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Abstract

In this paper, based on low-rank representation and eigenface extraction, we present an improvement to the well known
Sparse Representation based Classification (SRC). Firstly, the low-rank images of the face images of each individual in
training subset are extracted by the Robust Principal Component Analysis (Robust PCA) to alleviate the influence of noises
(e.g., illumination difference and occlusions). Secondly, Singular Value Decomposition (SVD) is applied to extract the
eigenfaces from these low-rank and approximate images. Finally, we utilize these eigenfaces to construct a compact and
discriminative dictionary for sparse representation. We evaluate our method on five popular databases. Experimental results
demonstrate the effectiveness and robustness of our method.
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Introduction

Sparse representation algorithm has been successfully applied in

image restoration [1] and compressed sensing [2] in the past

several years. Recently, it has also led to promising results in image

classification such as face recognition [3–5] and texture recogni-

tion [6]. For face recognition, given an over-complete dictionary, a

testing face image can be linearly represented as a sparse

coefficient vector. With the recent progress of l0-norm and l1-

norm minimization techniques, classification based on sparse

representation has became a hot topic owing to the fact that a

high-dimensional image vector can be well mapped to a low-

dimension manifold.

The sparse representation model can be succinctly denoted as

the following optimization equation:

min
x

xk k1 s:t: y~Dx ð1Þ

Where D is an over-complete dictionary, y is a testing sample,

e.g., a face image need to be identified, x is the sparse coefficient

representation vector over dictionary D.

In the early stage, some literatures [7–9] directly grouped the

off-the-shelf bases together as the dictionary atoms. However, with

the further research in sparse representation, learning an excellent

dictionary has been proved to be an effective way to improve the

capacity of signal reconstruction noticeably. To improve the

performance of sparse representation, many algorithms have been

proposed to optimize dictionary and acquired corking perfor-

mance. E.g., Aharon et al. [10] generalized the k-means clustering

process and proposed K-SVD algorithm, which iteratively

updated the sparse representation coefficients based on the current

dictionary and then optimized the dictionary atoms to better fit the

data. Mairal et al. [11] presented an energy formulation with both

sparse re-construction and class discriminative components. An

on-line dictionary learning algorithm based on stochastic approx-

imation was also developed to handle large datasets with millions

of training samples [12]. In addition, Yang et al. [13] applied the

fisher discrimination dictionary learning (FDDL) scheme to learn a

discriminative dictionary for sparse representation.

These algorithms work well for the clean images or those images

corrupted by slight noises. However, if both training images and

testing images are corrupted by heavy noises, we should optimize

the dictionary to better reconstruct the images including the

noises. Although an identity matrix [4] can be introduced into

dictionary to encode the corrupted pixels, it affects the sparsity of

representation coefficients. On the other hand, supposing that the

corrupted pixels are separated or suppressed so that images

become clean as much as possible, and then use the clean data to

learn a dictionary, the results of classification or reconstruction

should be improved.

Recently, some algorithms have been proposed to separate the

low rank and approximate data from original corrupted data. E.g.,

Candes et al. [14] alleviated the influence of noises and occlusions

by Robust Principal Component Analysis (Robust PCA) algo-

rithm. Liu et al. [15] generalized the Robust PCA and proposed

Low-Rank Representation(LRR)to deal with the original data and

utilized the low-rank structures to segment subspaces or classify

face images. Long et al. [16] improved sparse representation for

face recognition based on the discriminative low-rank dictionary

learning method. Zhou et al. [17] applied Go Decomposition

(GoDec) algorithm to extract the low-rank term quickly and obtained

commendable performance in image and video processing.
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Thereby, we, in this paper, alleviate the influence of noises exiting in

training samples according to the research about low rank

representation.

For dictionary learning, another attractive aspect is the

compactness of the constructed dictionary [18–20]. Zheng et al.

[20] constructed a compact dictionary with meta-samples and

regarded samples (genes expression data) as a linear mixture of

independent basis snapshots (i.e., meta-samples). The results

indicated that the compact dictionary achieved better recognition

accuracy and decreased time consuming greatly. Actually, every

face image could be represented by a large number of atoms in

face space. We could extract these atoms (i.e., so-called eigenfaces)

capturing the intrinsic structural information of each face space

and use them to construct a compact dictionary for sparse

representation.

Based on the aforementioned analysis, in this paper we

incorporate low-rank and eigenfaces extraction into sparse

representation for dictionary learning. Firstly, the low-rank images

of training samples are extracted by Robust PCA to make the

training images as clean as possible. Then, SVD is applied to

extract eigenfaces from these low-rank and approximate images.

