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Introduction

The problem of calculating the zeros of polynomials has been at
the core of various algorithmic problems in engineering, computer
science, mathematics, and mathematical chemistry [1-5]. One the
one hand, determining all zeros of a complex polynomial explicitly
has been crucial for practical problems [6-7]. One the other hand,
estimations (bounds) for the moduli of real and complex zeros have
been important for many reasons. For example, sharp zero bounds
can serve as starting values for numerical procedures to calculate
the zeros explicitly as already mentioned above. Also, zero bounds
have been proven useful when estimating eigenvalues of matrices [8,9].

We emphasize that numerous papers and books have been
contributed dealing with the problem of locating the zeros of
complex polynomials, see, e.g., [1-5,10,11]. Many papers thereof
discuss the problem of determining disks in the complex plane
where all zeros of a complex polynomial are situated. In view of
the vast amount of existing zero bounds, their optimality has only
been little investigated. In fact, many of the bounds which have
been used extensively in practice do not give the precise annulus
containing all zeros of a given polynomial. Also, sharpness results
do not exist for all bounds which are practically to use.

In this paper, we deal with the problem of evaluating the quality
of zero bounds numerically. A successor of this paper is [12]. In
[12], we have put the emphasis on evaluating the quality of known
bounds such as the ones due to Joyal, Mohammad, Kojima and
Kalantari, see [12-16]. Another paper dealing with evaluating the
quality of zero bounds numerically is due to McNamee and
Olhovsky [17] who also evaluated classical and Kalantari’s bounds
on a set of polynomials with random real or complex roots. More
precisely, they implemented 45 zero bounds for estimating the
zeros with maximal modulus. These bounds have been evaluated
on 1200 polynomials with random real or complex roots [17].

The main contribution of this paper is as follows: We focus on
evaluating zero bounds developed by Kalantari [16] and Dehmer
[1,18] solely. In [17], it was claimed that some of the Kalantari’s
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bounds are optimal on the mentioned set of polynomials. We show
that some of the proposed bounds outperform Kalantari’s bounds on
special classes of polynomials. That proves it can be worthwhile to
consider special classes of polynomials and special bounds which have
been developed to operate on these classes. Examples for such bounds
can be found in [18]. Also, we derive some analytical conditions to
compare bounds due to Dehmer and Kalantari by means of
inequalities, see, section ‘Numerical Results and Interpretation’.

Methods

In the following, we state the zero bounds for locating the zeros
of complex polynomials as theorems we will explore in this paper.
The numerical results will be presented in the section ‘Results’.

Kalantari and Dehmer Bounds

Theorem 1 (Kalantari [16]). Let m>2 and let rme[% ,1) be
the positive root of the polynomial

gty =" r—1. (1)
1 .
For m=2and ry= > all zeros of the complex polynomial

f(z)=a,,z”+a,1,lz”’l + - Fao, apan— #05

lie in the closed disk

K| 0,2 max (a

I<k<n
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1
Theorem 2 (Kalantari [16]). Let m>2 and let rme[z ,1) be
the positive root of the polynomial

gty =" 1.

For m=3 and r;= , all zeros of the complex polynomial

2
V3+1

f(z):anz”+an_lz”_l + - +ao, apan—1 #05

lie in the closed disk

K(O,\/g+1~ max (

2 2<k<n+1

An—1An—k+1—dnln—k

@ )) ©

a_p: =0.

Theorem 3 (Dehmer [18]). Let

1

f@=a,2"+a,_12""" + - +ao, aya,—1 #0,

be a complex polynomial. All zeros of f(z) lie in the closed disk

X 01—|—¢2 V(@ =17 +4M,

2 T 2 ’ @

where

7/ aj

byt =
2 ap

and M, : = max
0<j<n-2

: )

[

The next theorem gives a bound for polynomials with
restrictions on the coefficients. Dehmer [1] has shown that such
bounds can be more precise and often lead to better results when
locating the zeros of polynomials. See also Table 3.

