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Abstract

Intravascular Ultrasound (IVUS) is one ultrasonic imaging technology to acquire vascular cross-sectional images for the
visualization of the inner vessel structure. This technique has been widely used for the diagnosis and treatment of coronary
artery diseases. The detection of the calcified plaque with acoustic shadowing in IVUS images plays a vital role in the
quantitative analysis of atheromatous plaques. The conventional method of the calcium detection is manual drawing by the
doctors. However, it is very time-consuming, and with high inter-observer and intra-observer variability between different
doctors. Therefore, the computer-aided detection of the calcified plaque is highly desired. In this paper, an automated
method is proposed to detect the calcified plaque with acoustic shadowing in IVUS images by the Rayleigh mixture model,
the Markov random field, the graph searching method and the prior knowledge about the calcified plaque. The
performance of our method was evaluated over 996 in-vivo IVUS images acquired from eight patients, and the detected
calcified plaques are compared with manually detected calcified plaques by one cardiology doctor. The experimental results
are quantitatively analyzed separately by three evaluation methods, the test of the sensitivity and specificity, the linear
regression and the Bland-Altman analysis. The first method is used to evaluate the ability to distinguish between IVUS
images with and without the calcified plaque, and the latter two methods can respectively measure the correlation and the
agreement between our results and manual drawing results for locating the calcified plaque in the IVUS image. High
sensitivity (94.68%) and specificity (95.82%), good correlation and agreement (.96.82% results fall within the 95%
confidence interval in the Student t-test) demonstrate the effectiveness of the proposed method in the detection of the
calcified plaque with acoustic shadowing in IVUS images.
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Introduction

Atherosclerosis is the process of artery wall thickness [1], which

is caused by fatty substances, cholesterol, cellular waste products,

calcium and fibrin (a clotting material in the blood) building up in

the inner lining of an artery, and the result of such continuous

building is called plaque. The atherosclerotic plaque in coronary

arteries [2] can be vital, because it can evolve toward clinical

complications like angina, myocardial infarction, sudden cardiac

death. The traditional imaging modality to diagnose atheroscle-

rosis is angiography (first developed by 1927), which can visualize

the longitudinal sectional image of vessels. However, angiography

has several disadvantages: (1) the injury of human body caused by

X-ray radiation; (2) the difficulty in distinguishing the vessels with

or without the positive remodeling; (3) the diagnosis in reliance on

the observer’s experiences.

Recently, intravascular ultrasound (IVUS) has been widely

adopted by the clinical doctor for better diagnosis of the

arteriosclerotic vascular disease [3,4]. It is an invasive imaging

technology that can present the real-time visualization of vessel

morphology in vivo, through high-resolution image sequences of

the vascular internal structure including lumen, intima, adventitia,

plaque components, vessel side-branchings etc. In order to better

diagnose the status of atherosclerosis, the doctor usually draws the
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lumen, the vessel wall, and the plaque components manually.

However, the manual analysis is a very time-consuming process

and can easily lead to the inter- and intra-observer variability.

Therefore, it is highly desired to develop the computer-aided

algorithm for analyzing IVUS images in order to increase

diagnostic efficiency since well-designed computer-aided analysis

could generate more objective conclusions. One important

application of the computer-aided analysis in IVUS images is

the determination of the stenosis degree and the area of blood

flows inside the lumen by detecting the lumen border and the

media-adventitia border. A large number of computer-aided

algorithms have been developed in this area. Most of these

algorithms were implemented based on the image descriptor and

the contour evolution: (1) among the image descriptor based

algorithms, the gradient is one widely used image descriptor [5].

However, it is susceptible to speckle noise and varieties of artifacts

in IVUS, such as stents and the guide wire. Therefore, some other

image descriptors, such as edge pattern [6], textural information

[7,8] and statistical properties of the pixel intensity [9,10], have

been proposed to overcome the disadvantages of the gradient

descriptor; (2) in contour evolution based algorithms, the vessel

borders are usually detected by evolving the per-defined initial

contour until convergence. These algorithms could be divided into

snake-based [4,11] and level-set-based algorithms [12,13]. The

snake-based algorithms always treat the evolving contour as a

parametric curve, and compute the desired border by minimizing

the curve energy. Unlike the snake-based algorithms, the level-set-

based algorithms often apply implicit functions to format the

contour and evolve the contour of the zero level by solving the

partial differential equations [14]. Another important application

of the computer-aided analysis of IVUS images is the detection of

the calcified plaque with acoustic shadowing. In the clinical expert

consensus documents from the American College of Cardiology

and the American Heart Association [15,16], the calcified plaque

can be used to detect obstructive coronary artery disease, and

moreover it can also be considered as an accurate indicator of

atherosclerotic disease and the risk of acute myocardial infarction

[17], especially in diabetics [18], smokers [19] and elderly [20].

The methods for detecting the calcified plaque with acoustic

shadowing could be divided into two categories: (1) the first kind of

approaches will look for the calcified plaque inside the region

between the lumen and the vessel wall, after the lumen border and

the media-adventitia border are both detected. Because the

identification of these two borders could narrow down the region

of interest (ROI) for facilitating the detection of the calcified

plaque, some classification algorithms have been used to extract

the calcified plaque from the ROI, such as Bayesian classifier [13]

or fuzzy k-means [21]. However, the performance of these

classification algorithms relies on the accurate location of the

lumen and media-adventitia borders, and the calcified plaque with

acoustic shadowing can likely damage the accuracy because it can

be considered as an artifact to obstruct the detection of the two

vessel borders. For the media-adventitia border, it may be shaded

by the acoustic shadowing because the most of the ultrasonic wave

can be reflected by the calcified plaque, and for the lumen border,

it may be represented as a weaker border than the border between

the calcified plaque and the soft plaque; (2) the other kind of

approaches is to detect the calcified plaque directly, which always

adopted a coarse-to-fine strategy to locate the calcification. In the

first step, the classification algorithms, such as Otsu method [22],

thresholding method based on 2-D Renyi’s entropy [23] or k-

means [24], were applied to the IVUS image s in order to coarsely

specify the locations of calcified plaques. And in the second step,

the acoustic shadowing would be the recognized by comparing the

gray intensity of the calcified plaque with that of the acoustic

shadowing [25,26]. However, in the coarse detection, the ROI

detection of the calcified plaque did not depend on its acoustic

shadowing, and thus some bright non-calcified regions might be

considered as the ROI of the calcification, such as collagen and

guide-wire artifacts. Furthermore, the refinement relied on the

image contrast between the calcified plaque and the acoustic

shadowing, which is controlled by the adjustments of gamma

curve in image acquisition [27], and thus the contrast may vary

among different IVUS images. So the refinement of the calcified

Figure 1. The flowchart of the proposed method.
doi:10.1371/journal.pone.0109997.g001
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plaque should not rely on the gray intensity since it would reduce

the performance of the algorithm.

In this paper, we develop a coarse-to-fine method to automat-

ically detect the calcified plaque with acoustic shadowing in IVUS

images in three steps: (1) the coarse detection of calcified plaque is

implemented by Rayleigh mixture model (RMM) and Markov

random field (MRF); (2) the refinement of calcified plaque is

carried out by five predefined constraints; (3) the border of

calcified plaque is detected by the graph searching algorithm. The

validation of our method is performed over in-vivo IVUS images

(DICOM format) acquired from eight patients. The results of our

method are compared with the manual drawing results from one

experienced cardiologist. In the experiments, the ability of our

method to distinguish between the IVUS images with and without

the calcified plaque is firstly evaluated by the sensitivity and

specificity. Next, in the IVUS images with calcified plaque, two

different evaluation methods, linear regression and Bland-Altman

analysis, are performed in order to validate the correlation and the

agreement between our method and the manual detection. In

addition, we compute how much overlapping between two

calcified plaques separately produced by our method and the

manual detection, in order to evaluate the location accuracy of the

calcified plaque detected by our method.

The rest of this paper is organized as follows: The second

section discusses the proposed method, including the pixel

classification by the RMM, the detection of the angular location

of the calcified plaque, and the refinement and the border

detection of the calcified plaque. The third section shows the

experiments and results. The fourth section demonstrates the

discussion, and the last section draws the conclusions of this study.