Finally, these eigenfaces are combined to construct a compact

dictionary for sparse representation based classification. The

proposed algorithm can not only separate the influence of sparse

noises but also enhance the compactness of dictionary. Compared

with other dictionary learning algorithms, the merits of the

proposed approach are listed as follows: First, we apply low rank

transformation to compress the noises existing in training images

so that the extracted features are more discriminative for

classification. Second, we extract eigenfaces from the low-rank

face images by mathematical method to make the dictionary more

compact. Third, comparing with the classical dictionary learning

algorithms, our method is robust to some large but sparse errors

such as block occlusions.

The remainder of the paper is organized as follows: Some

related works about low-rank representation are introduced in

Section 2. Section 3 presents our algorithm in detail. Section 4

shows the experimental results. And some theoretic analysis are

also listed in this Section. Section 5 concludes the paper and

outlines the future work.

Low-Rank Representation Algorithm

Robust PCA for Low-Rank Matrices Recovery
How to exploit low-rank structure from high-dimensional data

is taking on increasing attention in image, audio and video

processing. Meanwhile, it is also a challenging task to exactly

recover the low-rank structure from the high-dimensional and

corrupted data. The application of classical Principal Component

Analysis (PCA) [21] suffers from a prodigious limitation owing to

its brittleness with respect to serious corrupted data. Although

some approaches such as multivariate trimming [22], alternating

minimization [23] and random sampling techniques [24] can

improve the robustness of PCA, none of them obtains a

polynomial-time algorithm with strong performance guarantee.

Motivated by the recent research on robust solutions of over-

determined linear systems and low-rank solutions of under-

determined linear systems, Candes et al. [14] proposed the Robust

PCA algorithm which decomposed a corrupted matrix into a low-

rank matrix and a sparse errors matrix.

Figure 1. The relation between face matrix and eigenface matrix. Each column of matrix W represents a eigenface, and each sample
(column) in face matrix A can be represented by eigenfaces in eigenface matrix W with eigenface expression pattern (column in matrix B) of the
corresponding sample.
doi:10.1371/journal.pone.0110318.g001

Figure 2. Overview of our method.
doi:10.1371/journal.pone.0110318.g002
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Assuming that a cleaning data matrix L is corrupted by noises

(i.e., error term S) and becomes the corrupted data matrix D, i.e.,

D~LzS ð2Þ

where L and S are unknown but L is a low rank matrix and S is

sparse. The process of recovering L from D can be reformulated as

the following optimization problem:

min
L,S

rank(L)zl Sk k0 s:t: D~LzS ð3Þ

where l indicates the percentage of sparse errors. Unfortunately, it

is a highly non-convex optimization problem so that no efficient

solution can be obtained. We relax formula (3) (i.e., replacing the

l0-norm and the rank term with the l1-norm and the nuclear norm,

respectively) and yield the following convex function:

min
L, S

Lk k�zl Sk k1 s:t: D~LzS ð4Þ

the minimized solutions (denoted as L� and S�) are named as the

low-rank part and sparse errors part of the corrupted matrix D.

Augmented Lagrange Multiplier (ALM) Method for
Robust PCA

We adopt in this paper the Augmented Lagrange Multiplier

(ALM) [25–26] to solve problem (4). Generally, the ALM

algorithm is used to solve the following optimization function:

min
X

G(X ) s:t: F (X )~0 ð5Þ

where G is a convex function, F is a linear function. Equation (5) is

solved by defining augmented Lagrange function:

L(X ,Y ,u)~G(X )ztr½Y tF (X )�z u

2
F (X )k k2

F ð6Þ

where u is a positive scalar, Y is a Lagrange multiplier vector.

Correspondingly, the augmented Lagrange function of Equation

(4) is:

P(L,S,Y ,u)~

Lk k�zl Sk k1ztr½Y t(D{L{S)�z u

2
D{L{Sk k2

F

Table 1. The information of utilized databases.

Datasets number of classes samples per classes number of features train samples/test samples(per class)

the Extended Yale B dataset 38 64 504 (downsample ratio:1/8) 40/24

the AR dataset (part) 100 26 1600(40*40) 7/7(without occlusion, each session)

the ORL dataset 40 10 750(30*25) 8/2

the CMU-PIE dataset 68 49 4096(68*68) 25/24(almost equal)

The UMIST dataset 15 almost 28 600(30*20) almost equal

doi:10.1371/journal.pone.0110318.t001

Figure 3. The relation between recognition rates and the corresponding parameter l.
doi:10.1371/journal.pone.0110318.g003

ð7Þ
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here, l is a parameter and generally computed through the

following formula:

l~
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

max (m,n)
p ð8Þ

where m and n are the number of columns and rows of matrix D,

respectively. In the experiment section, we will show how to select

the optimal l for face matrix D. The parameter u in Equation (7)

can be adjusted by the following strategy:

u~min(u � r, umax) ð9Þ

where r satisfies the condition rw1 (e.g., r~1:1) to control the

velocity of the increase of u. umax is the upper bound of r (e.g.,

umax~1e7).