Theorem 4 (Dehmer [18]). Let

Ap—1dp—j —aplp—j—1
M; : = max / 5 A
2<j<n ay

1 :07 (6)

and

_ ﬁ,l—anan,ﬂ

By

‘an‘z
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In addition, let

1

f@=a,2"+a,_12"" + - +ao, aya,_1 #0,

be a complex polynomial. All zeros of f(z) lie in the closed disk
K(0,0) where 6> 1 1s the largest positive root of the equation

P —(Ms+¢))z+¢,=0. (8)

Moreover,
1<o<l4+/M3+¢;. 9)

Theorem 5 (Dehmer [18]). Let

f@)="—aiz+ao, arap #0, n>2,

be a complex polynomial. All zeros of f(2) lie in K(0,max(1,0)),
where 0 is the unique positive root of the equation

2" —larlz—lao| =0. (10)

Theorem 6 (Dehmer [18]). Let My : =max(|a;l,laol) and
let

f(@)=2"—aiz+ag, ayag #0, n>2,

be a polynomial with arbitrary coefficients. All zeros of f(z) lie in
K(0,max(1,0)), where ¢ is the unique positive root of the equation

Z"—M4Z—M4=0. (11)

In [18], the following upper bound for these lacunary
polynomials (see Theorem 6) has been stated without proof. Next,
we here prove this result by assuming that the coefficients are
positive and real-valued.

Theorem 7. If the polynomial f(z)=z"—aiz+ay, ai,
ao>0,n>2, has two positive zeros, its largest positive zero O salisfies

5<%+L”2'+1. (12)

Proof. Since aj,ap >0 we infer by using the Descartes’ rule of
signs [10] that f(z) has either 2 or no positive zeros. We see that
f0)=ap>0,f(1)=1—a;+ap and lim., ., f(z2)=+oc0. If
f(1)=0, it follows that f(z) must have two positive zeros. The
largest one is denoted as ¢ and we obtain 6> 1. In order to get an
estimation for 0, we consider

f(0)=0"—a10+ay=0. (13)
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By using the finite geometric series, we obtain

n+1__ sn
%—alé—i—ao:O, (14)
and
6n+l "
o1 —a;0<0. (15)
This inequality leads to
" —0" ' —a10+a1)<0, (16)
and finally to
"' —6"2—a)) < —ay. (17)
However, this yields
ol —9" 2 —ay <0. (18)

In order to get an inequality for J, we set n=3. We get

0 —0—ay <0. (19)

Determining the zeros of the latter function gives

| V¥
5|z=*i¢. (20)
2=
As
1 ViTda
b=d=3+ 0>, (21)

we only consider the largest positive zero of the two. Now we
define

fl(é) :5n—175n—27al, (22)

fr(0): =6*—6—ay. (23)

If we can prove that the positive zero of f1(J) does not fall

v1+4a
2
For this, we must prove that f is strictly monotonically increasing

in a certain interval.

Applying the Descartes’ rule of signs to f1() yields that
its positive zero is unique. Also, f1(0)=f;(1)=—a; and
lims_, 4 o f1(8) = 4+ 00. To prove the monotonicity, we consider

1
outside the interval [0,5 + ], we obtain Inequality 12.
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1) =(n—1)8""2—(n—2)8""3>0, (24)
that leads to
n—1
o> 3 (25)

As we here assume d>1, we see f1(d) is strictly monotonically
increasing for > 1. Finally we now prove that

1 V144 (1 V1+4
0=f(5+ o) <fi(5+ o 0).(26)
2 2 2 2
hence,
1 V1+4a
filz+X—=2"1)>o0. (27)
2 2
Together with the monotonicity, that means that the positive zero
. 1 V144
of f1(0) does not fall outside the [O’E + #] We start with
the inequality
n—1 n—2
1 V144 1 V144
(5 + #) - (5 + %) —a; >0. (28)

By performing elementary calculations, we get

I, vitda @ 4L (29)