Methodology

In this section, we develop a method to detect the calcified

plaque with acoustic shadowing in IVUS images. The flowchart of

the proposed method is shown in Figure 1. First, a RMM is

applied to cluster pixels in IVUS images in order to distinguish

between the hyperechoic and hypoechoic regions, and solved by

the EM algorithm. In the solution of the RMM, a new prior

probability is produced based on the spatial relationship among

neighboring pixels. Second, a MRF is employed to coarsely detect

the location of the calcified plaque, and solved by the BP

algorithm. In the solution of the MRF, the results of the RMM

and a curve called maximum intensity curve (MIC) defined in the

IVUS image are combined to compute the relationship between

the observed variables and hidden variables, which can be

considered as the prior information of the MRF. Third, the

pseudo calcified plaques are removed by five predefined

constraints. At last, the border of the calcified plaque is detected

by the graph searching method algorithm [28] with cost function

formatted by MIC and the image gradient.

Pixel Classification in IVUS Images
Different vascular tissues appear in different gray levels and

shapes in IVUS images, so we can use the RMM to describe the

distribution of the image intensity and cluster pixels in IVUS

images [29]. The RMM formulas are shown in Appendix A.

There are three important issues in the RMM: (1) the selection of

the number of the mixture components; (2) the construction of the

prior probability; (3) the estimation of the parameters.

First, the number of the mixture components K is empirically

predefined as 5 in our study, different from K~3 in previous

approaches [30] [31], because the purpose of the pixel classifica-

tion in the proposed method is to label pixels belonging to the

acoustic shadowing into the same group, which can help the

following steps for detecting the calcified plaque, rather than

distinguish among three layers of the blood vessel [30], or among

different types of atherosclerotic plaques [31]. Here we give a

comparison of the RMM classification between K~3 and K~5,

shown in Figure 2(b) and 2(c). For K~5, 97.74% of pixels in the

acoustic shadowing are labeled into the same group, while for

K~3, the percentage is only 82.35%. Therefore, the RMM with

K~5 can more appropriately extract the acoustic shadowing in

the IVUS image.

Figure 2. (a) The origin IVUS image. The region inside the yellow contour represents the acoustic shadowing behind the calcified plaque. (b) The
image corresponding to (a) processed by the RMM with the class number K~3, and the colorbar shows the colors of each class. The group including
Class ‘‘1’’ contains 82.35% pixels inside the acoustic shadowing. (c) The image corresponding to (a) processed by the RMM with the class number
K~5, and the colorbar shows the colors of each class. The group including Class ‘‘1’’ and Class ‘‘2’’ contains 97.74% pixels inside the acoustic
shadowing. (d) I. It corresponds to (a) in polar coordinates, and the red curve is the maximum intensity curve (MIC). (e) IR . It corresponds to (c) in

polar coordinates. (f) ID. The white region is RD, and the blue curve is Lu .
doi:10.1371/journal.pone.0109997.g002
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Second, different from many previous methods [30] [31], we

add the neighboring relationship in the prior probability pij , rather

than assume the independence between pixels. The computation

of pij is shown in Appendix A.

Third, the parameters of the RMM are estimated by the

maximum likelihood method (ML) [24], and the most direct way

to solve the ML method is to compute the derivative of the

likelihood function with respect to every unknown parameter.

However, the computation is intractable due to the complexity of

the class-conditional probability density P(Yi Dvj) in Equation (8)

and the prior pij in Equation (13). Therefore, we apply the

expectation-maximization algorithm (EM) [32] to solve the ML

method. The EM algorithm is an iterative method for estimating

the parameters of the maximum likelihood method. In each

iteration, the EM algorithm can be divided into two step: E-step

and M-step. The E-step is used to determine the objective function

in this iteration, and the M-step is used to maximize the objective

function in order to update the parameters. The details of the E-

step and the M-step are shown in Appendix B.

From above, we present the detailed steps of the method for

estimating RMM parameters in Appendix C. After the parameters

of the RMM are determined, the pixels in the IVUS image can be

clustered by the maximum a posterior estimation method (MAP)

[24]: the ith pixel can be assigned to the jth class if

P(vj DYi)wP(vk DYi), k[f1,2,:::,Kg\fjg ð1Þ

where

P(vj DYi)~
pijP(Yi Dvj)PK

j~1 pijP(Yi Dvj)
ð2Þ

The results of the pixel classification by the RMM are shown in

Figure 2(c).

Detection of Angular Location of the Calcified Plaque
Because the growth of the calcified plaque is spatially

continuous along the vessel wall, the pixels belonging to the same

calcified plaque have the relationship along the angular direction

in polar coordinates of the IVUS image. In order to model the

relationship, we firstly transform the IVUS image and its

corresponding image classified by the RMM both from the

Cartesian domain to the polar domain. The IVUS polar image is

denoted by I and its corresponding image after pixel classification

is denoted by IR, shown in Figure 2. Then every column of I can

be described by a random variable, and these random variables

generate a MRF, which contains this kind of relationship [33]. Let

the numbers of rows, columns and gray-scale value at the

coordinate (x,y) in I be H, W and I(x,y), respectively, where x
is the column coordinate and y is the row coordinate. Then the

hidden variables in the MRF are denoted by Z1,Z2,:::,ZW , where

Zi (i~1,2,:::,W ) corresponds to the ith column of I. The domain

of Z1,Z2,:::,ZW is -1 and +1, where Zi~z1 means the ith
column of I contains the calcified plaque, and Zi~{1 means it

does not contain the calcified plaque. The neighborhood of Zi

includes Zi{1 and Ziz1. In addition, Y1,Y2,:::,YW denote the

observed variables corresponding to Z1,Z2,:::,ZW , respectively.

Through the MRF, the possibility of every column I containing

the calcified plaque with acoustic shadowing can be calculated.

Therefore, the columns in I can be divided into two parts: one part

contains the calcified plaque with acoustic shadowing and the

other does not, where the columns including the calcified plaque

can be considered as the angular location of the calcified plaque.

There are two important issues in the MRF: the determination of

the prior and the solution of the MRF.

1. The prior represents the relationship between the observed

variables Y1,Y2,:::,YW and the hidden variables Z1,Z2,:::,ZW . In

our method, the prior F can be computed by the gray-scale

information, the pixel classification by the RMM and the

maximum intensity curve in I, shown in Appendix D. The

maximum intensity curve is defined in Definition 1.

Definition 1 (Maximum intensity curve). For V i[f1,2,:::,
Wg, the pixel with the maximum gray-scale value in the ith column
of I can be found, and its row coordinate value is denoted by pi. Let
Lm~fp1,p2,:::,pWg, and then Lm is called the maximum intensity
curve, abbreviated as MIC.

2. The exact solution of the MRF is usually performed by the

maximum likelihood (ML) or MAP parameter estimation [34]. In

these methods, the parameter estimation can make the free energy

of the MRF reach the extremum, and moreover it can be

considered as a training process, because it requires the known

observation (training data) to optimize the parameters. However,

in many cases, there is no closed form solution of the MRF for the

ML or MAP parameter estimation [34]. Thus, it is needed to use

the approximate method to solve the MRF, and the training

process aforementioned is implicit in the approximation process.

The Bethe free energy is a common approximation to the free

energy of the MRF [35], and has been proved to be equivalent to

the belief propagation (BP) [36]. Therefore, we can use the BP

algorithm to approximately solve the proposed MRF. The BP

algorithm is an iterative ‘‘sum-product message passing’’ algorithm

and applies a kind of variables called ‘‘belief ’’ to approximate the

probability of the random variables [37] [38]. The prior of the BP

algorithm equals F in Equation (28). The process of the proposed

BP algorithm is shown in Appendix E.

The final beliefs can be denoted by b�(Z1)~b(tz1)(Z1),

b�(Z2)~b(tz1)(Z2),:::,b�(ZW )~b(tz1)(ZW ) if the BP algorithm

is converged in the tz1 iteration. Then the belief of every column

with the calcified plaque b�(Zi~z1) is binarized in order to find

which columns of I contain the calcified plaque, formulated as

b�(Zi~z1)~
1,

0,

b�(Zi~z1)§0:5

b�(Zi~z1)v0:5

�
ð3Þ

At last, we can find the angular location of the calcified plaque

in I as follow: for two column dl and dr (dl
vdr), if b�(Zdl ~z1),

b�(Zdlz1~z1),…, b�(Zdr~z1) are all equal to 1, and

b�(Zdl{1~z1), b�(Zdrz1~z1) are both equal to 0, then the

angular range between the dl th column and the drth column of I
can be considered as the angular location of one calcified plaque,

where dl and dr are called the left border and the right border of

the calcified plaque, respectively.