The optimization for Equation (7) can be divided into two sub-

problems. The first sub-problem is to compute L for a fixed S.

The second sub-problem is to solve S for the fixed L computed

from the first sub-problem. We update L and S as follows:

L~ arg min
L

Lk k�z tr Y t D{L{Sð Þ½ �z u

2
D{L{Sk k2

F

~ arg min
L

1

u
Lk k� z

1

2
L{

1

u
YzD{S

� �����
����

2

F

ð10Þ

S~ arg min
S

l Sk k1z tr Y t D{L{Sð Þ½ �z u

2
D{L{Sk k2

F

Figure 4. Accuracy rate of different number of eigenfaces. The number of eigenfaces 1, 2, 3, 4, 6, 8, 10, 12, 14 correspond to 25.95%, 74.59%,
90.30%, 96.46%, 98.31%, 98.89%, 99.47%, 99.30%, 99.47%.
doi:10.1371/journal.pone.0110318.g004

Table 2. The recognition rates on Extended Yale B Database.

Algorithms ESRC_LR FDDL SRC SVM (RBF) SVM (linear) NN

Recognition rate(%) 99.47 93.31 89.95 88.25 78.25 77.83

doi:10.1371/journal.pone.0110318.t002
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Figure 5. An example of Robust PCA algorithm on the Extended Yale B Face Database. First row is the original images with vary
illumination and expression changes. Second row shows the low rank and approximate images of (a). Third row is the sparse error images of (a) which
is the difference of (a) and (b).
doi:10.1371/journal.pone.0110318.g005

Figure 6. The relation between ranks of face matrices and number of iterations. Top-left represents the relation between the rank of first
class face matrix and the number of iterations on Yale B Face Database with 40 training samples. Top-right, bottom-left and bottom-right represent
that of second, third and forth class face matrices, respectively.
doi:10.1371/journal.pone.0110318.g006
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~ arg min
L

l

u
Sk k1 z

1

2
S{

1

u
YzD{L

� �����
����

2

F

ð11Þ

The ALM algorithm for Robust PCA is summarized as follows:

Algorithm: ALM algorithm for Robust PCA [27]

Input: Corrupted matrixD,l,S~Y0~0, uw0:
Step1: while not converged do

Compute Lkz1 according to formula (10);

Compute Skz1 according to formula (11);

Compute Ykz1~Ykzu ( D{Lkz1zSkz1);

End while

Output: L,S.

The ESRC_LR Based Face Recognition Algorithm

Eigenfaces of Face Images
Generally speaking, eigenfaces of face images are defined as

several special faces which capturing intrinsic structural informa-

tion of face space. They are similar to a group of bases of linear

space in matrix theory. For sparse representation, the number of

training samples may be considerable. This probably results in

redundancy of the constructed dictionary and more time

expending during practical applications. Actually, by applying

mathematical methods to extract eigenfaces and combining them

to construct a compact dictionary for sparse representation, we still

can obtain a sparse solution by solving l1-norm minimization

problem [28] for each testing sample. Mathematically, the face

images dataset matrix A can be decomposed as the product of two

matrices:

A~W|B ð12Þ

where matrix A is of size m|n with m dimensions and n samples,

matrix W is of size m|p and each of the p columns is defined as

an eigenface, matrix B is of size p|n and each of the n columns

represents eigenface expression pattern of corresponding sample.

Figure 1 shows the relation between face matrix A and eigenface

matrix W .

The methods about how to extract eigenfaces (eigengenes or

metasamples) have been published in many literatures [29–31].

E.g., Alter et al. [29] extracted eigengenes by SVD to transform

the ‘‘genes 6 samples’’ space to the diagonalized ‘‘eigengenes 6
eigenarrays’’ space. Zheng et al. [30] applied Independent

Component Analysis (ICA) to model genes expression data

regarding samples as a linear mixture of independent basis

snapshots (i.e., metasamples). Brunet et al. [31] similarly utilized a

small number of metasamples extracted by Non-negative Matrix

Factorization (NMF) to represent testing samples. Consequently,

we can extract eigenfaces from face data by means of several

methods such as SVD, ICA and NMF.