2 2 1 VTFda\"’
3T

From this inequality, we also infer

a1
o8| Vitda 1

n> 2 AN} (30)

1 V1+4a
log 3 + —

We finally show that the right hand side of this inequality is less
than 4. That means claiming

al
log| “A4Za 1

2 2
1 VItda
log( 5 + Y5

+2<4, (31)
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Yields
3 2
1 1+4 1 1+4
(LT (T

But by performing elementary calculations we find that this
inequality is valid for a; >0. [J

Results

Data: Classes of Complex Polynomials

Asin [12], we define the classes of polynomials used in this study
as follows. Note that the abbreviation ‘GD’ in the below stated
definitions stands for Gaussian Distribution.

Definition 1

C: ={f(@)=a,2" +a,_12" "'+ - -- +ay|a;eC sampled from GD.} (33)

Definition 2

G ={f(2)=a,z" ta,_ 12 +ag|a;eC uniformly distributeE134

and |a;| <1,i=0,1,...,n.}

Definition 3

Cy: ={f(@)=a,2" +a,_12" "'+ - - - +ap|a;eC sampled from GD

) (35)
il 0, 1)

and
||

Definition 4

Co: ={f@): =A@LOIIE) : =au 2" +ay 12" + - +arz+a,
Sa(2) 0 =byy 2 -i-bnz,lz”l’l + - +b1z+bo,a;,b;ieC sampled  (36)

from GD and |a,, | > |a;|.i=0,1.....01 — L] by, | > |ai|,i=0,1..... np—1.}

Definition 5

Cs: ={f(2): =A@LENAE) : =an " +ay, 12"+ +arz+ag,
o)t =byy 22 by 1227 bz by, (37)
a;€C,i=0,1.....n1,b;€C,i=0,1.....n, sampled from GD.}

Definition 6

Co: ={f(2) : =" —a1z+ap,a1,a0eC,a1ap #0 sampled from GD.} (38)

These polynomials are called lacunary polynomials [4,5].

Statistical Analysis

In order to perform a statistical analysis, we have generated
1000 complex polynomials for each of the Definitions 1-6 and
n=2,...,9. For each polynomial f(z), different bounds have been
computed according to the Theorems 1-6. The following entity
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has been calculated:

prhi=Brhi/ru, (39)

where Brhi - bound value due to Theorem i, ry=
max{|r;l,i=1,...n} - maximal modulus among the roots
{ri};—1.., for the polynomial f(z). This entity reflects tightness

of the bound, and its properties are:

l.p>1.

2.1f pry,_ 4, <Prh. 4> then the bound of Theorem ¢, is tighter than
the bound of Theorem i,.

To compare different bounds averaged values of p were
calculated for a fixed 1 (Tables 1-6). The figures 1-3 illustrate the
averaged bounds with 95% confidence intervals (dashed lines).
The confidence intervals have been obtained by using two-sided ¢-
test for 999 degrees of freedom:

E[p]—15999 % 0,/\/n<p<E[p]+15999 * 6, /+/n,

where E[p] and 6, - are average and standard deviation for p;
15999 - t-distribution value for 95% two-sided critical regions with
999 degrees of freedom.

The pairwise comparison of the averaged values p has been
performed by using paired {-test. As a result we see that in the
majority of cases, the values of p for the Theorems 1-6 are
statistically different.

Numerical Results and Interpretation

We restrict our analysis to evaluate the performance of the
bounds due to Kalantari and Dehmer only, see, section ‘Methods’.
In order to do so, we employ the classes of polynomials
represented by Definitions 1-6.

General polynomials. We start by interpreting the Ta-
bles 1-5 and see that Kalantari’s bound given by Theorem 1 is
often worse than the zero bounds due to Dehmer, except the
bound given by Theorem 4. Lets consider the polynomials of
Definition 1 as this class is quite general. Except Theorem 4, the
mean ratios of the bounds due to Dehmer are smaller than the
ones by using Kalantari’s bound given by Theorem 1. In
particular this holds for Theorem 3 as well. Also, we observe that
Theorem 2 due to Kalantari is optimal for n>4 when using the
Definitions 1-3; by using the Definitions 4-5, we obtain the
optimality for 7>3. We emphasize that the results for Definition 6
(lacunary polynomials) will be discussed separately. In summary,
this does not mean that no special polynomials exist whose
evaluation may give the opposite result.