Refinement of the Calcified Plaque
The detection of the angular location of calcified plaques is

affected by the sensitivity of MIC to the noise and the classification

error from the RMM, which leads to the pseudo calcified plaques.

Therefore, the refinement of the calcified plaque is needed. Here

we define five constraints in order to refine the calcified plaque,

that is, if a calcified plaque does not satisfy these constraints, then it

can be considered as a pseudo calcified plaque. The details of the

five constraints are shown in Appendix F. These constraints

describe different aspects of the calcified plaque. Firstly, the

Automated Detection of Calcified Plaque
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Constraint 1 considers the brightness of the calcified plaque in

IVUS images because the minimum threshold T1 of pixel values

limits the overall brightness of the calcified plaque. Then the

Constraint 2 and the Constraint 3 aim to reduce the influence

from other tissues on the recognition of the calcified plaque,

because some tissues on adventitia, such as collagen, have high-

level ultrasonic echo and thus can be represented as bright regions

with high gray intensity, which may be mistaken as the calcified

plaque. The Constraint 2, concerning the growth direction of the

calcified plaque, limits the slope of two endpoints of the calcified

plaques in order to recognize the bright region with too large slope

in polar coordinate as the non-calcified region, because the

calcified plaque grows along the vessel wall in histology. However,

only relying on the Constraint 2, some non-calcified tissues on

adventitia along the vessel wall still cannot be recognized.

Therefore, the length of the calcified plaque must be considered.

The limitation of the angular length of the calcified plaque along

the polar axis in the Constraint 3 can exclude the bright regions

with too long angular length. At last, the Constraint 4 and the

Constraint 5 focus on the acoustic shadowing behind the calcified

plaque. Because the calcified plaque can reflect most ultrasonic

signals, the acoustic shadowing behind the calcified plaque is

darker than its nearby tissues. Therefore, in the Constraint 4, the

limitation of the minimum difference between the brightness of the

acoustic shadowing and the nearby tissues can facilitate to

recognize the shadowed regions on adventitia, ensuring that every

detected calcified plaque has acoustic shadowing behind it. The

Constraint 5 aims to recognize the pseudo acoustic shadowing

through the shape of the acoustic shadowing, where Equation (47)

represents the closeness between the calcified plaque and its

acoustic shadowing because the amplitude of the ultrasonic signal

behind the calcified plaque decreases sharply. Moreover, the

ultrasound wave is omnidirectionally emitted from the catheter,

and thus the acoustic shadowing is rectangle-like in polar

coordinates. Equation (48) is used to describe the similarity

between the acoustic shadowing and the rectangle-like shape in

polar coordinates.

Border Detection of the Calcified Plaque
After the refinement, we detect the border of the calcified

plaque, which can be divided into four part: the left border, the

right border, the upper border and the lower border. The left

border dl and the right border dr represent the angular location of

the calcified plaque, and have been computed in the above.

Therefore, only the upper border and the lower border of the

calcified plaque should be detected in this part. In order to trace

the two borders, we employ the graph searching algorithm [28],

which is a searching algorithm to find the optimal path in the

weighted graph (cost function) connecting two endpoints. Because

MIC crosses through the calcified plaque, we consider the upper

border is inside a region, denoted by R1, above MIC and between

the dl th column and the drth column, and consider the lower

border is inside a region, denoted by R2, below MIC and between

the dl th column and the drth column. R1 and R2 are shown in

Figure 3(a). Then the graph searching algorithm is separately

applied to R1 and R2 to extract the upper border and the lower

border of the calcified plaque. There are two important issues in

the graph searching algorithm: the selection of the two endpoints

and the formulation of the cost function.

(1) In order to generate a traced border, two endpoints of the

border, called the beginning point and the ending point, should be

acquired in advance for the graph searching algorithm. With

respect to R1 or R2, the column coordinates of the two endpoints

are dl and dr. In addition, the upper border and the lower border

of the calcified plaque are the junctions between the calcified

plaque and non-calcified tissues, which may be influenced by the

noise and tissues with high level echo. Therefore, in order to

reduce above influence, the row coordinates of the endpoints are

not specified beforehand, that implies the optimal border traced by

the graph searching algorithm has the global minimum cost.

(2) Because the graph searching algorithm is separately applied

to R1 and R2, two cost functions should be computed applied to

R1 and R2, respectively. With respect to R1, the upper border can

be considered as the transition between the bright region and the

dark region in the IVUS image. Therefore, the cost function in R1

can be constructed based on the gradient information, formulated

Figure 3. (a) The red curve is MIC. R2 contains the acoustic shadowing and part of the calcified plaque. The column coordinates of four vertical
dashed lines from left to right are sl , dl , dr , sr , respectively. (b) The subregion composed of R1 and R2 extracted from (a). And the region between the
the green dashed rectangle and the red curve (MIC) is R’2 . (c) The cost function of R1 and R’2 , and their gap is the MIC in (b). The yellow curves are the
optimal paths acquired by the graph searching algorithm in R1 and R2 , respectively. (d) The yellow curve is the detected calcified plaque in polar
coordinate. (e) The yellow curve is the detected calcified plaque in Cartesian coordinate.
doi:10.1371/journal.pone.0109997.g003
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as

M(x,y)~I(x,yz1){I(x,y), (x,y)[R1 ð4Þ

With respect to R2, the acoustic shadowing occupies most of its

area, and moreover, the region of acoustic shadowing far from the

catheter cannot provide useful information for the detection of the

lower border; on the contrary, the noise in the region may affect

the tracing of the lower border. Therefore, we extract a subregion

R’2 from R2 for tracing the lower border of the calcified plaque in

order to reduce the influence from the noise. R’2 is defined as the

region between the dl th column and the drth column, and

between MIC and the p’th row computed in Equation (46). R1, R2

and R’2 acquired from I are shown in Figure 3(a) and Figure 3(b).

Because the lower border can also be considered as a dark-bright

transition, the cost function in R’2 can be defined similarly to

Equation (4) as

M(x,y)~I(x,yz1){I(x,y), (x,y)[R’2 ð5Þ

The cost function M in Figure 3(b) is shown in Figure 3(c).

The results of the graph searching algorithm is shown in

Figure 3(d), where the calcified plaque is the region inside the

yellow contour. In order to reconstruct the border of calcified

plaque in original IVUS images, it is transformed from polar

domain to Cartesian domain, shown as the yellow contour in

Figure 3(e).

Results

The data acquisition was performed with the approval of the

Health Science Research Ethics Committee of the Department of

Cardiology at Guangdong General Hospital, and the participants

provided written informed consent before beginning the acquisi-

tion. All the IVUS data were collected over a Volcano machine

(Volcano Corp., Rancho Cordova USA) with a pullback speed of

0.5mm/s using a 20MHz solid-state IVUS catheter. The IVUS

images were reconstructed and processed at a commercially

available IVUS console (In-Vision Gold, Volcano Corp., Rancho

Cordova USA) and saved as DICOM format into CDs for off-line

analysis. All the codes in this study were implemented by Matlab

R2012a on a desktop computer with Intel(R) Xeon(R) CPU E5-

2650(2.00 GHz) and 32GB memory. In our experiments, calcified

plaques detected by our method were compared with those

manually detected by one cardiologist. Totally 996 in-vivo IVUS

images are used in our study, where 498 images contain the

calcified plaque with acoustic shadowing (considered as the

experimental group), and other 498 images do not contain any

calcified plaque with acoustic shadowing (considered as the control

group), and there are three kinds of imaging diameter (8mm,

10mm and 12mm) in these IVUS images. The selection protocol

of the IVUS images contains: (1) every calcified plaque in IVUS

images should have the acoustic shadowing behind it; (2) all IVUS

images are collected at different times from eight patients.

The results of detecting the calcified plaque in some IVUS

images are shown in Figure 4. The performance of our method

was evaluated in two aspects: one was to evaluate the ability of our

method to correctly distinguish between IVUS images with and

without the calcified plaque; the other was to evaluate the location

accuracy of the calcified plaque. Firstly, the ability to correctly

identify IVUS images with the calcified plaque or without was

evaluated by the sensitivity and specificity. The sensitivity

represents the percentage of correctly identified IVUS images

with the calcified plaque in the experimental group, and the

specificity represents the percentage of correctly identified IVUS

images without the calcified plaque in the control group, which

can be computed by true positive (TP), false positive (FP), true

negative (TN) and false negative (FN):

Figure 4. Some results of the detection of the calcified plaque. (a1)-(a10) are original IVUS images. (b1)-(b10) are the results of our method
corresponding to (a1)-(a10), respectively, where the region within the yellow contour is the calcified plaque. (c1)-(c10) are the results of the manual
drawing method by a cardiologist corresponding to (a1)-(a10), respectively, where the region within the red contour is the calcified plaque.
doi:10.1371/journal.pone.0109997.g004

Table 1. The results of distinguishing between the IVUS
images with and without the calcified plaque.