Eigenface-based Sparse Representation Classification
Owing to the characteristic of eigenfaces, in this paper we

extract eigenfaces from face images of each class, respectively, and

then combine them instead of the original training data to design a

compact dictionary for sparse representation. In practice, each

sub-dataset (i.e., including only one class) Ai is factorized into two

matrices:

Ai~Wi|Bi ð13Þ

where i represents the ith class samples. Matrix Wi is of size m|pi

and each of the pi columns represents an eigenface.

After extracting the eigenface matrix Wi from each class, we

combine them to build a collaborative dictionary W for sparse

representation, i.e., W~½W1 W2 . . . . . . Wk�, where k represents

the number of classes. Now, given a testing sampley, we compute its

sparse representational solution over the collaborative dictionary,

i.e., y~W x. Ideally, x~½0, � � � � � � ,0, ai,1, � � � � � � ,ai,ni
,0, � � � � � � ,0�

is a sparse vector whose entries are zeros except for these associating

with the ith class. We identify the class label to which a testing

sample belongs by analyzing its nonzero entries of coefficient

representation vector [4,28].

Obviously, for a m|ne matrix W (ne represents the total

number of eigenfaces), if mwne, y~Wx is over-determined and

its correct solution is unique. But in the face recognition system,

Table 3. The recognition rates on AR Face Database.

Algorithms ESRC_LR FDDL SRC SVM (RBF) SVM (linear) NN

Recognition rate (%) 97.66 91.29 89.14 73.14 66.00 75.94

doi:10.1371/journal.pone.0110318.t003

Table 4. The comparison of kernel optimization based algorithms with our algorithm.

KSDAH KDAH KNDAH

Nearest Mean 88.1 87.5 71.3

Nearest Neigbor 96.7 88.3 69.2

Linear SVM 88.1 87.5 79.4

Method in[37] 96.6 90.6 70.9

ESRC_LR 89.27

KSDA, KDA and KNDA present kernel discriminant analysis, kernel subclass discriminant analysis and kernel non-parametric discriminant analysis, respectively. Subscript
‘H’ presents homoscedastic-based optimization.
doi:10.1371/journal.pone.0110318.t004
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y~Wx typically represents under-determined system, and its

solution is not unique. To achieve a sparse solution, we adopt l1-

norm minimization:

x1~ arg min
x

xk k1 s:t: y~Wx ð14Þ

The standard linear programming methods is applied to solve

(14) in polynomial time. Moreover, to certain degree of noises, we

adopt the following objective function to solve x, i.e.,

J(x,s)~ min
x

y{Wxk k2zs xk k1

� �
ð15Þ

where the positive parameter s is a scalar regulator.

In practice, model errors and certain degree of noises inevitably

cause some nonzero entries associating with different classes,

which may bring about misclassification. To design a more robust

classifier, we compute reconstruct residual as the basis of judgment

[4], i.e.,

min
i

ri(y)~ y{Whi(x)k k2 ð16Þ

where hi(x) is a vector whose nonzero entries are these from class i
in x.

The eigenface-based sparse representation classification algo-

rithm is described as follows:

Input: Matrix of training samples A~ A1 A2 � � � � � � Ak½ �(kclasses);

a testing sampley.

Step1: Extract the eigenfaces matrix W~ W1 W2 � � � � � � Wk½ �
by SVD;

Step2: Solve the optimization problem defined in (15);

Step3: Compute the residuals through formula (16);

Output: identify yð Þ~ arg mini ri yð Þ.

Overview of Our Method
Figure 2 shows the overview of our method. For a face

database, we firstly divide it into two parts, i.e., the training

subset and the testing subset. Then, we extract low rank images for

each class images in training subset by the Robust PCA, which will

make the training images as clean as possible. Next, SVD is

applied to extract the eigenfaces from the clean images. These

eigenfaces are used as a compact dictionary for sparse represen-

tation based classification. We named our strategy as Low-Rank

and Eigenface based Sparse Representation Classification (i.e.,

ESRC_LR). Finally, we apply the proposed ESRC_LR to classify

all of the testing samples.

Since the face images are captured in real world and more or

less corrupted by some negative factors such as varying

illumination, shadowing, uniform noises and even random block

occlusions, we had better adopt a preprocessing operation to

acquire clean data as much as possible. Aiming at alleviating or

eliminating the influence of negative factors, we extract the low-

rank images by Robust PCA to get relatively more clean face

images. In addition, we apply SVD to extract eigenfaces from the

corresponding low-rank images. These eigenfaces could all-rightly

describe intrinsic structural information of corresponding face

spaces. By combining all of eigenfaces to construct a compact

dictionary, we can improve the performance of standard sparse

representation based classification algorithm. In practice, to

alleviate the influence of noises and model error, we classify a

testing sample based on how well it can be reconstructed by the

representational coefficients of corresponding class.

