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Abstract

Background: Acylation of peptide drugs with fatty acid chains has proven beneficial for prolonging systemic circulation as
well as increasing enzymatic stability without disrupting biological potency. Acylation has furthermore been shown to
increase interactions with the lipid membranes of mammalian cells. The extent to which such interactions hinder or benefit
delivery of acylated peptide drugs across cellular barriers such as the intestinal epithelia is currently unknown. The present
study investigates the effect of acylating peptide drugs from a drug delivery perspective.

Purpose: We hypothesize that the membrane interaction is an important parameter for intestinal translocation, which may
be used to optimize the acylation chain length for intestinal permeation. This work aims to characterize acylated analogues
of the intestinotrophic Glucagon-like peptide-2 by systematically increasing acyl chain length, in order to elucidate its
influence on membrane interaction and intestinal cell translocation in vitro.

Results: Peptide self-association and binding to both model lipid and cell membranes was found to increase gradually with
acyl chain length, whereas translocation across Caco-2 cells depended non-linearly on chain length. Short and medium acyl
chains increased translocation compared to the native peptide, but long chain acylation displayed no improvement in
translocation. Co-administration of a paracellular absorption enhancer was found to increase translocation irrespective of
acyl chain length, whereas a transcellular enhancer displayed increased synergy with the long chain acylation.

Conclusions: These results show that membrane interactions play a prominent role during intestinal translocation of an
acylated peptide. Acylation benefits permeation for shorter and medium chains due to increased membrane interactions,
however, for longer chains insertion in the membrane becomes dominant and hinders translocation, i.e. the peptides get
‘stuck’ in the cell membrane. Applying a transcellular absorption enhancer increases the dynamics of membrane insertion
and detachment by fluidizing the membrane, thus facilitating its effects primarily on membrane associated peptides.
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[2,4,7,8], including several marketed drugs (e.g.
Glucagon-like peptide-1).

Introduction

Acylation of peptides with fatty acids is a naturally occurring

insulin and

post-translational modification, which has inspired alteration of
therapeutic peptides for drug delivery. Acylation prolongs the
systemic circulation half-life of otherwise rapidly cleared peptide
drugs, through increased enzymatic stability [1-3] and binding to -
and piggy-backing on - serum albumin [4]. An additional effect of
acylation is increased peptide self-association and aggregation,
which has been employed to ensure prolonged release of peptide
drugs following subcutaneous injection [5]. Acylation can be
performed without disrupting the peptide’s biological potency [6],
and has been employed for a multitude of therapeutic peptides
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The increased enzymatic stability of acylated peptides is
particularly beneficial for oral administration, due to the highly
metabolic environment in the stomach and intestine [9]. Another
requirement for oral drug delivery is adequate absorption through
the intestinal epithelial barrier, which is a major challenge for
large, hydrophillic peptide drugs [10]. A widely used method for
predicting oral absorption in vivo is in vitro quantification of
translocation across monolayers of the human colon cancer cell
line (Caco-2), which has been shown to correlate well with oral
bioavailability [11,12]. Acylation has previously been shown to
increase intestinal permeability of peptide drugs [6,7,13], but
detailed investigations of systematic acyl variations are lacking,
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which would benefit rational new designs of peptide drugs. The in
vitro intestinal translocation studies can be further supplemented
by measurements of peptide binding to model lipid membranes
[14-16] in order to investigate the influence of membrane binding
of acylated peptides on cellular membrane translocation.

Glucagon-like peptide-2 (GLP-2) is a 33 amino acid peptide,
which is secreted from the human intestine following nutrient
intake [17,18]. Therapeutically, GLP-2 stimulates intestinal
growth and is employed in the treatment of inflammatory bowel
diseases (e.g. Crohn’s disease) and short bowel syndrome (e.g.
following intestinal surgery) [19,20]. The plasma half-life of GLP-2
in humans is limited to a few minutes [21] due to extensive renal
clearance and rapid enzymatic degradation by dipeptidyl pepti-
dase-4 [21,22]. Furthermore, GLP-2 is presently administered as
subcutaneous injections, which compromises patient comfort and
compliance, in particular for chronic diseases like Crohn’s. It
would be highly beneficial to enable oral administration, and the
combined effects of prolonged circulation time, improved enzy-
matic stability and intestinal permeability may render acylated
GLP-2 a suitable candidate for oral drug delivery. Currently,
however, there are no reports on the intestinal permeability or oral
drug delivery potential of acylated GLP-2.

In the present study we synthesized and characterized acylated
analogues of GLP-2, with systematically increasing acyl chain
length, in order to investigate the effect of the acyl chain on
membrane interaction and i vilro intestinal permeability. This
was achieved by combining investigations of the interaction with
lipid membranes and translocation across an intestinal cell model,
as outlined in fig. 1.

