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Abstract

Ecogeographical rules help explain spatial and temporal patterns in intraspecific body size. However, many of these rules,
when applied to ectothermic organisms such as reptiles, are controversial and require further investigation. To explore
factors that influence body size in reptiles, we performed a heuristic study to examine body size variation in an Australian
lizard, Boulenger’s Skink Morethia boulengeri from agricultural landscapes in southern New South Wales, south-eastern
Australia. We collected tissue and morphological data on 337 adult lizards across a broad elevation and climate gradient. We
used a model-selection procedure to determine if environmental or ecological variables best explained body size variation.
We explored the relationship between morphology and phylogenetic structure before modeling candidate variables from
four broad domains: (1) geography (latitude, longitude and elevation), (2) climate (temperature and rainfall), (3) habitat
(vegetation type, number of logs and ground cover attributes), and (4) management (land use and grazing history). Broad
phylogenetic structure was evident, but on a scale larger than our study area. Lizards were sexually dimorphic, whereby
females had longer snout-vent length than males, providing support for the fecundity selection hypothesis. Body size
variation in M. boulengeri was correlated with temperature and rainfall, a pattern consistent with larger individuals
occupying cooler and more productive parts of the landscape. Climate change forecasts, which predict warmer temperature
and increased aridity, may result in reduced lizard biomass and decoupling of trophic interactions with potential
implications for community organization and ecosystem function.
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Introduction

Spatial and temporal variation in intraspecific body size is

driven by differences in the heritability of phenotypic traits, and is

the basis of evolution and adaptation to environmental change [1–

3]. A substantial literature exists on the factors that influence body

size, from which, reported patterns either support or contradict

specific ecogeographical rules [4–7]. Bergmann’s rule, for exam-

ple, was one of the first ecogeographical generalizations to explain

body size variation in endotherms. Bergmann’s rule states that

races (or as Bergmann probably intended, closely related species,

especially congenerics) of warm-blooded vertebrates from cooler

climates tend to be larger than races occupying warmer climates

[8]. This rule, which is independent of gender, was originally

reserved to explain interspecific differences in body size, although

modern interpretations often extend the rule to include intraspe-

cific investigations.

Bergmann’s rule has received broad support in studies of birds

[9,10] and mammals [11–13]. However, studies on ectothermic

vertebrates remain controversial [14–17]. For example, one study

found that southern populations of the Australian frogs Limnody-
nastes tasmaniensis and Litoria peronii were significantly larger

than northern populations [18]. Another study found that the

mean body size of Bufo bufo in Europe decreased with latitude,

but not altitude [19]. Similarly, other studies failed to find support

for Bergmann’s rule within anurans [9] or even within the Class

Amphibia [20]. Studies on squamates also lack conclusive support

for Bergmann’s rule [21]. Instead, studies show a converse

Bergmann cline or no obvious relationship between body size

and latitude [14,15,22–25].

The lack of consensus among studies may be due to a paucity of

investigations involving herpetofauna, particularly reptiles [6].

However, one reason why reptiles may not conform to

Bergmann’s rule may relate to the underlying mechanisms that

drive the evolution of body size [7]. For example, the heat-

conservation hypothesis predicts that larger animals are better at

enduring cold temperatures because these animals need to
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produce less warmth in relation to their size to raise their

temperature above that of their surroundings [8] - the classic

physiological explanation for Bergmann’s rule in endotherms.

Because reptiles are unable to maintain a constant body

temperature without using behavioral or physiological mecha-

nisms, the heat-conservation hypothesis may not apply in this

group [26]. Instead, mechanisms that relate to resource availability

have been postulated as driving body size evolution in reptiles

[7,27]. For example, measures of primary productivity could

impose a selective pressure on body size since body mass must be

maintained by a sufficient food supply [28].

Clearly further research is required to test the mechanisms that

drive body size evolution in reptiles, including whether observed

patterns are consistent over different spatial scales [7]. Regional-

scale studies, like the one we present here, are important because

they provide information that may help develop rules that apply to

organisms at a particular spatial scale. Furthermore, understand-

ing spatial patterns in body size has broad implications for

evaluating an organisms’ response to environmental change [29].

With this in mind, we designed a heuristic study to address these

knowledge gaps by examining body size variation in an Australian

lizard, Boulenger’s Skink Morethia boulengeri. Our primary

objective was to determine if spatial patterns in body size and

sexual size dimorphism existed in a widespread and common

lizard species, but from a regional-scale, and if so, whether the

observed variation could be explained by phylogenetic, environ-

mental or ecological factors. We developed several hypotheses to

explore these relationships further.

N Phylogenetic analysis can help to recognize new species.

Because M. boulengeri occupies a large geographical area, the

species may contain cryptic species with divergent phenotypic

characteristics. Therefore, we investigated mitochondrial DNA

divergence among samples from across our study area and a

smaller number of samples from throughout the species’ range.

We predicted that body size variation may relate to an

unknown phylogeny.