The proposed ESRC_LR algorithm is summarized as follows:

Input: matrix of training samples A~ A1 A2 � � � � � � Ak½ �
(kclasses); a testing sampley.

Step1: while iv~k do

min
Li , Si

Lik k�zl Sik k1 s:t: Ai~LizSi

end while

L~ L1 L2 � � � � � � Lk½ �

Step2: while iv~k do

Li~Wi |Bi

end while

W~ W1 W2 � � � � � � Wk½ �

Table 5. The recognition rates on ORL Face Database.

Algorithms ESRC_LR FDDL SRC SVM (RBF) SVM (linear) NN

Recognition rate (%) 96.88 95.31 95.5 85.00 81.87 72.25

doi:10.1371/journal.pone.0110318.t005

Figure 7. Some examples from the CMU-PIE Face Database with variation in illumination, expression.
doi:10.1371/journal.pone.0110318.g007
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Step3: Solve the optimization problem J(x,s)~

min y{Wxk k2zs xk k1

� �
;

Step4: Compute the residuals min ri(y)~ y{Whi(x)k k2;

Output: identify yð Þ~ arg mini ri yð Þ;

Experimental Results

Firstly, in this section, we conduct experiments to illustrate how

to make an optimal choice for parameter l in Equation (4) and the

influence of different number of eigenfaces to recognition rate on

the extended Yale B Database [32]. Secondly, we apply the

proposed ESRC_LR algorithm to face recognition on four

publicly available face datasets, i.e., the extended Yale B Database,

the AR Database [33], the ORL Database [34] and CMU-PIE

Face Database [35]. Thirdly, we evaluate the robustness of

ESRC_LR algorithm to different percentage of uniform noises

and block occlusions. The summary of utilized databases are listed

in Table 1:

To show the effective of our method, we also used other

methods to classify the datasets for comparison. They are Fisher

Discrimination Dictionary Learning algorithm (FDDL) [13],

Sparse Representation based Classification (SRC) [4], Support

Vector Machine (SVM) and Nearest Neighbor (NN). In addition,

during all of the following experiments, we set the number of

iterations to 25 for learning dictionary in FDDL. Parameter s in

formula (15) is fixed to 0.15 for SRC according to [20]. SVM with

different kernel function (i.e., linear kernel and RBF kernel) is

applied and Nearest Neighbor with K = 1.

The Choice of Parameters
Tuning Parameter l for Face Matrix A. In Equation (4), l

presents the percentage of sparse errors. The low-rank represen-

tation results are extremely sensitive to parameter l. Although we

could compute it using Equation (8), it is not optimal. In practice,

we initialize l by Equation (8) and then increase or decrease l step

by step at interval of 0.005 to choose the best one. We used the

experiment on extended Yale B Database to adjust parameterl.

The former 40 images were selected as training images and the

remaining as testing images, and all of the images were down-

sampled with ratio 1/8.

Figure 3 shows the relation between recognition rates and the

corresponding parameter l. From this figure we can confirm that

0.0445 is the best choice for l, since the recognition rate is the

hightest one with this value. Through this way we can also obtain

the best l for other different databases.

Influence of Different Number of Eigenfaces. As men-

tioned above, eigenfaces can capture intrinsic structural informa-

tion of face space, so different number of eigenfaces performs

Table 6. The recognition rates on CMU-PIE Face Database.

Algorithms ESRC_LR FDDL SRC SVM (RBF) SVM (linear) NN

Recognition rate (%) 97.97 97.01 97.89 97.72 94.37 90.28

doi:10.1371/journal.pone.0110318.t006

Figure 8. Classification errors under different number of weak classifier.
doi:10.1371/journal.pone.0110318.g008
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different performance. Need not go into detail that overmuch

eigenfaces result in much time expending in applications, and too

few may be insufficient to express integrity of face space,

classification accuracy is not guaranteed as a consequent.

Experimental results about the performance of different number

of eigenfaces on extended Yale B Database are listed in Figure 4.

We set l~0:0445 to extract the low-rank images of training

samples by Robust PCA algorithm.

