative

Lamarckian scheme also needs to be taken into account in the sense that either

scheme has to be verified or falsified experimentally.

Conclusion

In this paper we provide a mathematical framework of population dynamics that

considers both distinctive growth rates and intercellular transitions between

cancer cell populations. Our mathematical framework showed that both growth

and transition influence the ratio of cancer cell subpopulations, and transition’s

role is even stronger. We derived the condition that different cancer cell types can

maintain distinctive subpopulations and we also explain why there always exists a

stable fixed ratio after the cell sorting based on certain surface markers. While

Lamarckism has little role (if any at all) to play in organism evolution, our model

is the first attempt to demonstrate that in principle Lamarckism and Darwinism

(as an evolved adaptive response of a cell population) are two different sides of the

same coin, two extremes of the same spectrum of behavioral schemes. This not

only applies to the study of cancer cell dynamics, but also helps our understanding

of the emergence of drug resistance in anti-cancer therapy.
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Centre National de la Recherche Scientifique.

3. Kauffman S (1969) Homeostasis and differentiation in random genetic control networks. Nature 224:
177–178.

4. Wang R-S, Saadatpour A, Albert R (2012) Boolean modeling in systems biology: an overview of
methodology and applications. Physical biology 9: 055001. doi:10.1088/1478-3975/9/5/055001.

Growth and Transition Dynamics for Cancer Cell Populations

PLOS ONE | DOI:10.1371/journal.pone.0110714 December 1, 2014 17 / 19



5. Bornholdt S (2008) Boolean network models of cellular regulation: prospects and limitations. Journal of
the Royal Society, Interface/the Royal Society 5 Suppl 1: S85–S94.

6. Zhou JX, Huang S (2011) Understanding gene circuits at cell-fate branch points for rational cell
reprogramming. Trends in genetics: TIG 27: 55–62. doi:10.1016/j.tig.2010.11.002.

7. Zhou JX, Aliyu MDS, Aurell E, Huang S (2012) Quasi-potential landscape in complex multi-stable
systems. Journal of the Royal Society, Interface/the Royal Society 9: 3539–3553. doi:10.1098/
rsif.2012.0434.

8. Zhou JX, Brusch L, Huang S (2011) Predicting Pancreas Cell Fate Decisions and Reprogramming with
a Hierarchical Multi-Attractor Model. PLoS ONE 6: e14752. doi:10.1371/journal.pone.0014752.

9. Nowak M (2006) Evolutionary Dynamics: Exploring the Equations of Life. Belknap Press. p.

10. Zheng Q (Natioanal center for toxicological research) (1999) Progress of a half century in the study
of the Luria ¡ Delbr uck distribution. Mathematical Biosciences 162: 1–32.

11. Saunders NJ, Moxon ER, Gravenor MB (2003) Mutation rates: Estimating phase variation rates when
fitness differences are present and their impact on population structure. Microbiology 149: 485–495.

12. Attolini CSO, Michor F (2009) Evolutionary theory of cancer. Annals of the New York Academy of
Sciences 1168: 23–51.

13. Huang S (2009) Non-genetic heterogeneity of cells in development: more than just noise. Development
(Cambridge, England) 136: 3853–3862.

14. Altschuler SJ, Wu LF (2010) Cellular Heterogeneity: Do Differences Make a Difference? Cell 141: 559–
563.

15. Balaban NQ, Merrin J, Chait R, Kowalik L, Leibler S (2004) Bacterial persistence as a phenotypic
switch. Science (New York, NY) 305: 1622–1625.

16. Fu Y, Zhu M, Xing J (2010) Resonant activation: a strategy against bacterial persistence. Physical
biology 7: 16013.

17. Singh DK, Ku C-J, Wichaidit C, Steininger RJ, Wu LF, et al. (2010) Patterns of basal signaling
heterogeneity can distinguish cellular populations with different drug sensitivities. Molecular systems
biology 6: 369.

18. Huang S (2013) Genetic and non-genetic instability in tumor progression: Link between the fitness
landscape and the epigenetic landscape of cancer cells. Cancer and Metastasis Reviews 32: 423–448.

19. Pisco AO, Brock A, Zhou J, Moor A, Mojtahedi M, et al. (2013) Non-Darwinian dynamics in therapy-
induced cancer drug resistance. Nature communications 4: 2467. doi:10.1038/ncomms3467.

20. Gupta PB, Fillmore CM, Jiang G, Shapira SD, Tao K, et al. (2011) Stochastic State Transitions Give
Rise to Phenotypic Equilibrium in Populations of Cancer Cells. Cell 146: 633–644. doi:10.1016/
j.cell.2011.07.026.

21. Atallah J, Larsen E (2009) Chapter 3 Genotype-Phenotype Mapping. Developmental Biology Confronts
the Toolkit Paradox. International Review of Cell and Molecular Biology 278: 119–148.

22. Kell DB (2002) Genotype-phenotype mapping: genes as computer programs. Trends in genetics: TIG
18: 555–559. doi:10.1016/S0168-9525(02)02765-8.

23. Mehmood T, Warringer J, Snipen L, Sæbø S (2012) Improving stability and understandability of
genotype-phenotype mapping in Saccharomyces using regularized variable selection in L-PLS
regression. BMC Bioinformatics 13: 327.

24. Nuzhdin SV, Friesen ML, McIntyre LM (2012) Genotype-phenotype mapping in a post-GWAS world.
Trends in Genetics 28: 421–426.

25. Pigliucci M (2010) Genotype-phenotype mapping and the end of the ‘‘genes as blueprint’’ metaphor.
Philosophical transactions of the Royal Society of London Series B, Biological sciences 365: 557–566.
doi:10.1098/rstb.2009.0241.

26. Wu C, Walsh AS, Rosenfeld R (2011) Genotype phenotype mapping in RNA viruses - disjunctive
normal form learning. Pacific Symposium on Biocomputing Pacific Symposium on Biocomputing: 62–73.

27. Losi L, Baisse B, Bouzourene H, Benhattar J (2005) Evolution of intratumoral genetic heterogeneity
during colorectal cancer progression. Carcinogenesis 26: 916–922.

Growth and Transition Dynamics for Cancer Cell Populations

PLOS ONE | DOI:10.1371/journal.pone.0110714 December 1, 2014 18 / 19



28. Dowty JG, Byrnes GB, Gertig DM (2013) The time-evolution of DCIS size distributions with applications
to breast cancer growth and progression. Mathematical medicine and biology: a journal of the IMA: 1–
12. doi:10.1093/imammb/dqt014.

29. Newburger DE, Kashef-Haghighi D, Weng Z, Salari R, Sweeney RT, et al. (2013) Genome evolution
during progression to breast cancer. Genome Research 23: 1097–1108.

30. Yachida S, Iacobuzio-Donahue C (2013) Evolution and dynamics of pancreatic cancer progression.
Oncogene 32: 5253–5260.

31. Durrett R, Moseley S (2010) Evolution of resistance and progression to disease during clonal expansion
of cancer. Theoretical Population Biology 77: 42–48.

32. Klein CA (2004) Gene expression sigantures, cancer cell evolution and metastatic progression. Cell
cycle (Georgetown, Tex) 3: 29–31.
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