We hypothesize that the acylation chain length can be
optimized for translocation across the intestinal barrier, ie. a
moderate interaction with the lipid cell membrane is beneficial for
translocation, whereas a stronger interaction may impair translo-
cation. Acylation is expected to confer membrane affinity to GLP-
2, as the native peptide is not membrane active. In this regard,
GLP-2 was employed as a model peptide, however, the results may
be applicable for development of a rational acylation strategy for
other peptide drugs.

Absorption enhancers are often employed to increase oral
peptide absorption, which makes it interesting to investigate how
these affect the translocation of acylated peptides [23]. In the
present study we included two enhancers with different enhancing
mechanism, in order to investigate the effect of the enhancing
mechanism. Ethylene glycol-bis(f-aminoethyl ether)-N, N, N, N-
tetraacetic acid (EGTA) is a paracellular enhancer which increases
transport between the cells by opening of the tight junctions [24],
and sodium dodecyl sulfate (SDS) is a transcellular enhancer which
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increases transport through the cells at low concentrations,
predominantly by fluidizing the cell membrane [25].

We hypothesize that the effect of paracellular enhancers will not
be influenced by acylation, whereas the effect of transcellular
enhancers that directly interact with the cell membrane may
depend on the peptide-membrane interaction, through altered
membrane affinity and/or dynamics of membrane insertion.

Materials and Methods

Materials

Resin and natural amino acids were purchased at Novabiochem
(Germany). 8, c12 and c16 carboxylic acids, Fmoc-beta-Alanine
and native GLP-2 were provided by Novo Nordisk A/S.
Palmitoyloleoylglycerophosphocholine  (POPC) was purchased
from Avanti Polar Lipids (USA). HEPES, Ovalbumin (OVA,
from chicken egg white) and other standard chemicals were
purchased from Sigma-Aldrich (Denmark). DMEM medium, 1-
glutamine and penicillin/streptomycin was purchased from Lonza
(Switzerland). HBSS buffer, fetal bovine serum (FBS), nonessential
amino acid and other standard cell culture products were
purchased from Gibco (Denmark). Radioactively labeled
[*H]mannitol, scintillation fluid (Microscint-40), luciferase sub-
strate (SteadyLite) and 96-well plates for luciferase assay
(CulturPlate, black) were purchased from PerkinElmer (USA). 12
well Transwell plates for Caco-2 cell monolayers (polycarbonate,
12 mm, pore size 0.4 uM) were purchased from Corning Costar
Corp. (USA). GLP-2R BHK cells were provided by Novo Nordisk
(the cloning was previously described by Thulesen et al. [26] and
Sams et al. [27]) and Caco-2 cells (HTB-37) were purchased from
ATCC.

Peptide synthesis

The peptides were synthesized by automated Fmoc based SPPS,
using a preloaded Fmoc-Asp(OtBu)-Wang polystyrene LL resin in
0.25 mmol scale on a CEM Liberty microwave peptide synthesizer
(CEM Corporation, NC) using standard protocols, with a modified
coupling temperature of 50°C [28]. Fmoc deprotection was
carried out in 5% piperidine and 0.05 M HOBt in NMP.

The acylation was conjugated to the lysine side chain by
incorporation of lysine as Lys(Mtt), which allowed chemical
modification using the standard coupling procedures stated above,
following Mtt removal. The Mtt group was removed by washing
the resin with DCM and suspending the resin in neat (undiluted)
hexafluoroisopropanol for 20 minutes followed by washing with
DCM and NMP. After synthesis the resin was washed with DCM,
and the peptide was cleaved from the resin by a 3 hour treatment

Lipid mémbrane

Figure 1. Schematic illustration of the study objective. The membrane interaction and in vitro permeability of acylated GLP-2 is investigated

using an intestinal cell model and model lipid membranes.
doi:10.1371/journal.pone.0109939.g001
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with TFA/TIPS/H,0 (95/2.5/2.5) followed by precipitation
with diethylether. The peptide was dissolved in a suitable solvent
(e.g. 1:1 MeCN : H,0) and purified by preparative HPLC on an
XBridge c18 column (Waters), using a gradient from 10% MeCN/
Buffer (10 mM TRIS and 15 mM (NH4),SO4, pH 7.3) to 50%
MeCN over 40 min, flow rate 60 mL/min. The fractions were
analysed by a combination of UPLC and LCMS methods, and the
appropriate fractions were pooled and transferred to TFA salt for
lyophilization, using a gradient from 10% MeCN/0.1% TFA/
MQ to 60% MeCN. The peptides were finally quantified using a
chemiluminescent nitrogen detector, as previously described by
Fujinari et al. [29].

The isoelectric point of GLP-2 is approximately 4, with a
theoretical charge of -4 at neutral pH, and the analogues are
expected to be very similar.