Figure 4 shows that the recognition rate goes up promptly with

the increasing of the number of eigenfaces, and it is low when the

Figure 9. An example from the AR Database with 30% pixels corruptions. The top row is the original images. The middle row shows
corrupted images of (a) with 30% pixels replaced by random noises. The noise values are random selected from [0, 255] and the locations are
unknown. The below row is the recovered low-rank images of (b) by Robust PCA algorithm.
doi:10.1371/journal.pone.0110318.g009

Figure 10. Recognition accuracy on the AR Database with different percentage of pixels corruptions.
doi:10.1371/journal.pone.0110318.g010
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number of eigenfaces is less than three. The reason should be that

minority eigenfaces cannot integrally capture inherent structural

information of face space. Therefore, some testing samples can not

be well reconstructed by these eigenfaces. After greater than 4,

with the further increase of the number of eigenfaces, recognition

rate rises slowly and reaches a relatively steady point, which

illustrates the selected eigenfaces are enough to span face space.

Certainly, to different face databases, the suited number of

eigenfaces still needs to conduct experiments to determine.

Face Recognition without Occlusions
In this subsection, we apply the proposed ESRC_LR algorithm

to classify face images on four popular databases (i.e., the

Extended Yale B Database [32], the AR Database [33], the

ORL Database [34] and CMU-PIE Face Database [35]), and

compare it with FDDL[13], SRC[4], SVM with linear kernel

function and RBF kernel function and NN with K = 1.

Evaluation on the Extended Yale B Database. The

Extended Yale B Database consists of 2414 frontal-face images

of 38 individuals. The images were captured under various

laboratory-controlled lighting conditions. We selected the former

40 images as training images and the reminder as testing images

Figure 11. The separate effect of these two sub-processes of ESRC_LR algorithm on the AR Database with increasing corrupted
pixels.
doi:10.1371/journal.pone.0110318.g011

Figure 12. An example of images from UMIST Face Database with random block occlusions (g~0:3).
doi:10.1371/journal.pone.0110318.g012
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and all of the images were down-sampled with ratio 1/8. In the

experiment we chose the popular methods such as SRC, SVM,

NN and the recently published FDDL for comparison. The

recognition rates are listed in Table 2.

Figure 5 shows an example of the extracted low-rank and

approximate images on Extended Yale B Database. It is easy to

find that the low rank images are similar to original images but

illumination difference and expression changing have been

alleviated. Figure 6 illustrates the relation between the ranks of

face images of four classes and the number of iterations. We can

see from figure 6 that the low rank algorithm is convergent. The

rank of each class is stabilized at about 22 finally, which is much

smaller than the rank of original corrupted face images (i.e., about

40). The reduction of rank leads to the alleviation of illumination

difference and expression changing. In the experiment we selected

14 eigenfaces from each class according to subsection 4.1, and set

l~0:0445 to extract the low rank images. Comparing with other

classical methods shown in Table 2, the proposed ESRC_LR

algorithm exhibits better performance than FDDL, SRC,

SVM(RBF), SVM(linear) and NN(K = 1).

Evaluation on the AR Database. The AR face database

consists of over 4000 frontal images with 126 individuals. For each

individual, 26 pictures were composed of two sessions. In each

session, 7 pictures were about varied expression, 3 pictures were

covered by mask and the rest 3 pictures wore sunglasses. In our

experiment we chose 50 males and 50 females and all of images

were cropped to 40640 pixels and converted to grayscale. For

each individual, the 7 images with illumination and expression

changes from session 1 were used for training, and the other 7

images with the same changes from session 2 were chosen for

testing. We fixed l~0:0183 for extracting the low rank

representation of face matrix, and selected 4 eigenfaces for each

class to construct a compact dictionary. The comparison between

several competing methods is shown in Table 3. It can be seen

that the proposed algorithm (recognition rate 97.66%) improves

about 6.37% over the second best performance (FDDL: 91.29%),

and 8.53% over the third best performance (SRC: 89.14%). The

experimental results show that the low-rank processing and

eigenfaces extraction can do improve the performance of

dictionary, thereby, coding the query image over the learnt

dictionary is more reasonable. From this experiment, we can also

draw a conclusion that our method is quite effective to deal with

illumination difference and expression changing.

Recent years, the kernel optimization based algorithms are

popular and competitive. It is necessary to compare our algorithm

with some kernel optimization based algorithms mentioned in [36]

on the AR database. For simplification, we also resized the images

into 29621 pixels. The images in session 1 were used for training

and those in session 2 for testing. One could refer to [36] for

details. The results are shown in Table 4 (some results originate

from [36] directly). As we all known, kernel discriminant analysis

(KDA) maps the original data with unequal covariances into a

homoscedastic space. However, to a multi-model structure in each

class, KDA may be limited to smooth solutions which would result

in large classification error. In our method, we try to seek a better

representation over a learnt dictionary for each testing sample (i.e.,

learning a dictionary with low-rank processing and eigenface

extraction). By comparison, our method achieves slightly better

results than KDA. However, to multi-model class representations,

kernel based subclass DA(KSDA) can find some smoother

functions than KDA so as to carry much smaller classification

error (in some case, surpass our algorithm a lot).