The analytical comparison of the bounds has been intricate.
That means it might be difficult to compare bounds which rely on
different concepts (e.g., explicit vs. implicit bounds, see [18]). Zero
bounds are explicit if their values represent functions of the
polynomial coefficients [18]. In contrast, a zero bound is called
implicit if the value of the bound is a positive zero of a
concomitant polynomial [18]. For instance, Theorem 1 and
Theorem 3 are explicit but the Theorems 4-6 are implicit.

In case of using the explicit zero bounds Theorem 1 and
Theorem 3, it is straightforward to derive an analytical expression
(condition) to compare the bounds by means of inequalities. If we
start with the inequality (i.e., we assume that Theorem 1 is better
than Theorem 3),
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An—k
Ay

)11c> 1+¢, . \/ (¢2*12)2+4M1 )

2

2- max
1<k<n

we derive

1 1
an_ k| \ a,_ 1.1\ *
¢2~<4—8 max ( L ]‘) >>4M1+8~ max ( L k)
I<k<n ay I<k<n a,
o
a,_ k
16<max( “ k> ) .
I<k<n ay
1
k| \*
If 4—8 maxj<x<, >0, then we finally get the
n
condition
t Hn
Ay_j Ay
M]-FZ‘IHZIX]SJ(S"(M) 74'(1’1’13)(]5](5"( 2 A) )
Ap—1 " An
¢, = > T .
n -\ A
172'max1£k5”< dnk >{ (42)
n
Otherwise, we yield
% N
M1+2'max1gkgn(a”7k) -4 maxlgk5n<a"7k>
Ap—1 < " An

¢ =

ay drk >% ’(43)

1 *2'maxlsk5n<

n

1
with 4—8 max; gkgn( a”a—;k‘)k <0. These inequalities can be

used to compare Theorem 1 and Theorem 3 by means of
inequalities assuming that Theorem 1 is worse than Theorem 3.
Such a condition seems to be useful as we see by Tables 1-5 that
the mean ratios of Theorem 3 are less than the ones by using
Theorem 1.

To get an inequality for the assumption that Kalantari’s bound
given by Theorem 2 is better than Dehmer’s bound given by
Theorem 3, we start with assuming

>%< 144y \/<¢2712>2+4M1 "

2

V5+1

An—10n—k+1 —Anln—k
© max e —
2 2<k<n+l

2
an

We yield

An—1An—k+1—dnln—k
2
an

<k<n+l

¢2-<4—2-(\f5+1)-2 max (

))

)% (45)

Ap—1p—f+1—Anln—k
2
ay

<4M,+2:(V/5+1) | nax (

<k<n+1

1 2
Ap—10p—f+1 —Anln—k )k
> .
a

—(\/§+1)2~< max <
2<k<n+1

PLOS ONE | www.plosone.org

Numerical Evaluation and Comparison of Zero Bounds

%
) >0,

Ap—1Ap—f+1—dpdn—k

If 4—2(v/5+1) maxo<p<pi1 (

dy

we obtain

b, = |o= AMy+2(V54+1)Y —(V/5+1) 1?2 (46)

> a 4-2(5+DY ’
with

%
Y: = max (}aﬂ—lankarzl_ananfk) ) (47)
2<k<n+1 } a,

Otherwise, we infer

w1l AM +2-(V5+ 1) Y —(V5+ 1) Y?
¢2:{a L AM+ (V5+1) (V5+1) . @8)
a 4-2-(/5+1)Y
with
1
— |\ &
4—2-(v/54+1) maxa<r<ni ( anflanfk;l ntln—k >(<0. We

note that all these inequalities can be evaluated explicitly and,
hence, the corresponding conditions (inequalities) may be useful in
practice.