Liposome preparation and characterization

POPC lipid films were prepared by evaporation from chlor-
oform:methanol (9:1 v/v) using a gentle nitrogen flow. The
residual organic solvent was evaporated in vacuum overnight and
the lipid films were rehydrated to 25 mM in HEPES buffer
(10 mM HEPES, 150 mM NaCl, pH 7.4) at room temperature
with frequent vigorous agitation for 1 hour. The multilamellar
lipid suspensions were subjected to 10 cycles of freeze-thawing
(isopropanol/dry-ice and 40°C water bath) and extruded to
100 nm liposomes by passing it 21 times through a 100 nm
polycarbonate filter in a manual extruder (Avanti Polar Lipids).
[30]

The liposome hydrodynamic size after extrusion was measured
in a ZetaPALS Zeta Potential Analyzer (Brookhaven Instruments
Corporation), after dilution to 50 uM in sterile filtered HEPES
buffer. In all experiments the liposome diameter was 130+ 5 nm
with PDI 0.1.

The lipid concentration in liposome suspensions after extrusion
was determined by phosphorous analysis, as previously described
by Rouser et al. [31]. Briefly, the phospholipid sample was
degraded with heat and perchloric acid, reacted with ammonium
molybdate and reduced by ascorbic acid. Absorbance of the
resulting molybdenum oxides (molybdenum blue) was measured at
812 nm, and lipid sample concentration was determined from a
phosphate standard row. All samples were measured in triplicates.
A typical final concentration after extrusion at 25 mM was

22.540.1 mM.

Tryptophan fluorescence measurements

Peptide self-association. Fluorescence measurements were
carried out using an OLIS SLMB8000 fluorescence spectrometer
equipped with excitation and emission monochromators and
polarizers. Tryptophan was excited at 280 nm and emission scans
were aquired from 300 to 400 nm with 2 nm step size, 2 s
integration time and slit widths 16 nm. Quartz cuvettes with an
excitation pathway of 10 mm and an emission pathway of 4 mm
were used with 1 mL sample volume. Peptide samples in the
concentration range 0.5-100 uM were prepared directly in the
cuvette from 100 uM stock solutions in sterile filtered HEPES
buffer. Temperature was maintained at 37°C via an external water
bath, and the solutions were mixed by magnet stirring in the
cuvette.

The recorded spectra were fitted to obtain the peak position and
intensity, as described by Burstein et al. [32], using an iterative
least-squares fit (built-in in Gnuplot). Self-association of the
peptides causes a blue-shift and increase in tryptophan maximum
fluorescence, due to increased hydrophobicity near the tryptophan
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residue, and the blue-shift is used as an indicator of self-
association.

Liposome partitioning. Fluorescence measurements were
conducted similarly to self-association experiments, with integra-
tion time 4 s, slit widths 8 nm (excitation) and 16 nm (emission)
and polarizers set to 90° (excitation) and 0° (emission).

The peptide solution was prepared directly in the cuvette and
was subsequently titrated with a 20 mM liposome suspension. The
peptide was used at a concentration (2 uM) below its self-
association concentration, to avoid any signal from self-association.

The fluorescence was initially measured as full wavelength scans
(300-400 nm), where the wavelength yielding the largest change
with liposome addition was identified (344 nm). Subsequently, the
fluorescence was measured as time-scans at 344 nm, and the
fluorescence after each liposome addition measured for 5 minutes
(increased and stabilized rapidly) and averaged over the last 3
minutes. It was verified that the fluorescence did not change
substantially after the 5 minute measurement (up to 1.5 h).

Liposome partitioning model

The membrane partitioning model is described in detail by
Etzerodt et al. [33]. Briefly, the tryptophan fluorescence after the
i'th addition of liposome (F;) depends on the lipid concentration
after the i'th addition (Cjp;) and the partition coefficient (K)
through:

K- Clip,i

Fi=Fy+Fr — Fo) Cot K Cho
w ip,i

(1)

where Fy is the initial fluorescence of peptide alone, C,, is the
concentration of water (55 M) and Fj, is the fluorescence at “full’
partitioning, i.e. after infinite liposome addition, which is a fitted
value.

eq. 1 is reorganized to yield
F—F K Cy, 2
Fi)zf —F Cy+K- C/ip,i

which is equal to the concentration of peptide bound in the
membrane Cjs divided by the total concentration of peptide Ciy;,
i.e. the fraction of peptide that is membrane-bound. eq. 2 was used
for plotting (the left hand side) and fitting (the right hand side),
where the fit was an iterative least-squares fit with respect to K and
F,r (Gnuplot).

The partition coefficient K can be converted to the standard
Gibbs free energy of partitioning (AG®) through:

AG = —R-T- In(K) (3)

where R is the gas constant (8.314 J/(K mol)) and 7 is the
temperature (310 K). For simplicity, the absolute value of AG” is
displayed in graphs.