Evaluation on ORL Face Database. The ORL database

contains 400 images in total, each of 40 individuals has ten

Figure 13. Recognition rates on UMIST Face Database with different level of block occlusions.
doi:10.1371/journal.pone.0110318.g013
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different images shot under different times, varying the lighting,

facial expressions and facial details. The background of the images

is uniform while the subjects are in frontal, upright positive. For

each individual, we randomly selected 8 images as training

samples and the rest as testing samples and repeated the

experiment 10 times. All of images were normalized to 30625

pixels. We fixed l~0:0408 for extracting the low rank represen-

tation of face matrix, and selected 6 eigenfaces for each class to

construct a compact dictionary. The average recognition rates are

shown in Table 5. According to this Table we can easily see that

the recognition rate of ERSC_LR reaches 96.88% which

outperforms FDDL (95.31%) and SRC (95.50%) and far better

than SVM(RBF) (85.00%), SVM(linear) (81.87%) and NN(K = 1)

(72.75%). The ESRC_LR algorithm has at least 1.3% improve-

ment over the second best performance, which also illustrates that

our method is more powerful than other methods.

Evaluation on CMU-PIE Face Database. The CMU-PIE

database contains about 41,368 images of 68 distinct individuals.

The images of each subject are captured under different poses,

variable illumination conditions, and with different expressions. In

this paper, one of near frontal pose subsets, namely C05, is chosen

for experiments. There are 3332 images in total with size of 64664

pixels which already detect the face and eyes regions from the

original images. Figure 7 shows an example of images in the

subset. For each person, we randomly selected about half number

of images as training samples and the rest as testing samples and

repeated each experiment 10 times. We fixed l~0:0206 for

extracting the low rank representation of face matrix, and selected

20 eigenfaces for each class to construct a compact dictionary. The

average recognition results of different approaches are shown in

Table 6. From which, we can see that the recognition rate of

ERSC_LR algorithm (97.97%) is better than SVM (linear)

(94.37%) and NN (90.28%) but similar to FDDL (97.01%),

SVM (RBF) (97.72%) on CMU-PIE Face Database. Actually,

SVM with RBF kernel function nonlinearly maps the original face

data into a high-dimensional space to make linearly impartible

problem divisible, so the performance of RBF kernel function is

superior to linear kernel function according to our experimental

results. Notice that the mapped data in high-dimensional space

may still be linearly impartible due to the curse of dimensionality.

However, in our algorithm, each testing sample is represented by

eigenfaces extracted from low-rank images as a coefficient vector

so that it is easier for classification than that extracted from the

corrupted data. Although FDDL uses of the fisher discrimination

criterion to learn a structured dictionary, the large-scale sparse

errors in training samples limit its performance. In fact, our

method and FDDL are both improved methods based on standard

SRC. Table 6 shows that our method obtains slightly better

recognition accuracy than SVM with RBF kernel function and

FDDL.

Recently, the cascade classifier, another kind of face recognition

system, is popular. Shan et al. [38] proposed the AdaBoost Gabor

Fisher Classifier for robust face recognition, in which a chain

Adaboost learning method based on Booststrap re-sampling was

proposed and applied to face recognition. To compare ESRC_LR

algorithm with the cascade classifier based face recognition system,

we made another experiment on the CMU_PIE face dataset. The

popular nearest neighbor based adaptive boosting (NN_adaboost)

classifier was applied and we also set the same experimental

condition as above. Different number of weak classifiers was

cascaded and the corresponding classification results were shown

in Figure 8.

From Figure 8 we can see that classification error decreases

gradually with the increase of number of weak classifiers. In the

experiment, the classification error of single NN classifier is 9.72%

according to the above experiment. After cascading 50 NN

classifiers, the classification error drops to about 5%, Owing to the

augment of weight for misclassified samples to make them classify

easily in each training process of weak classifier, the final strong

classifier (cascade of weak classifiers) achieves much better

performance. However, experimental result also shows our

ESRC_LR algorithm (classification error: 2.03%) outperforms

the NN_adaboost algorithm in spite of increasing the number of

weak classifiers (classification error is no longer change apparently

for more than 30 weak classifiers).

Face Recognition with Occlusions
One of the most fascinating features of sparse representation

based algorithms is the robustness to occlusions and sparse noises.