Sensitivity Specificity

94.68% 95.82%

The sensitivity represents the accuracy rate of identifying the IVUS images with
the calcified plaque, and the specificity represents the accuracy rate of
identifying the IVUS images without the calcified plaque.
doi:10.1371/journal.pone.0109997.t001
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Sensitivity~
TP

TPzFN
and Specificity~

TN

FPzTN
ð6Þ

where TP is the number of IVUS images with the calcified plaque

correctly identified, TN is the number of IVUS images without the

calcified plaque incorrectly identified, FP is the number of IVUS

images with the calcified plaque incorrectly identified, and FN is

the number of IVUS images without the calcified plaque correctly

identified. Table 1 shows the sensitivity and the specificity tested

over all patients are 94.68% and 95.82%, respectively. Secondly,

the location accuracy of correctly identified calcified plaques was

quantified by five measurements: plaque area (PA), angular length

(AL), angular center (AC), plaque thickness (PT) and the distance

to catheter (DC), shown in Figure 5. PA can measure the size of

the calcified plaque. AL and AC can measure the angular location

(the location along the angular direction) of the calcified plaque

between two angles h1 and h2, formulated as

AL~Dh2{h1Dz1, AC~
1

2
(h1zh2) ð7Þ

PT and DC can measure the radial location (the location along

the radial direction) of the calcified plaque, where DC equals the

distance between the leading edge of the calcified plaque and the

catheter’s center. These measurements calculated from our

method and the manual drawing method were compared

separately by two different evaluation methods: linear regression

and Bland-Altman analysis [39], in order to analyze their

correlation and agreement, respectively. In every evaluation

method, we firstly analyze the comparative results on all IVUS

images in order to evaluate the overall performance of our

method, and then on IVUS images from every patient in order to

evaluate the between-patient difference of our method. In linear

regression, the correlation coefficient r and the root-mean-square

error (RMSE) are used to investigate the overall correlation

between our method and the manual drawing method. Figure 6

shows the overall correlation. For AL, AC, PA, PT and DC, the

values of r are 0.9557, 0.9747, 0.8311, 0.4461 and 0.9828,

respectively, and the values of RMSE are 9.5055, 20.5260, 0.1964,

0.0674 and 0.0758, respectively. Figure 7 shows the between-

patient difference for the five measurements. The standard

deviation of r with respect to the five measurements is smaller

than 0.15. Table 2 shows the corresponding numerical results. In

the Bland-Altman analysis, four indices, r1, r2, r3 and CI, are used

to investigate the agreement between our method and the manual

drawing method. Let X be the difference between same two

measurements computed separately by our method and by

manual, and let Y be the mean value of the two measurements.

CI represents the 95% confidence interval of Y , formulated as

(d{2s,dz2s), where d and s are the mean value and standard

deviation of Y , respectively. r1 represents the ratio of d to the

mean value of X . r2 represents the ratio of the maximum absolute

value of Y to the mean value of X . r3 represents the frequency of

the points without CI in the Bland-Altman plot. Figure 8 shows

the overall agreement between our method and the manual

drawing method. With respect to the five measurements, v7.1%

of results fall without CI in the Student t-test. Figure 7 shows the

between-patient difference of our method. The standard deviation

of the number of results within the 95% confidence interval with

respective to the five measurements is smaller than 2.61%. Table 3

presents the corresponding numerical results. Additionally, the

overlap between two calcified plaques detected by our method and

drawn by manual separately can also represent the location

accuracy of the calcified plaque, which is measured by the

sensitivity and specificity. The sensitivity and specificity can also be

calculated by Equation (6), where TP is the number of pixels inside

the calcified plaque correctly identified, FP is the number of pixels

inside the calcified plaque incorrectly identified, FN is the number

of pixels outside the calcified plaque incorrectly identified, and TP

is the number of pixels outside the calcified plaque correctly

identified. Table 4 shows that the mean values of the sensitivity

and specificity in the measurement of the overlap are 83.79% and

99.74%, respectively.

In addition, Table 5 compares the computational costs of our

method separately applied to the experimental group and the

control group. In the experimental group, the mean value and

standard deviation of the computational cost are 6.81s and 0.21s,

respectively. And in the control group, the mean value and

standard deviation are 5.26s and 0.08s, respectively.

Discussion

In this section, the accuracy and robustness of our method, the

computational cost, the limitation and the future work will be

discussed.

Accuracy
The accuracy of our method is evaluated through comparing

the results from the manual drawing by one cardiologist and from

the computer-aided automatic detection by our method. The

evaluation of accuracy can be divided into two parts: one is to test

the accuracy of distinguishing between IVUS images with and

without the calcified plaque; the other is to evaluate the location

Figure 5. The white ‘‘6’’ represents the catheter center. The
region within the yellow closed curve represents the detected calcified
plaque. The yellow curve ‘‘a’’ and ‘‘b’’ are the leading edge and the
trailing edge of the calcified plaque. The region between h1 and h2 (two
blue dashed lines) represents the angular location of the plaque. AL is
angular length of the red dash line. AC is the mean of h1 and h2 . PA is
the area within the yellow closed curve. PT is the mean distance
between the curve ‘‘a’’ and the curve ‘‘b’’. DC is the mean distance
between the curve ‘‘a’’ and the catheter center.
doi:10.1371/journal.pone.0109997.g005
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Figure 7. The between-patient results of our method separately from Patient 1 to Patient 8 with respect to AL, AC, PA, PT and DC.
The left five columns represents the results of the linear regression. The right five column represents the results of the Bland-Altman analysis, where
the blue dashed lines and the green dashed lines indicate the location of MEAN and +2|STD, respectively.
doi:10.1371/journal.pone.0109997.g007

Figure 6. The results of the linear regression with respect to AL, AC, PA, PT and DC for all patients. The horizontal axis and vertical axis
represent results acquired from our method and the manual drawing, respectively.
doi:10.1371/journal.pone.0109997.g006
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Table 2. The results of the linear regression.

Patient Measure Parameter

Linear function
(y~b1xzb0) r RMSE

1 AL y = 0.8683x+18.8034 0.9176 9.5360

AC y = 1.0302x26.6298 0.9930 6.5603

PA y = 0.7199x+0.3686 0.7778 0.1643

PT y = 0.5830x+0.1788 0.4899 0.0374

DC y = 0.8776x+0.1959 0.9688 0.0329

2 AL y = 0.7749x+17.8654 0.8498 9.6752

AC y = 0.9927x+1.7758 0.9977 4.8579

PA y = 0.8296x+0.2014 0.8040 0.1839

PT y = 0.3747x+0.2250 0.5692 0.0509

DC y = 1.0427x20.0476 0.9934 0.0517

3 AL y = 0.9992x22.1011 0.8546 12.5169

AC y = 0.9278x+15.1089 0.9939 5.5919

PA y = 0.7936x+0.1924 0.5879 0.1754

PT y = 0.3611x+0.2308 0.4738 0.0438

DC y = 0.9338x+0.1132 0.9784 0.0364

4 AL y = 1.1654x222.9853 0.9648 7.8523

AC y = 0.8161x+59.2887 0.8583 75.2922

PA y = 0.6633x+0.2424 0.7808 0.0776

PT y = 0.6770x+0.1162 0.7378 0.0307

DC y = 0.9656x+0.0807 0.8524 0.0333

5 AL y = 1.0189x+3.3029 0.9965 7.8523

AC y = 0.9977x+0.4821 0.9992 75.2922

PA y = 0.9966x+0.2681 0.8982 0.0776

PT y = 0.2963x+0.2759 0.2631 0.0307

DC y = 1.0439x20.0468 0.9942 0.0333

6 AL y = 0.8803x+11.6050 0.8962 8.1192

AC y = 0.9931x+1.8185 0.9973 4.6016

PA y = 1.0713x+0.1476 0.7338 0.2136

PT y = 0.7095x+0.1835 0.4835 0.0907

DC y = 0.8533x+0.2055 0.9325 0.0831

7 AL y = 1.1503x+0.0611 0.8258 7.5915

AC y = 0.9918x+2.4934 0.9897 3.4321

PA y = 0.6027x+0.2296 0.5284 0.0704

PT y = 0.4754x+0.1926 0.5728 0.0350

DC y = 0.9345x+0.0977 0.9589 0.0263

8 AL y = 0.8802x+11.8663 0.9057 8.8089

AC y = 0.9817x+7.5092 0.9809 26.1497

PA y = 0.7093x+0.4292 0.5125 0.1789

PT y = 0.4396x+0.2494 0.3378 0.0542

DC y = 0.9180x+0.1622 0.9631 0.1034

1–8 AL y = 0.9285x+9.5999 0.9557 9.5055

AC y = 0.9673X+9.0142 0.9747 20.5260

PA y = 0.9744x+0.1647 0.8311 0.1964

PT y = 0.4468x+0.2260 0.4461 0.0674

DC y = 0.9835x+0.0475 0.9828 0.0758

doi:10.1371/journal.pone.0109997.t002
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accuracy of the calcified plaque drawn by manual and detected by