The partition coeflicient K is unitless, but can be converted to
the more commonly used molar partition coefficient (in units
M~h through dividing by the molarity of water (55 M).

Addition of liposomes to the peptide solution causes scattering
of excitation and emission light, which yields artifacts in the
experimental data that are accounted for by Ladokhin et al. [34].
To minimize these effects the fluorescence was measured using
cross-polarized light settings, where the excitation light was
horizontally polarized and the emission was measured vertically
polarized. This ensures that only the emitted light is measured, as
scattering does not alter the polarization, whereas fluorescence
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randomizes the polarization. However, scattering still causes a
decrease in measured fluorescence, which is corrected for by a
correction factor ®, measured by titrating the non-partitioning
probe L-Trp with liposomes:

Fr_gipi
@= “L-Twi 4
FLfTrp,O ( )

where Fy_ 7y, ; is the fluorescence of L-Trp after the i'th addition
of liposome and Fy _ 73, is the initial fluorescence before liposome
addition.

® was fitted to a polynomial, which was used to correct the
measured peptide fluorescence during titration with liposomes.

All fluorescence measurements were normalized for peptide
concentration, including the slight concentration decrease during
titration.

Interaction with cells

Luciferase assay. A BHK cell line (GLP-2R BHK) was
previously modified to stably express the human GLP-2 receptor,
which controls the expression of firefly luciferase [26,27].

GLP-2R cells were cultured in DMEM with 10% FCS, 100 U
penicillin, 100 ug/mL streptomycin, I mM Na-Pyruvate, 250 nM
methotrexate, 1 mg/ml geneticin and 0.4 mg/ml hygromycin.
The assay was performed in DMEM without phenol red,
containing 10 mM HEPES, 1% glutamax and 1 mg/ml OVA.

For experiments, cells were seeded in 96-well plates at
20.000 cells/well (100 uL/well) and incubated overnight. The
medium was removed and the cells were washed once and
replenished with 50 pL/well assay medium. The test solution
(containing peptide) was diluted in HBSS buffer (containing
10 mM HEPES and 1 mg/ml OVA, pH 7.4) and 50 uL/well was
added to the cells. The cells were incubated for 3 h (at 37°C and
5% CO,) and the test compound was removed. 100 pL/well
HBSS buffer was added along with 100 pL/well luciferase
substrate, the plate was sealed and incubated at room temperature
for 30 minutes. The luminescence (Relative Luminescence Units,
RLU) was measured in a topcounter (Packard Topcount) and
depends on the peptide concentration as:

B—4

RLU=A4 e = (5)

where x is log(concentration) of the peptide in M, and 4, B, C and
ECs are fitting parameters [35].

The peptide test solutions were diluted to fall within the
dynamic range of the assay (approximately 1-100 pM), and on
each plate with test solutions a peptide standard row was included,
which was fitted according to eq. 5 (using GraphPad Prism).

Caco-2 cells. Caco-2 cells (passage 40-65) were cultured
routinely [11] in DMEM with 10% (v/v) FBS, 1% (v/v)
nonessential amino acids, 100 U penicillin, 0.1 mg/mL strepto-
mycin and 2 mM L-glutamine. The Caco-2 cells were seeded at a
density of 1:10% cells/well on 12 well Transwells plates and grown
for 14-16 days in DMEM with media change every second day.
The cell layer was confirmed to consist of a single monolayer of
cells by fixing and staining the cell layer, and visualizing by
fluorescence microscopy.

Before transport experiments, DMEM medium was changed to
HBSS buffer (containing 10 mM HEPES and 0.1% (w/v) OVA;
0.4 mL apical side and 1 mL basolateral) and left to equilibrate for
60 minutes. Buffer was replaced apically by 0.4 mL test solution at
time zero, and the plates were incubated at 37°C and 5% CO,
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with gentle shaking. Test solutions contained 100 uM peptide and
0.8 uCi/mL [*H]mannitol (a permeability marker). Basolateral
samples of 200 uL were taken every 15 minutes for 1 hour, and
replaced by buffer. The apical test solution and basolateral
samples were diluted and analyzed for peptide content with the
luciferase assay and for [>H]mannitol content in a scintillation
counter (Packard TopCount), after mixing 1:1 with scintillation
fluid.

The integrity of cell monolayers before, during, and after
experiments was verified by measuring the the translocation of
radioactively labelled mannitol and the transepithelial electrical
resistance (TEER), using a Milicell ERS-2 epithelial volt-ohm
meter (Millipore, USA) [11]. Mannitol translocation and TEER
values were not affected by addition of peptide or analogues
compared to buffer.