Lacunary polynomials. The results of the evaluation for
lacunary polynomials (see Definition 6) can be seen in Table 6.
Dehmer’s bounds given by Theorem 5 and Theorem 6 which
have been designed for lacunary polynomials outperform both
Kalantari bounds. For example, if we evaluate Theorem 1 and
Theorem 2 for the polynomials of Definition 6), we obtain

1 1
B : :2-max(|a1|n71,|a0|n), (49)

and

V5+1

B D=
Th.2 B

1 1
max (Ja T Jao ). (50)

Note that a,=1, a,_;=0, 1<k<n—2. So, we see that these
bounds differ by a constant factor only. The bound of Theorem 5
becomes to

BTh.S : =max(1,5),5>1. (51)

According to Theorem 7, bound for J is

1 Vaa+1
2

an upper

o< 5 +
depend on ay. If a; < 1, we infer 6 <1.618034. We observe that we

always obtain Bty >2 if |aj|>1 or |ap|>1. When considering
Theorem 2, we always get By >1.618034 if |a;|>1 or |ag|>1.
Even if |ag|,|a;| <1, but the degree of the polynomials tends to be
very large, the bounds of Theorem 1 and Theorem 2 tend to 2 and
1.618034, respectively. In summary, we see that the bound for
lacunary polynomials due to Dehmer (see Theorem 6) gives often
tighter bounds; in particular when a;<<1. Similar arguments can
be applied when considering Theorem 6.

if ap,a; >0. Note that this bound does not
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Kalantari, Th. (1)
Kalantari, Th. (2)
Dehmer, Th. (3)
Dehmer, Th. (4)

Ratio

Figure 1. Bound ratios vs. polynomial order for Definition 1.
doi:10.1371/journal.pone.0110540.g001

Summary and Conclusion

In this paper, we explored the performance of zero bounds due
to Kalantari and Dehmer. In earlier contributions, it has been
claimed [17] that Kalantari’s bounds are often better than classical
zero bounds. A similar study has been performed by Dehmer and
Tsoy [12] who evaluated classical and more recent zero bounds for
complex and real polynomials as well.

The main result of this paper is that some of the bounds due to
Dehmer outperform the bounds due to Kalantari for special
classes of polynomials. In particular when using lacunary
polynomials (i.e., many coefficients equal zero) Dehmer’s bounds
showed excellent performance. We have underpinned our
discussion to interpret the numerical results by analytical results.
In particular, we have proved an upper bound for lacunary

Order

polynomials (see Theorem 7) and obtained conditions for some
special cases to check whether one bound is better (or worse) than
another by means of inequalities.

Another interesting line of research is to study the zeros of graph
polynomials. Some recent related work dealing with applications
on graph polynomials are [19-21]. In these contributions, graph
polynomials have been used to encode special graphs, e.g.,
chemical graphs and also exhaustively generated networks.
Consequently their zeros could be studied in terms of investigating
structural properties of networks, see [22]. Zero bounds may play
an important role to estimate the moduli of the underlying
polynomials efficiently and to use these quantities for discriminat-
ing networks or to explore structural properties such as branching

[20,23,24].

— Kalantari, Th. (1)

= Kalantari, Th. (2)

=== Dehmer, Th. (3)
Dehmer, Th. (4)

2.2

Ratio

Figure 2. Bound ratios vs. polynomial order for Definition 5.
doi:10.1371/journal.pone.0110540.9g002

PLOS ONE | www.plosone.org

October 2014 | Volume 9 | Issue 10 | €110540



Numerical Evaluation and Comparison of Zero Bounds

225+ - -
t = Kalantari, Th. (1)
= Kalantari, Th. (2)

| =—— Dehmer, Th. (5)

2+==— Dehmer, Th. (6)

175

Ratio

1.5

1.25-

Figure 3. Bound ratios vs. polynomial order for Definition 6.
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