our method. Firstly, the identification of the IVUS image with or

without the calcified plaque can be considered as a binary

classification, and thus the sensitivity can be used to represent the

correct classification rate of the images with the calcified plaque

and the specificity can be used to represent the correct

classification rates of the images without the calcified plaque. In

Table 1, the sensitivity and specificity computed from all IVUS

images are 94.68% and 95.82%, respectively, representing that

our method has good ability to distinguish between the normal

vascular cross section and the pathological vascular cross section

with respect to the calcification. Secondly, the location accuracy of

the calcified plaque is evaluated separately by linear regression and

Bland-Altman analysis. The linear regression focuses on the

correlation between our results and manual drawing results by the

correlation coefficient r and RMSE. In Table 2, we can see that

our results and the manual drawing results have high statistical

relationship in detecting the angular location of the calcified

plaque because r equals 0.9557 for AL and equals 0.9747 for AC.

And our method also has high correlation with the manual

drawing method in detecting radial location of the calcified plaque

because r equals 0.9828 for the distance DC from its leading edge

to the catheter (shown in Figure 5). However, the correlation for

PT has low level (r = 0.4461), implying that the detection of the

trailing edge of the calcified plaque do not have enough accuracy

(shown in Figure 5). That is because the ultrasonic signals

transmitted from the catheter are almost completely blocked by

the calcified plaque, forming a shadow behind the calcified plaque

that makes it difficult to estimate the real thickness of the calcium.

Moreover, the high correlation for PA (r = 0.8311) represents the

sizes of the same calcified plaque detected by manual and our

method are close to each other. In addition, the values of b0 are all

larger than zero for the five measurements, which means that the

five measurements computed by our method is the underestima-

tion of the manual drawing results. In the Bland-Altman analysis,

we evaluate the agreement between our method and the manual

drawing method. The values of r2 for AL, PA, PT are 0.3030,

0.7590, 0.7184, respectively, representing that the maximum

difference between our method and manual drawing method is

not small, and however the values of r1 for the three measurements

(0.0630, 0.2113, 0.2295) show that the variation in measuring AL,

PA and PT are small, implying that r2 for AL, PA, PT are large

only in a small amount of IVUS images. Moreover, r3ƒ7.03% for

AL, AC, PA, PT and DC in the Bland-Altman analysis shows most

of our results fall into 95% confidence interval with high reliability

in the Student t-test. In addition, the overlapping rate between the

calcium regions detected separately by manual and by our method

can be measured by the sensitivity and specificity, which can

represent how many image pixels belong to the calcified plaque. In

Table 4, the mean values of the sensitivity and the specificity are

respectively 83.79% and 99.74%, representing that the difference

between the calcification regions obtained by manual and by our

method is at a low level, and furthermore the number of correctly

identified pixels inside the calcium region is smaller than the

number of correctly identified pixels outside the calcium region,

implying that the calcified plaque detected by our method is a little

underestimation of the plaque manually drawn. In conclusion, we

can consider that the accuracy of the detection of the calcified

plaque by our method is at a high level.

Figure 8. The Bland-Altman plot with respect to AL, AC, PA, PT and DC for all patients. The blue dashed lined and the green dashed lines
indicate the location of MEAN and +2|STD, respectively.
doi:10.1371/journal.pone.0109997.g008
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Table 3. The results of the Bland-Altman analysis.

Patient Measurement Index

r1 r2 r3 CI

1 AL 0.0787 0.2401 8.33% [213.4334,27.8500]

AC 0.0015 0.0527 4.17% [214.1180,13.4930]

PA 0.1972 0.4511 8.33% [20.2110,0.5342]

PT 0.2199 0.4186 8.33% [20.0158,0.1489]

DC 0.0176 0.0528 8.33% [20.0519,0.1014]

2 AL 0.1367 0.5429 7.63% [214.4069,28.5086]

AC 0.0014 0.0443 7.63% [29.5267,10.1030]

PA 0.1505 0.6993 5.93% [20.2849,0.4817]

PT 0.0594 0.5059 4.24% [20.1362,0.1763]

DC 0.0163 0.0761 6.78% [20.0804,0.1399]

3 AL 0.0271 0.2755 3.33% [227.6284,23.2950]

AC 0.0041 0.0452 10.00% [214.7981,12.9648]

PA 0.0871 0.5647 3.33% [20.3048,0.4221]

PT 0.1773 0.4228 6.67% [20.0691,0.1768]

DC 0.0185 0.0569 6.67% [20.0532,0.1030]

4 AL 0.0080 0.1287 0.00% [219.2427,17.1374]

AC 0.0681 0.0497 5.26% [2148.9124,181.7545]

PA 0.0160 0.2434 5.26% [20.2010,0.1769]

PT 0.1532 0.4028 5.26% [20.0316,0.1105]

DC 0.0411 0.0876 5.26% [20.0242,0.1129]

5 AL 0.0470 0.1296 0.00% [24.5308,15.4132]

AC 0.0006 0.0192 2.94% [25.6463,5.2640]

PA 0.2400 0.6115 5.88% [20.1914,0.7210]

PT 0.3187 0.8188 5.88% [20.0561,0.2493]

DC 0.0146 0.0478 8.82% [20.0584,0.1055]

6 AL 0.0857 0.3624 6.03% [211.9474,21.8785]

AC 0.0001 0.0300 10.34% [29.3096,9.2579]

PA 0.3247 1.0545 6.03% [20.2494,0.6110]

PT 0.3313 0.8845 5.17% [20.0809,0.2928]

DC 0.0024 0.1199 6.03% [20.1793,0.1859]

7 AL 0.1407 0.3534 6.67% [26.8775,24.3886]

AC 0.0028 0.0331 4.44% [26.3087,7.5976]

PA 0.3194 0.6291 6.67% [20.0417,0.2662]

PT 0.3116 0.6289 4.44% [20.0098,0.1689]

DC 0.0286 0.0752 2.22% [20.0248,0.0847]

8 AL 0.0212 0.2238 7.14% [216.6264,20.2335]

AC 0.0165 0.0716 0.89% [249.1859,56.3466]

PA 0.2173 0.6135 3.57% [20.1742,0.5658]

PT 0.2860 0.6050 3.57% [20.0268,0.2129]

DC 0.0160 0.0856 0.89% [20.1916,0.2448]

1–8 AL 0.0630 0.3030 7.03% [215.0437,24.1883]

AC 0.0063 0.1166 0.40% [240.0689,43.0067]

PA 0.2113 0.7590 6.02% [20.2448,0.5420]

PT 0.2295 0.7184 5.82% [20.0864,0.2307]

DC 0.0148 0.0911 4.02% [20.1299,0.1749]

doi:10.1371/journal.pone.0109997.t003
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Robustness
With respect to the robustness of our method, it is investigated

from two aspects: the process of our method and the between-

patient performance of our method. Firstly, the kernel of our

method includes the pixel classification by the RMM, the angular

location detection by the MRF, and the refinement of the calcified

plaque by the predefined constraints. Due to the superposition of

ultrasonic signals in the vessel and the influence from the speckle

noise, the pixel intensity of different tissues in the IVUS image can

be described by the probabilistic model. Comparing with the

widely used Gaussian mixture model [40] [41], the RMM is more

appropriate to describe the distribution of pixel intensity in the

IVUS image because the statistics of the pixel intensity relies on

the speckle induced by a lot of randomly located scatters, and can

be well modeled by the Rayleigh distribution. The pixel

classification by the RMM facilitates to the subsequent step of

the proposed method for the location of the calcified plaque,

because it can make the class number of pixels decrease from the

level of the gray intensity to the component number of RMM,

which can also be considered to improve the between-class

difference and reduce the within-class difference of the image

pxiels. Moreover, unlike the RMM applied in IVUS previously [9]

[10] [42], we add the spatial relationship into the RMM

classification. Because the vascular tissues have the spatial

continuity in anatomy, the pixel values of the neighboring pixels

in IVUS images are statistically dependent. The dependence can

help to improve the robustness of the RMM classification to the

noise because the prior probability generated by the dependent

relationship in Equation (10) - Equation (13) has an effect on the

local smooth. Similarly, the calcified plaque can also be considered

to have the angular spatial relationship because it grows along the

vessel wall. Therefore, we consider that the calcified plaque has the

Markovianity along the angular axis of the IVUS image in polar

coordinate, and the MRF can be used to determine the angular

location of the calcified plaque based on the results of the RMM

classification. However, the angular location of the calcified plaque

is still influenced by the noise and error in the RMM classification.