After experiments, the cells were washed twice with buffer and
replenished with medium for 24 hour recovery, or washed thrice
with ice cold buffer and frozen at —80°C for cell binding and
uptake analysis.

For cell binding and uptake studies, all preparations were
carried out on ice, and all the buffers were ice cold. The filters
were cut out of the inserts and placed in 12 well plates with the cell
layer facing up. 250 uL of buffer was added and the cells were
scraped off carefully with a cell scraper. The scraping was
repeated, and the cell suspensions were pooled and centrifuged
(13.000 rpm, 20 min, 4°C). The supernatant was analyzed for
peptide content (cell uptake), and the pellet was resuspended in
buffer and vortexed thoroughly. The membrane-bound peptide
was recovered from the cell debris by addition of ethanol, followed
by thorough vortexing and centrifugation (13.000 rpm, 20 min,
4°C). The supernatant solvent was evaporated under nitrogen-
flow, and the dry peptide was dissolved in buffer and analyzed for
peptide content (cell membrane binding). The cell uptake and
membrane binding of peptide and analogues are displayed as the
total amount of peptide in the cell layer. It was tested whether the
recovery of peptide from cell debris was efficient and/or
dependent on acyl chain length. Peptide or analogues were added
to the cell debris pellet after the first centrifugation, taken from
control cell layers with no added peptide, and after following the
subsequent steps for membrane binding, the peptide recovery was
measured. Essentially all added peptide was recovered, and there
was no measurable difference for the different analogues.

The Caco-2 translocation of peptide or mannitol over Caco-2
layers is expressed as the apparent permeability (Pgp,), given by:

do 1
Papp=—~ 4G (6)

d
where 7? is the steady-state flux of peptide (pmol/s), 4 is the

surface area of the cell monolayer (1.12 cm?), and Cp is the initial
sample concentration added to the cell layer [11].

Data analysis

Statistical analysis was carried out using GraphPad Prism,
where unpaired Students t-tests were used for comparison and
significant differences required p<<0.05.

Results and Discussion

Characterization of peptide analogues

We synthesized and investigated native GLP-2 and the acylated
analogues shown in fig. 2, where the acyl chain is conjugated to
the ¢ —amino group of a lysine via a f—alanine spacer [8,36].
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Figure 2. Schematic representation of native GLP-2 and its acylated analogues. GLP-2 is acylated with c8, c12 or c16-chains (grey) at the
¢—amino group of Lys17 (blue) via a f—alanine spacer (green). The lysine residue replaces a leucine at position 17 and the natural lysine at position
30 in GLP-2 is mutated to an arginine (red). The aspartic acid at position 3 is mutated to a glutamic acid (red) to avoid racemization during synthesis.

None of these mutations caused measurable loss-of-function.
doi:10.1371/journal.pone.0109939.g002

The concentration-dependent self-association of GLP-2 and its
analogues was Investigated by tryptophan fluorescence (fig. 3).
The acyl chains confer increased hydrophobicity, causing self-
assembly at lower concentrations for the acylated analogues
compared to the native peptide. Furthermore, the self-association
concentration decreased with increasing acyl chain length,
consistent with increasing hydrophobicity.

At physiological ionic strength, the secondary structure of the
cl6 acylated analogue was similar to native GLP-2 (investigated by
circular dichroism (CD), see fig. S1). It is worth noting that the
buffer ionic strength is crucial for self-association, as no self-
association was observed with 0 or 10 mM NaCl. This is consistent
with electrostatic screening of the peptides’s multiple negative

5-
~ e
5 P o
¥ e
Ra BT
20 40 P - .

Concentration (uM)

Figure 3. Concentration-dependent self-association of GLP-2
and its analogues. Increasing concentration leads to a blue-shift and
increase in tryptophan maximum fluorescence, indicating self-associa-
tion of the peptides. Control experiments with L-Trp, which does not
self-associate, displayed no blue-shift. For the acylated analogues the
self-association concentration decreases with increasing chain length,
consistent with increased hydrophobicity which renders self-association
more favorable. Native GLP-2 is less prone to self-association, and
higher concentrations than the displayed 100 uM are required to reach
full self-association. Data points are mean + SD of 2 separate
experiments, and lines are provided to guide the eye. The sketch
serves as an illustration of self-association.
doi:10.1371/journal.pone.0109939.g003
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charges as a requirement for self-association. The peptide
oligomers of native GLP-2 and its cl6-analogue were character-
ized by static and dynamic light scattering (DLS/SLS) and
transmission electron microscopy (TEM), which showed that the
oligomers were spherical and well-defined in size (smaller for the
native peptide than the analogue), and composed of less than 10
monomers (see fig. S2).