N Between-sex differences in body size are widespread among

squamates [30,31]. Snout-vent length (SVL) and head size are

two traits which differ among sexes giving rise to the ‘fecundity

selection’ hypothesis, whereby females evolve larger abdomens

to accommodate more eggs, and the ‘sexual selection’

hypothesis whereby males’ exhibit larger heads to facilitate

male-male rivalry [32]. In suitable habitat, M. boulengeri can

occur in high densities (421–1823 individuals/ha), including

aggregations of mixed sex and age (D. Michael pers. obs.).

These observations suggest that male-male rivalry is atypical in

this species. Thus, we predicted that fecundity selection, as

determined by SVL, would explain sexual differences in body

size.

N Topography (elevation) is one component of a landscape that

influences climatic conditions such as temperature and

precipitation. Climatic factors are well documented in

explaining body size variation in endotherms [12,33], but lack

conclusive support in squamate reptiles [14,15,25]. Thus, we

predicted that body size will decrease with elevation, a trend

consistent with studies on lizards.

N Environmental factors play an important role in influencing

growth rate and body condition in reptiles [34]. Variation in

morphological traits is mediated by food availability [35], anti-

predatory behavior [36] and habitat fragmentation [37].

Moreover, a recent study found a positive relationship with

M. boulengeri abundance and fallen timber [38], a critical

resource in agricultural landscapes which provides both food

and shelter. Thus, we predicted that habitat variables such as

fallen timber and ground cover attributes might explain body

size variation.

Methods

1.1 Study area
We conducted our study on private property in the temperate

eucalypt woodlands of the Riverina and South-west Slopes (SWS)

bioregions of southern New South Wales, Australia. This area is

defined by Temora (34u 529 170 S, 147u 359 060 E) in the north,

Albury (36u 049 440 S, 146u 559 020 E) in the south, Howlong in

the east (35u 589 470 S 146u 379 320 E) and Moulamein (35u 019

590 S 143u 439 420 E) in the west (Figure 1). Our sampling sites

were part of two broad-scale biodiversity monitoring programs on

farming properties, travelling stock reserves and roadside verges

[39]. The study area spans a 500 m elevation gradient from the

plains in the west to the slopes in east. The native vegetation of the

region has been extensively cleared and converted to broad-acre

cropping and livestock production with remaining patches of

native vegetation varying in size, shape and condition [40]. The

most significant environmental changes driving patterns of reptile

diversity in the region include habitat loss and modification,

including extensive loss of native pasture and fallen timber [40].

Annual precipitation ranges from 320 mm in the Riverina to

900 mm in the SWS and is uniformly distributed throughout the

year. January and February are the hottest months and the

average minimum and maximum summer temperature ranges

from 17uC–33uC in the Riverina to 18uC–32uC in the SWS. July

is the coldest month and the average minimum and maximum

winter temperature ranges from 0uC to 14uC [41].

1.2 Study animal
Boulenger’s Skink M. boulengeri is a small (snout-vent length

,55 mm), terrestrial heliotherm which occupies arid, semi-arid

and temperate zones throughout central and south-eastern regions

of Australia [42]. The species is oviparous, reaches sexual maturity

in the first year and produces multiple clutches of variable size

annually [43]. It is a habitat generalist commonly found basking

on tree stumps and fallen timber, or sheltering beneath logs, rocks

and leaf litter [40]. The species is one of the most abundant lizards

in temperate Australia [38,40], making it an ideal species for

examining spatial patterns in body size.

1.3 Survey protocols
During September and October 2008, we actively searched for

lizards along a 200 m650 m transect (1 ha) on 369 sites

(Figure 1). Clusters of 3–6 sites were nested within farm units

(n = 98). We captured lizards by hand by turning over logs and

rocks, raking through leaf litter and grass tussocks and visually

scanning fallen timber for basking animals. We also inspected

arrays of artificial refuges which we installed in June 2001 (SWS)

and March 2008 (Riverina) as a reptile monitoring method [39].

We used digital calipers and digital scales (Satrue mini pocket

scale, model: QM7241, Taiwan) to record SVL, total body length,

head length (from the snout to the anterior margin of the occipital

scale), head width (the widest distance between the jaws) and body

mass (to nearest 0.1 g). We sexed individuals based on throat

pigmentation (orange/red in breeding males and white in females)

which is a valid technique for sexing this species during our survey

period [43]. For approximately 30% of males sex was verified by

hemipene eversion. We classified individuals as sub-adult or adult

based on SVL at sexual maturity [43] (adult males .33 mm and
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adult females .37 mm). After all measurements were taken, we

collected a tissue sample from the tail tip for genetic analysis.

1.4 Ethics statement
This study did not involve endangered or protected species and

was carried out in strict accordance with the Australian National

University Animal Care and Ethics Committee guidelines.

Permission to access sites was granted by private landholders

and the Livestock Health and Pest Authority under approval of the

New South Wales National Parks and Wildlife Service (scientific

license No. SL101022). The Murray Local Land Service is the

primary contact for future access permission. All efforts were made

to minimize stress during all animal handling procedures.