Therefore, the refinement of the calcified plaque is needed. In the

refinement, five predefined constraints are proposed by consider-

ing different aspects of the calcified plaque: the gray intensity, the

growth direction, the angular length and the corresponding

acoustic shadowing. And any calcified plaque not satisfying these

constraints can be considered as the pseudo calcification and then

removed. In addition, different some previous works [13], our

detection method does not rely on the beforehand detection of the

lumen border and/or the media-adventitia border, which can save

the computation cost and moreover avoid the error in the

detection of the calcified plaque resulting from the error of the

vessel border detection.

Secondly, the between-patient difference of our method is also

investigated to further examine the robustness of our method. In

the linear regression and the Bland-Altman analysis, the perfor-

mances of our method tested separately from Patient 1 to Patient 8

are compared. Table 2 presents the standard deviation of the

correlation coefficient r in linear regression for every measure (AL,

AC, PA, PT and DC) in different patients are smaller than 0.15.

Table 3 shows the standard deviation of r1, r2 and r3 in the Bland-

Altman analysis for every measure in different patients are smaller

than 0.11, 0.23, and 2.61%, respectively, which means that there

is no significant between-patient difference of our method with

respect to the correlation and the agreement. In addition, the

overlap between the calcified plaques detected by our method and

by manual drawing in different patients is shown in Table 4,

where the standard deviation of the mean values of the sensitivity

Table 5. The computing time of the proposed method is formulated as mean + standard deviation measured by the second.

RMM MRF Refinement Border Detection Other Total

Experimental Group 2.43+0.14 3.35+0.02 0.03+0.01 0.15+0.01 0.91+0.01 6.81+0.21

Control Group 2.05+0.05 2.81+0.04 0.02+0.01 0.0009 + 0.0001 0.49+0.01 5.26+0.08

‘‘RMM’’,‘‘MRF’’,‘‘Refinement’’,‘‘Border Detection’’ represent the computing time in the pixel classification by the RMM, the angular location detection of the calcified
plaque by the MRF, the refinement of the calcified plaque and the border detection by the graph searching method, respectively. ‘‘Total’’ represents the computing
time of the total method, and ‘‘Other’’ represents the computing time of the total method excluding the above parts.
doi:10.1371/journal.pone.0109997.t005

Table 4. The results of the overlapping rate between the calcified plaques detected by our method and drawn by manual.

Patient Sensitivity Specificity

1 85.60%67.23% 99.63%60.18%

2 84.63%612.05% 99.79%60.15%

3 76.47%612.96% 99.80%60.13%

4 78.95%68.00% 99.83%60.08%

5 85.14%611.44% 99.60%60.20%

6 84.10%610.61% 99.74%60.19%

7 88.03%67.18% 99.85%60.07%

8 85.65%68.70% 99.68%60.17%

1–8 83.79%612.61% 99.74%60.18%

The sensitivity represents the percentage of the pixels correctly identified inside the calcified plaque, and the specificity represents the percentage of the pixels correctly
identified outside the calcified plaque.
doi:10.1371/journal.pone.0109997.t004
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and specificity (3.85% and 0.09%) represents that overlapping rate

has small difference in different patients. Therefore, we can

conclude that our method has similar performance in different

patients.

Computational Cost
The computational cost of our method is presented in Table 5.

Firstly, the computation cost over the experimental group is

compared with the control group. The result shows that our

method runs faster about 1.6s in the control group than in the

experimental group, because the refinement of the calcified plaque

will spend less time and the border tracing by the graph searching

will not be executed when the IVUS image does not contain the

calcified plaque with acoustic shadowing. Secondly, by comparing

different parts in our method, we can see that the pixel

classification by the RMM and angular location detection of the

calcified plaque by MRF take the two most computational costs in

the process of our method (35% and 49% in the experimental

group and 39% and 53% in the control group), because the two

parts of our method contain plenty of iteration operations.

Moreover, the standard deviations of the cost in each parts of

our method are small (v0.14s), and that implies the computa-

tional cost is hardly affected by the variation of the plaque size. In

addition, the cost of our method (‘‘others’’ in Table 5) excluding

the RMM classification, the angular location detection by MRF,

the refinement and the border detection spends 13% and 9% of

the total cost in the experimental group and the control group,

respectively, and it might be reduced by optimizing the

programming code in order to improve the computational

efficiency.

Future Work
In the future, we will improve the efficiency of our method in

two aspects: one is to improve the model for IVUS; the other is to

improve the prior knowledge about the plaque. Firstly, we will try

to apply different probabilistic mixture models for more appro-

priately describing the pixel intensity in the IVUS images, and use

more complex graphical models to instead of the MRF in order to

improve the detection accuracy of the calcified plaque. Secondly,

we will add some high-level prior knowledge into the RMM in

order to consider each kind of tissues as a whole for facilitating the

pixel classification. In addition, in order to combine the above two

aspects, the supervised scheme can be used by training the plaque

models based on the more complex predefined features of the

calcified plaque for better performance of our method.

Conclusion

The computer-aided detection of the calcified plaque with

acoustic shadowing is vital in the quantitative analysis of IVUS

images. In this paper, a method based on the Rayleigh mixture

model, the Markov random field and the graph searching

algorithm is proposed for the automatic detection of the calcified

plaque. Additionally, the proposed method includes a refinement

strategy to remove pseudo calcified plaques based on the

predefined constraints about the calcification. The performance

evaluation between the proposed automatic detection method and

the manual drawing method (by one cardiologist) was performed

over 996 in-vivo coronary IVUS images acquired from 8 patients

with two aspects. The first aspect is the evaluation of the accuracy

to correctly identify the IVUS images with or without the calcified

plaque, and it was measured by the test of the sensitivity and

specificity. The results shown that there is high correct rate of

identifying the IVUS image including or excluding the calcified

plaque with sensitivity 94.68% and specificity 95.82%. The other

aspect is the evaluation of the accuracy to locate the calcified

plaque by the linear regression, the Bland-Altman analysis and the

overlapping rate between the calcified plaques separately detected

by our method and by manual drawing. The linear regression

shown that the purposed automatic method is correlated very well

with the manual drawing method over four measurements

(angular length, angular center, plaque area and the distance to

catheter) with high correlation coefficients, and the Bland-Altman

analysis demonstrated a high level of agreement between our

method and the manual drawing method with w93% results

falling within the 95% confidence interval. In addition, the

sensitivity (83.79%) and specificity (99.74%) used to measure the

overlapping rate shown that the calcified plaques detected by our

method and drawn by manual measured are matched well. These

results demonstrated the effectiveness of our method in the

detection of the calcified plaque with acoustic shadowing in IVUS

images.

Appendices

A Constructing the RMM model
The RMM can be formulated as,

P(Yi)~
XK

j~1

pijP(Yi Dvj) ð8Þ

where Yi is the ith pixel in the IVUS image, P(Yi) is the

probability density function of Yi in the RMM, pij is the prior

probability, K is number of mixture components in the RMM, vj

is the parameter vector of the jth component, and P(Yi Dvj) is the

probability density function of Yi in the jth component. P(Yi Dvj)

can be formulated by the Rayleigh distribution with parameter vj

[43],

P(Yi Dvj)~
Yi{aj

s2
j

exp {
(Yi{aj)

2

2s2
j

 !
ð9Þ

where sj is the mode, aj is the translation component and

vj~faj ,sjg.
The construction of the prior pij in the RMM considers the

neighboring relationship among pixels in IVUS images, inspired

by [44] and computed as follows:

1. Define the weight of the ith pixel in the jth component of the

RMM as jj(Yi),

jj(Yi)~
Y i{cj

b2
j

exp {
(Y i{cj)

2

2b2
j

 !
ð10Þ

where cj and bj (j~1,2,::,K ) are parameters, and Y i is the mean

value of pixels in the neighborhood Ni of the ith pixel, formulated

as

Y i~
1

Mz1
(Yiz

X
m[Ni

Ym) ð11Þ

where M is the number of pixels in the neighborhood Ni .