Interaction with model lipid membranes

The partitioning of peptides into liposomes was quantified by
tryptophan fluorescence, in order to investigate the effect of
acylation on interactions with lipid membranes. The data
presented in fig. 4 shows that acylation of GLP-2 causes increased
partitioning into POPC membranes, where partitioning of native
GLP-2 is below the measurable limit and is not included in the
graphs. The standard Gibbs free energy of partitioning increases
linearly with acyl chain length for the investigated c8, c12 and c16-
chains, which is consistent with previous reports of acylated glycine
[37]. It is worth noting that the slope of this linear relationship is
lower for the GLP-2 analogues than for the acylated glycine
analogues, as reported by Peitzsch et al. [37]. This indicates that
the dependence of membrane affinity on acyl chain length is
influenced by the peptide or amino acid backbone, and that the
small glycine residue is more sensitive to chain length than the
larger GLP-2 peptide.

It should be noted that the peptides are used at a very low
concentration (2 M) in order to avoid self-association, and that
the peptide/lipid ratio is quite low. For subsequent cell experi-
ments (and possible therapeutic applications) the peptides are used
at higher concentrations, and the lipid concentration is not well-
defined. Therefore, caution should be exerted when comparing
liposome and cell results, and speculating on ¢ vivo applications.

Receptor activation

The biological activity of the analogues was verified in a
Luciferase assay (sketched in fig. 5), using a cell line stably
expressing the GLP-2 receptor and a luciferase gene, which is
transcribed upon receptor activation.
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Figure 4. Binding to neutral liposomes. Addition of POPC liposomes to 2 uM peptide solutions causes an increase in tryptophan fluorescence,
indicating partitioning of the peptides into the hydrophobic part of the lipid membrane. A) The peptide fluorescence during titration with POPC
liposomes, fitted according to eq. 2 (solid lines), which yields the partitioning coefficients (K) shown in B). For the acylated analogues the partitioning
coefficient increases with increasing chain length, and converting to the standard Gibbs free energy (4G°) according to eq. 3 yields a linear
relationship with the chain length, C). Native GLP-2 partitions very weekly into POPC liposomes, with values below the measurable limit (K<500
M~!), and GLP-2 is therefore not included in the figure. Data points represent mean + SD of 2 separate experiments and stars in B) indicate

significantly different values (p<<0.05). The sketch serves as an illustration of membrane-partitioning.

doi:10.1371/journal.pone.0109939.9004

Alteration of therapeutic peptides is accompanied by a risk of
reducing potency, and acylation is no exception. However,
through a rational choice of acylation site and type and/or
screening different acylations, it is often possible to limit the
deleterious effects on biological activity [36]. All of of the
investigated acylated GLP-2 analogues display similar function
compared to native GLP-2, suggesting that these acylations did
not negatively impact receptor binding and activation.

The assay is employed to measure picomolar concentrations of
GLP-2 and its analogues after in vitro experiments with Caco-2
cells, using peptide standard curves fitted according to eq. 5. Thus,
the advantage of this cell based reporter assay is its very high
sensitivity.

Interaction with Caco-2 cells

The Caco-2 setup is sketched in fig. 6. The translocation of
peptide over time from the apical (upper) chamber to the
basolateral (lower) chamber was measured, along with the amount
of peptide associated with the cells after an experiment, both in the
aqueous parts of the cells (uptake) and in the lipid membranes.

Peptide translocation. The translocation of GLP-2 and its
analogues is presented in fig. 7, where part A shows the
accumulated amount of peptide in the basolateral compartment
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during the 1 hour experiment and part B shows the apparent
permeability (Pyp,), calculated according to eq. 6.

The translocation depends non-trivially on the acylation chain
length, as the short and medium chains (c8 and c12) increase the
translocation relative to native GLP-2, but the long chain (c16)
decreases it slightly. This indicates an optimum chain length where
the translocation is increased by increased hydrophobicity and
intermediate membrane binding, whereas the long chain causes
too effective membrane insertion and strong binding, which limits
translocation. For the cl12 analogue, the increase in translocation
through acylation is roughly a factor 1.5 compared to native GLP-
2.

An alternative explanation for the decreased translocation of
cl6 could be increased self-association, which may limit para-
cellular translocation through the concomitant increase in size.
The extent to which the cellular environment affects self-
association is currently unknown, as is the exact degree of peptide
translocation through either the paracellular or transcellular route.