Since they universally exist in both training and testing images, in

this subsection we investigate the robustness of our algorithm to

random distributed noises and random block occlusions. Firstly,

we evaluate the robustness to random pixel corruptions on the AR

Database. Secondly, the UMIST Face Database [39] is adopted to

test the robustness to random block occlusions. We still choose

previous methods (FDDL, SRC, SVM (linear and RBF),

NN(K = 1)) as the baselines.

Robustness to Random Noises. Firstly, we investigate the

robustness of our algorithm to random noises on the AR Database.

For each individual, the seven clean images from Session 1 were

selected for training, and the seven images from Session 2 were

chosen for testing. All of the images were resized into 40640 pixels

and a certain percentage of pixels were replaced by uniformly

distributed random values within [0, 255]. The corrupted pixels

were randomly chosen in both training images and testing images

and the locations were blind to algorithms. Figure 9 shows an

example of face images corrupted by random pixel noises and the

corresponding low-rank images extracted by Robust PCA

algorithm. The recognition rates under different level of noises

are given in figure 10. Obviously, all classification performance

decreases with the increasing random noises. Moreover, the

advantage of ESRC_LR algorithm over the other popular

methods is clear. With higher random noises, the recognition rate

of ESRC_LR algorithm decreases slowly, and outperforms FDDL

and SRC algorithm by 15% improvement on average.

As we can see from the above experiment that the combined

performance of low-rank estimation and eignefaces extraction

outperforms the other popular algorithms evidently such as

FDDL, SRC, SVM(linear and RBF) and NN(K = 1). To illustrate

the separate effect of the two sub-processes, i.e., low-rank matrix

estimation only and eigenfaces extraction only, we also conduct an

experiment to research independent effect of the two sub-processes

on the AR database with increasing corrupted pixels. The

scenarios are: (i) low rank estimation followed by eigenfaces

extraction, (ii) low-rank matrix estimation only, and (iii) eigenfaces

extraction only. Figure 10 presents the experimental results of

three different scenarios.

The comparison results between ESRC_LR and its two sub-

processes (i.e., low-rank matrix estimation only and using

eigenfaces only) are shown in figure 11. From this figure we can

see that the proposed ESRC_LR algorithm outperforms its two

sub-processes. With lower random noises, the ESRC_LR

algorithm performs better than independent eigenfaces by about

2% improvement but far better than low-rank estimation. With

the increase of random noises, the ESRC_LR algorithm is

superior to the two sub-processes more obviously. The experiment

also illustrates that the two sub-processes have a positive effect on

the combined ESRC_LR algorithm.
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Robustness to Random Block Occlusions. In this subsec-

tion we test the robustness of our method to random block

occlusions on UMIST face database. The UMIST Face Database

consists of 564 images of 20 individuals and each individual is

shown in a range of poses from profile to frontal views. In the

experiment, 15 individuals’ images were used and all of images

were resized into 30620 pixels. We replaced a randomly located

block of each image with an unrelated random image. The values

in each block were randomly chosen from [0, 255] and the

position of block in each image was randomly selected. A

parameter g was set to control the size of block which met the

following relations:

block h~floor sqrt im h � im wð Þ � gð Þ ð17Þ

block w~floor sqrt im h � im wð Þ � gð Þ ð18Þ

where block h and block w were the height and width of block,

im h and im w were the height and width of images, respectively.

Figure 12 shows an example of training images and testing images

with random block occlusions (g~0:3) from UMIST Face

Database. We adopted 4-fold cross validation to evaluate our

algorithm. The recognition rates under different level of occlusions

are given in figure 13. We can see the proposed ESRC_LR

algorithm performs better than the other popular algorithms such

as FDDL, SRC, SVM(RBF), SVM(linear) and NN(K = 1). For

small block corruptions, the advantage of ESRC_LR algorithm is

not obvious comparing with the other methods. However, as the

block occlusion becoming larger, our ESRC_LR algorithm

decreases slowly and outperforms other algorithms more and

more apparent. Which shows the strong robustness of our method

to random block occlusion.

Conclusions

In this paper, we present an improvement to the well known

Sparse Representation based Classification for face recognition.

We firstly extract low rank images for each class in training subset

to alleviate the influence of noises such as illumination difference

and occlusions. Then, SVD is applied to extract eigenfaces from

the clean face images. These eigenfaces are organized to construct

a compact but discriminative dictionary for sparse representation

based classification. We evaluate the proposed ESRC_LR

algorithm under different conditions, i.e., clean images, uniform

distributed noises and random block corruptions. Experimental

results verify that our ESRC_LR algorithm is advantage and

robust. However, how to alleviate the influence of large but sparse

noises is still worth deep studying. Moreover, A new angle of view

about how to extract effective feature on low-rank images to

construct a better dictionary is worthy of consideration.
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