2. Define the weight of the ith pixel and its neighborhood Ni in

the jth component of the RMM as qj(Yi),
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qj(Yi)~½
1

M

X
m[Ni

jj(Ym)�a ð12Þ

where a is used to control the function shape of qj(Yi).

3. Define the prior probability pij as

pij~
qj(Yi)PK

k~1

qk(Yi)

ð13Þ

In Equation (13), the normalization of qj(Yi) aims to translate

the range of pij into ½0,1�.

B Formulating the E-step and the M-step in the EM
algorithm

In the E-step, the objective function of the EM algorithm for the

RMM can be formulated as

Q(H,H(t))~
XN

i~1

XK

j~1

log (pij)P(jjYi,H
(t))

z
XN

i~1

XK

j~1

log (P(Yijvj))P(vj jYi,H
(t))

ð14Þ

where H(t) is the known parameters in the tth iteration, H is the

unknown or updating parameters in the tth iteration, P(vj DYi,H
(t))

is the posterior distribution and P(Yi Dvj) is class-conditional

probability density. Because the first term in the righthand of

Equation (14) does not contain the parameters fvjg, and the

second term of that does not contain the prior probabilities fpijg,
the maximization of the objective function Q(H,H(t)) can be

simplified to separately maximize the first term in the righthand of

Equation (14) with respect to the parameter set fvjg, and to

maximize the second term of that with respect to the prior fpijg.
In the M-step, we employ the steepest-descent method [45] to

maximize the objective function Q(H,H(t)) in order to update the

parameter set H,

H(tz1)~H(t){g
LQ(H,H(t))

LH
ð15Þ

where g~0:01 is the learning rate. Let Q be the abbreviation of

Q(H,H(t)), and
LQ

LH
can be written as a matrix,

LQ

LH
~

LQ

Lh1

LQ

Lh2
:::

LQ

LhK

� �
~

LQ

La1

LQ

La2
:::

LQ

LaK

LQ

Ls1

LQ

Ls2
:::

LQ

LsK

LQ

Lc1

LQ

Lc2
:::

LQ

LcK

LQ

Lb1

LQ

Lb2
:::

LQ

LbK

LQ

La

LQ

La
:::

LQ

La

2
6666666666666664

3
7777777777777775

ð16Þ

LQ

Lhj

in Equation (16) can be calculated as follows:

1. The partial derivative of Q with respect to aj is

LQ

Laj

~{
XN

i~1

P(jDYi,H
(t))

Yi{aj

s2
j

{
1

Yi{aj

 !
ð17Þ

2. The partial derivative of Q with respect to sj is

LQ

Lsj

~{
XN

i~1

P(jDYi,H
(t)) {

2

sj

z
(Yi{aj)

2

s3
j

 !
ð18Þ

3. The partial derivative of Q with respect to cj is

LQ

Lcj

~
XN

i~1

P(jjYi ,H
(t))

a

Mqj (Yi)
1
a

X
m[Ni

(Y m{cj )
2

b4
j

{
1

b2
j

 !
: exp ({

(Y m{cj )
2

2b2
j

)

2
4

3
5

z
XN

i~1

XK

j~1

P(kjYi ,H
(t))

aqj (Yi)
a{1

a

M
PK
l~1

ql (Yi )

X
m[Ni

(Y m{cj )
2

b4
j

{
1

b2
j

 !
: exp {

(Y m{cj )
2

2b2
j

 !2
6664

3
7775
ð19Þ

4. The partial derivative of Q with respect to bj is

LQ

Lbj

~
XN

i~1

P(jjYi ,H
(t))

a

Mqj (Yi )
1
a

X
m[Ni

(Y m{cj )
3

b5
j

{2
Y m{cj

b3
j

 !
exp {

(Y m{cj )
2

2b2
j

 !2
4

3
5

z
XN

i~1

XK

k~1

P(kjYi ,H
(t))

aqj (Yi)
a{1

a

M
PK
l~1

ql (Yi)

X
m[Ni

(Y m{cj )
3

b5
j

{2
Y m{cj

b3
j

 !
exp {

(Y m{cj )
2

2b2
j

 !2
6664

3
7775
ð20Þ

5. The partial derivative of Q with respect to a is

LQ

La
~
XN

i~1

XK

j~1

P(jjYi ,H
(t)) log (qj(Yi)

1
a){

PK
k~1

qk(Yi) log qk(Yi)
1
a

� �
PK
l~1

ql (Yi)

2
6664

3
7775

8>>><
>>>:

9>>>=
>>>;
ð21Þ

C Estimating the RMM parameters by the EM algorithm
The estimation of the RMM parameters by the EM algorithm

can be divided into the following steps:

Step 1: initialize the parameter set H.

(1) The class number K is set at 5 and a is initialized as a(0)~2.

Then the k-means algorithm [24] is used to cluster pixels in the

IVUS image based on the gray intensity in order to find the mean

gray-scale values of K classes m(0)
1 ,m(0)

2 ,:::,m(0)
K , and denote

m(0)~½m(0)
1 ,m

(0)
2 ,:::,m(0)

K �.
(2) Let a

(0)
j be the minimum gray value of pixels in the above

class corresponding to m(0)
j , and denote the translation component

by a(0)~½a(0)
1 ,a

(0)
2 ,:::,a(0)

K �.

ð19Þ

ð20Þ

ð21Þ
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(3) The relationship among the mean value m, the mode s and

the translation component a are deduced from the Rayleigh

distribution [46] is

m~azs

ffiffiffi
p

2

r
ð22Þ

So the mode s(0)~½s(0)
1 ,s

(0)
2 ,:::,s(0)

K � can be computed from

Equation (22) as

s(0)~(m(0){a(0))

ffiffiffi
2

p

r
ð23Þ

(4) Let c(0)~a(0) and b(0)~s(0).

Step 2: compute the posterior probability.

For i~1,2,:::,N and j~1,2,:::,K , the class-conditional proba-

bility density P(Yi Dv
(t)
j ) and the prior p

(t)
ij can be computed by

Equation (9) and Equation (13), respectively. Then we can

compute the posterior probability P(jDYi,H
(t)) by the Bayesian

theorem [24] as

P(jjYi,H
(t))~

P(j,YijH(t))

P(YijH(t))
~

P(jjH(t))P(YijH(t),j)PK
k~1

P(kjH(t))P(YijH(t),j)

~
p

(t)
ij P(Yijv(t)

j )PK
k~1

p(t)
ik P(Yijv(t)

k )

ð24Þ

Step 3: update the parameter set.

By substituting Equation (24) into Equation (17) - Equation (21),

Equation (16) can be computed. Then we substitute Equation (16)

into Equation (15) in order to update the parameter set from H(t)

to H(tz1).

Step 4: reach the convergence.

After the tth iteration, if DH(tz1){H(t{1)Dv0:0001, the iteration

process can reach the convergence. If not, return to the Step 2 and

continue the iteration.

D Computing the prior of the MRF
The prior of the MRF can be computed as follows. Firstly, the

dark region in I below MIC is located by the results of RMM

classification, which contains the acoustic shadowing behind the

calcified plaque. In IR, we can compute the mean gray-scale values

of pixels from the Class 1 to the Class K , denoted by m�1,m�2,:::,m�K ,

respectively, where the two smallest values m�i ,m�j can be found,

and the set of the pixels in the two classes corresponding to m�i and

m�j can be considered as the dark region in I, denoted by RD. Then

we define a binary image ID, as the same size as I, to indicate the

location of RD, formulated as

ID(x,y)~
1

0

,

,

(x,y)[RD

(x,y)6 [RD

(
ð25Þ

where ID is shown in Figure 2(f). The upper border of RD can

be defined as the boundary between RD and the other region in

ID, denoted by Lu~fq1,q2,:::,qWg, where qi is the row coordinate

value of the pixel on the upper border and in the ith column of ID.