The acyl chain length may have an effect on albumin binding,
and thereby circulation time, which could limit the useful acyl
chain lengths to medium and long chain [8,36], but this is not fully
established [4] and has not been investigated in this study.
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Figure 5. Schematic illustration of the Luciferase receptor activation assay and typical standard curves. A) In order to confirm biological
activity of the analogues and measure picomolar concentrations of the peptides, a cell-line with the GLP-2-receptor and a luciferase reporter gene
was employed. Upon receptor activation by GLP-2 or its analogues, the cells produce luciferase, which can cleave the substrate luciferin to a
luminescent product. B) Representative standard curves of receptor activation (RLU) with increasing peptide concentration, for native GLP-2 and its
analogues. Data points represent mean + SD from 3 determinations, and solid lines are fitted according to eq. 5.
doi:10.1371/journal.pone.0109939.g005

Cell membrane binding and uptake. The cell membrane model membranes is a valid predictor for cell membrane affinity,
binding and uptake of GLP-2 and its analogues is presented in despite the added complexity of the biological environments
fig. 8, where it is evident that both increase with acylation and compared to a simplified model membrane. It should be noted
increasing chain length. The cell membrane binding qualitatively that cell studies employ a higher concentration of peptide than
resembles the liposome membrane binding presented in fig. 4C, liposome binding studies, which may cause differences in peptide
showing that the chain-length dependence for binding to neutral self-association behavior.

. Peptides

Apical side

Filter

Caco-2 cell monolayer
Basolateral side

10 ym

Figure 6. Schematic illustration of the Caco-2 setup. The Caco-2 intestinal model is composed of Caco-2 cells grown in a monolayer on a
semipermeable filter support that separates two solution chambers. The peptide of interest is added to the top chamber (modeling the apical side of
the intestine, i.e. the intestinal lumen), and the translocated peptide is sampled from the lower chamber over time (modeling the basolateral side of
the intestine). Subsequently, the cells are analyzed for peptide content, both in the aqueous parts of the cells (uptake) and in the lipid membranes.
The microscopy image in the insert shows a Caco-2 monolayer on the filter support, after fixing and staining for cell nucleus (blue) and actin (red).
doi:10.1371/journal.pone.0109939.9g006
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Figure 7. Translocation of GLP-2 and its analogues across
Caco-2 cell monolayers. A) Accumulated amount of peptide in the
basolateral chamber during the 1 hour experiment. B) Apparent
permeability (P,,,) of the peptides, calculated according to eq. 6. Data
points represent mean + SD of 3 separate experiments, each with 4
repeats, and stars indicate significant differences (p<<0.05).
doi:10.1371/journal.pone.0109939.g007

We speculate that the increase in cell uptake with increasing
acyl chain length is caused by increased cell membrane binding,
where peptide bound to the cell membrane is subsequently taken
up more readily.

The observed cell binding qualitatively supports the hypothesis
that the decrease in cell translocation for long chain acylation is
caused by their increased membrane interactions. The decrease in
translocation for cl6-acylation compared to c12-acylation is larger
than expected from the increased membrane binding, however,
this may be explained by the added effect of increased uptake that
could lead to intracellular sequestration.

If the membrane binding is a powerful determinant for cell
translocation, the liposome partitioning coefficient may be used as
a predictor hereof, but this should be investigated in further detail,
using other peptides or acylations.

Absorption enhancers. The two absorption enhancers
EGTA (paracellular) and SDS (transcellular) were employed to
assess the effect of different enhancement mechanisms on the acyl
chain length dependence.

We hypothesize that paracellular enhancers will have little effect
on the acyl chain length dependence, i.e. enhance transport of the
peptide and all its analogues to a similar extent, whereas
transcellular enhancers that fluidize the membrane may have an
increased effect on the long-chain acylated analogue by altering
the membrane affinity and/or dynamics of membrane insertion
and detachment.

A previously performed dose-response experiment was used to
determine the appropriate concentration of absorption enhancers,
that yielded increased mannitol transport and a reversible decrease

PLOS ONE | www.plosone.org
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Figure 8. Cell membrane binding and uptake. The amount of
peptide bound in the cell membrane A) and the amount of peptide in
the aqueous parts of the cell B) increase with acylation length,
indicating a larger interaction with cells. For the acylated analogues the
membrane binding is roughly linear with chain length, and resembles
the observed binding to model membranes shown in fig. 4C. Data
points represent mean + SD of 3 separate experiments, each with 4
repeats, and stars indicate significantly different values (p<0.05).
doi:10.1371/journal.pone.0109939.g008

in TEER with full recovery after 24 hours, and the results using
the optimal concentrations are presented in fig. 9A and B. The
translocation of GLP-2 and its analogues in the presence of EGTA
or SDS is presented in fig. 9C. For each peptide, the increased
transport in the presence of enhancer was compared to the
transport of the peptide alone as shown in fig. 9D, which
emphasizes the differences between the two types of enhancer.
For EGTA the increase is similar for peptide and analogues, and
the dependence on acyl chain length is retained, whereas for SDS
the increase is greater for the cl6-acylation. These results support
the hypothesis that the fluidization of cell membranes caused by
SDS are beneficial for the long chain acylation, possibly due to
altered membrane insertion. This could be verified by investigat-
ing liposome partitioning or cell membrane binding in the
presence of SDS. However, despite the added benefit of SDS for
the cl6-acylation, the translocation of the cl6 peptide remains
lower than for the c12 peptide, suggesting that the acylation length
is the primary determining factor for optimizing translocation.
EGTA and SDS are employed as representatives of paracellular
and transcellular enhancers, and other enhancers of these types
are expected to elicit similar effects.

In conclusion, EGTA and SDS at the concentrations employed
increase the translocation while retaining the acyl chain length
dependence, with a medium chain length (c12) yielding the highest
translocation.
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Figure 9. Effect of absorption enhancers on translocation of GLP-2 and its analogues. A) TEER values for Caco-2 cell monolayers after
experiments with absorption enhancers EGTA (paracellular) or SDS (transcellular), and after 24 hour recovery in cell medium. B) Mannitol permeability
in the presence of EGTA or SDS. C) Peptide permeability in the presence of EGTA or SDS. D) Fold increase in peptide permeability with enhancer,
compared to each peptide alone. All data points represent mean + SD of 2 separate experiments, each with 4 repeats, and stars indicate significant

differences (p<<0.05).
doi:10.1371/journal.pone.0109939.g009

Conclusions and Perspectivation

We have synthesized and investigated a systematic series of
acylated GLP-2 analogues, in order to establish how the
membrane binding correlates to in vitro intestinal permeability.
We find that increasing acyl chain length causes increased self-
association and binding to lipid and cell membranes, whereas
translocation across intestinal cells displays a non-linear depen-
dence on chain length. Short and medium chains improve
translocation compared to the native peptide, but long chain
acylation does not. We explain this correlation by an initial benefit
for translocation for shorter chains through increased interaction
with the cell membrane, which reverts to a hindrance for long
chains, 1e. the analogues get stuck in the cell membrane.
Measurements of liposome binding may be used to predict the
optimal acylation chain length (e.g. the partitioning coefficient of
approximately 1300 M~! for c12-GLP-2), which can be further
investigated by using other peptides or acylation types.

The translocation of peptide and analogues increases in the
presence of both paracellular and transcellular absorption
enhancers. The acyl chain length dependence persists for the
paracellular enhancer and partially for the transcellular enhancer,
with an increased benefit for the long chain acylation. This can be
explained on the basis of a membrane fluidizing effect of the
transcellular enhancer, which alters the dynamics and strength of
membrane insertion, however, this requires further investigation.
For both enhancers the medium chain acylation (c12) yields the
highest translocation, approximately 1.5 times the native peptide.

The presented results suggest that rational acylation of GLP-2
increases intestinal absorption, and may benefit the oral delivery
route. However, this should be verified in wvivo, e.g. by
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investigating the intestinal absorption in an animal model
following in situ administration to the intestine. Dosing directly
to the rat intestine circumvents the esophagus and stomach, where
the peptide would most likely require further stabilization to
remain intact, e.g. through encapsulation and/or enteric coating.

In order to assert whether the effect of acylation on GLP-2 is
general and can be used to benefit oral delivery of other
therapeutic peptides, we are currently investigating other acylated
peptides. GLP-2 exerts is therapeutic function locally in the
intestine, which eases oral delivery and limits the challenging
requirement for long circulation times in the blood stream.
However, other therapeutic peptides that function systemically or
at sites apart from the intestine may benefit thrice from acylation,
t.e. on intestinal absorption, enzymatic stability, and circulation
life time.

Supporting Information

Figure S1 Secondary structure of native and acylated
GLP-2. Circular dichroism spectra of GLP-2 and its c16 analogue
in buffers with different ionic strength (0-150 mM NaCl). The
secondary structure of native GLP-2 and its acylated c16 analogue
1s different at low ionic strength (as previously reported in [38]),
but similar at physiological ionic strength. It should be noted that
self-association alters the secondary structure, and as described in
the main text, the self-association behavior is affected by acylation.
The employed concentration 150 uM was chosen in order to
compare to [38], and at this concentration the peptides are
expected to be self-associated.

(T1F)

October 2014 | Volume 9 | Issue 10 | €109939



Figure S2 Size of selected peptide oligomers. TEM
(middle) and DLS (bottom) show that the native peptide and its
cl6-analogue forms oligomers with radius 2.4 + 0.1 nm and 2.8
+ 0.1 nm, respectively. SLS-measurements show that the native
peptide oligomers are composed of approximately 4 peptide
monomers, whereas the c16 analogue oligomers are larger and
composed of around 7-10 monomers. The top sketch serves as an
illustration of peptide oligomers.

(TIF)

Materials S1 Materials and Methods for Cicular Di-
chroism (CD), Dynamic and Static Light Scattering
(DLS/SLS) and Transmission Electron Microscopy
(TEM).

(PDF)
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