Lu can be computed as

Lu~fqi DVi[½1,W �,Vyvqi,ID(i,qi)~1,ID(i,y)~0g ð26Þ

where Lu is shown in Figure 2(f). Secondly, the relationship

between Z1,Z2,:::,ZW and Y1,Y2,:::,YW can be influenced by

three factors: the distance from the upper border Lu to the edge of

the imaging area in IVUS, the distance from Lu to MIC, and the

mean gray-scale value in the region between Lu and MIC, which

are denoted by Fh, Fd , Fu, respectively. Fh, Fd , Fu are formulated

as

Fh~ff h
1 ,f h

2 ,:::,f h
Wg, where f h

i ~H{qi, i~1,2,:::,W

Fd~ff d
1 ,f d

2 ,:::,f d
Wg, where f d

i ~qi{pi , i~1,2,:::,W

Fu~ff u
1 ,f u

2 ,:::,f u
Wg, where f u

i ~
1

qi{piz1

Xqi

j~pi

I(i,j), i~1,2,:::,W

ð27Þ

where f h
i , f d

i , f u
i are the values of Fh, Fd , Fu with respect to the ith column

of I, respectively. At last, the prior of the MRF, denoted by F, can be

quantified as

F~ff1,f2,:::,fWg, where fi~
h1f h

i zh2f d
i zh3f u

i

255
, i~1,2,:::,W ð28Þ

where h1,h2, and h3 are weights in order to turn Fh, Fd and Fu into the

same order of magnitude. In our method, h1~5,h2~{0:5,h3~{1.

E Solving the MRF by the BP algorithm
The BP algorithm can be divided into three parts: the

initialization of the MRF and belief propagation messages, the

iterative process and the convergence criterion.

(1) Initialization

For i~1,2,:::,W , the marginal probabilities of Zi~z1 and

Zi~{1 are firstly initialized to be equal, that is, the marginal

probabilities are formulated as

P(Zi~{1)~P(Zi~z1)~0:5 ð29Þ

and the belief at Zi is initialized as the marginal probabilities,

b
(0)
i (Zi~{1)~P(Zi~{1)~0:5

b
(0)
i (Zi~z1)~P(Zi~z1)~0:5

ð30Þ

Then the local evidence w(Zi,Yi) can be represented as the

prior of the BP, that is, quantified by F~ff1,f2,:::,fWg in Equation

(28) as

wi(Zi,Yi)~fi ð31Þ

where fwi(Zi,Yi)g are invariant in the iteration. Next, if Zj is in

the neighborhood of Zi, the relationship between Zi and Zj can be

represented by the compatible function y(Zi,Zj), formulated as

ð27Þ

ð28Þ
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yi,j(Zi,Zj)~
0:8, Zi~Zj

0:2, Zi=Zj

�
ð32Þ

where yi,j(Zi,Zj) are not updated in the iteration. In addition, the

message from Zi to Zj , denoted by mi,j(Zj), is initialized as

m
(0)
i,j (Zj)~1 ð33Þ

(2) Iteration

If Zj is in the neighborhood of Zi, we can compute the message

m
(t)
i,j (Zj) from Zi to Zj at the tth iteration as

m
(t)
i,j (Zj)~

X
Zi

wi(Zi,Yi)yi,j(Zi,Zj) P
k[Ni \ j

m
(t)
k,i(Zi) ð34Þ

Then the belief b
(t)
i (Zi) of Zi can be computed as

b
(t)
i (Zi)~kwi(Zi,Yi)P

j[Ni

m
(t)
j,i (Zi) ð35Þ

where Ni is the neighborhood of Zi. The superscript ‘‘(t)’’ in

Equation (34) (35) represent the corresponding variables are in the

tth iteration.

(3) Convergence

The convergence criterion is formulated as follow,

1

W

XW
i~1

Db(tz1)(Zi){b(t)(Zi)Dve ð36Þ

where e is set to be 0.001 in our method. If Equation (36) is

satisfied, the iteration can be terminated.

F Defining the constraints for refining the calcified
plaque

All detected calcified plaques can be combined into a set,

denoted by Rc. With respect to any calcified plaque in Rc with left

border dl and right border dr, we define five constraints in order

to examine whether the calcified plaque is the pseudo calcified

plaque or not:

(1) Constraint 1: the coordinates of pixels on MIC between dl

and dr can be represented as (j,pj),j~dl ,dlz1,:::,dr. In these

dr{dlz1 pixels, we compute the rate of the pixels with the gray

value larger than the threshold T1, formulated as

rc~
1

dr{dlz1

Xdr

j~dl

G(I(j,pj)) ð37Þ

where G(x,y) is an indicator function,

G(x,y)~
1, I(x,y)§T1

0, I(x,y)vT1

�
ð38Þ

Then the rate rc should satisfy

rcwT2 ð39Þ

where T1~200 and T2~0:3 in our method. If Equation (39) is not

satisfied, the calcified plaque can be considered pseudo and

removed out of Rc.

(2) Constraint 2: the absolute value of the slope of the line

between (dl ,pdl ) and (dr,pdr ) in I should be smaller than the

threshold T3, formulated as

D
pdr{p

dl

dr{dl
DvT3 ð40Þ

where T3~1 in our method. If Equation (40) is not satisfied, the

calcified plaque can be considered pseudo and removed out of Rc.

(3) Constraint 3: the length of the calcified plaque along the

angular axis in I can be represented as W c~dr{dl , and then the

length should be smaller than the threshold T4, formulated as

W c
vT4 ð41Þ

where T4~300 in our method. If Equation (41) is not satisfied, the

calcified plaque can be considered pseudo and removed out of Rc.

(4) Constraint 4: two columns sl and sr in I are firstly computed

as

sl~dl{W c, sr~drzW c ð42Þ

Then the left region, right region and shadowing region of the

calcified plaque can be defined based on sl and sr, shown in

Figure 3(a): (1) the left region is surrounded by four borders in I:

the left border, right border and lower border are three lines

between (sl ,psl ) and (sl ,H), between (dl ,pdl ) and (dl ,H), between

(sl ,H) and (dl ,H), respectively, and the upper border is a part of

MIC between (sl ,psl ) and (dl ,pdl ); (2) similarly, the right region is

surrounded by four borders: the left border, right border and

lower border are three lines between (dr,pdr ) and (dr,H), between

(sr,psr ) and (sr,H), between (dr,H) and (sr,H), respectively, and

the upper border is a part of MIC between (dr,pdr ) and (sr,psr ); (3)

the shadowing region is also surrounded by four borders: the left

Figure 9. The left and right yellow points represent the points
with coordinate (e,pe) and (g,pe), respectively. The red curve and

the green curve are Lm and Lu, respectively. The region below Lu is RD.
Na is the number of pixels inside the intersection between the blue

dashed rectangle and RD. Nu is the number of pixels inside the

intersection between the red dashed rectangle and RD.
doi:10.1371/journal.pone.0109997.g009
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border, right border and lower border are three lines between

(dl ,pdl ) and (dl ,H), between (dr,pdr ) and (dr,H), between (dl ,H)
and (dr,H), respectively, and the upper border is a part of MIC

between (dl ,pdl ) and (dr,pdr ). Next, the mean gray values of pixels

within the shadowing region, the left region and the right region of

the calcified plaque are computed, denoted by mm, ml and mr,

respectively, and the three mean values should satisfy

ml
wmm, mr

wmm

1

2
(mlzmr){mm

wT5

ð43Þ

where T5~20 in our method. If Equation (43) is not satisfied, the

calcified plaque can be considered pseudo and removed out of Rc.

(5) Constraint 5: with respect to the left border dl of the calcified

plaque, we can firstly find a pixel at (e,pe) on MIC satisfying

(evdl)

Vi,j[½e,dl �, if jwi, then piƒpj ð44Þ

Similarly, with respect the right border dr, another pixel (g,pg)

on MIC satisfying (gwdr)

Vi,j[½dr,g�, if jwi, then pi§pj ð45Þ

Then the maximum value between pe and pg can be found,

formulated as

p’~ max (pe,pg) ð46Þ

Next, let Nu be the number of pixels in the intersection between

RD and a rectangle with vertices (e,p’), (g,p’), (e,H), (g,H), and

Na be the number of pixels in the intersection between RD and a

rectangle with vertices (e,p’), (g,p’), (e,1), (g,1). The regions

correspond to Na and Nu are shown in Figure 9, and the following

conditions should be satisfied:

Na=(g{e)wT6 ð47Þ

Nu=(g{e)wT7 ð48Þ

where T6~0:3 and T7~5 in our method. If Equation (47) and

Equation (48) are not both satisfied, then the calcified plaque can

be considered pseudo and removed out of Rc.
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