1.5 DNA extraction and sequencing
We sequenced a 546 base pair fragment of the mitochondrial

ND2 gene from 75 M. boulengeri sampled in this study (with at

least one sample from each farm our sample size was adequate),

nine M. boulengeri from other locations throughout the species’

distribution in eastern Australia (from the Australian Biological

Tissue Collection - see Figure 2 for collection numbers) and one

Samphire Skink (M. adelaidensis), a closely-related species. We

selected this gene because it is a common marker used to detect

shallow phylogenetic structure [44]. We chose not to use faster

evolving markers such as microsatellites as we were interested in

testing for unrecognized species and not patterns of genetic

differentiation caused by movement across the landscape. We

extracted DNA according to the protocol of [44] and sequenced

the samples as described in [45]. We edited and aligned the

sequences using the program Geneious [46] and calculated

haplotype diversity measures and a matrix of nucleotide differ-

ences between individuals in DnaSP [47]. We constructed a

maximum likelihood phylogenetic tree with the PhyML program

implemented in the Phylogeny.fr platform [48] using the HKY+G

(gamma = 0.327) substitution model, as selected according to

AICc in (imodeltest) [49]. We performed a Mantel test in the R

package Ecodist [50] to examine the correlation between the

nucleotide difference matrix and Euclidean geographic distances.

1.6 Candidate variables
We used male and female adult SVL as a proxy for body size

(because mass is confounded by reproductive status) and examined

relationships with candidate explanatory variables collected at

each site from four domains; 1) geography, 2) climate, 3) habitat

and 4) management (see Appendix S1). First, we examined the

relationship between SVL and geographical variables such as

latitude and elevation, as these variables are widely used as climate

surrogates [10,11,51]. Second, we examined climate variables

such as maximum and minimum summer and winter mean

temperature and precipitation values, as these are important in

explaining body size in ectotherms [52]. We derived climate values

from digital elevation models in ANUCLIM [53]. Last, we

examined the relationship between body size and habitat, as well

as management-related variables (see Appendix S1), as these

factors influence food and retreat site availability [7].

1.7 Model construction and statistical analysis
We recorded a total of 761 individuals from 50% (185) of sites

evenly distributed across the study area (i.e. absences were at the

farm-level). The mean number of individuals per site was 4.11

(range 1–22 individuals). We collected morphological data from

424 individuals, representing 188 adult females, 149 adult males,

75 sub-adult females and 9 sub-adult males, of which 337 adults

were used in the analysis. Neonates and juveniles (,6 months old)

were not detected during the survey. Twenty-six females (13.83%)

were gravid and included separately in the analysis. We used

Figure 1. The Riverina and South-west Slopes study region in southern New South Wales, south-eastern Australia.
doi:10.1371/journal.pone.0109830.g001
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adjusted Wald statistics to examine differences in SVL and mass

between males, gravid and non-gravid females [55]. Adjusted

Wald statistics are assumed to have an F distribution and so

observed Wald numbers are compared to critical values of an F

distribution, on the relevant degrees of freedom. We determined

significance at P = 0.05 if the Wald statistic was greater than four

at one degree of freedom [55].

We used a statistical modeling approach to study relationships

between lizard SVL (for both sexes separately) and candidate

explanatory variables from the four domains; geography, climate,

habitat and management. Because the variables were highly

correlated, we dealt with co-linearity by modeling each variable

separately and then selecting those variables from each domain

with the highest level of significance. We constructed a parsimo-

nious model by fitting statistically significant variables from each

domain. As there were often multiple animals per site, we

accounted for spatial autocorrelation at both the site and

individual level by including site as a random effect and sex as a

fixed effect along with the candidate variables. Our model

selection procedure belongs to the general framework of general

linear mixed models [54]. Statistical significance of an effect was

assessed by calculating adjusted Wald statistics [55]. General

model checking procedures were used to identify aberrant data

and evaluate model assumptions. Statistical analyses were

performed using GenStat Release 15.1 (VSN International, 2012).

Results

2.1 Phylogenetic structure
We identified 29 mitochondrial ND2 gene haplotypes among

the M. boulengeri sampled (haplotype diversity = 0.749,

SD = 0.047). The average number of nucleotide differences

between samples was 5.32. Among the 75 sequences from samples

collected in this study, there were 21 haplotypes with a haplotype

diversity of 0.69 (SD = 0.054) and an average number of

nucleotide differences between sequences of 1.48. There was a

significant correlation between the nucleotide difference matrix

and Euclidean geographic distances between individuals (Mantel

r = 0.235, P = 0.001). The maximum likelihood phylogenetic tree

revealed broad geographic phylogenetic structure in M. boulen-
geri, but on scale larger than our study region (Figure 2). We

therefore chose not to include the phylogeny in subsequent

models.

2.2 Sexual size dimorphism
Linear regression analysis revealed several significant morpho-

logical differences between sexes (Figure 3). Gravid females

(N = 26; SVL = 47.3962.91 mm) had significantly longer SVL

than non-gravid females (N = 155; SVL = 43.5261.23 mm) and

males (N = 147; SVL = 41.0861.25 mm, P,0.001; Figure 3a).

Non-gravid females had significantly longer SVL than males (P,

0.001). Gravid females (N = 26; mass = 2.1860.33 g) had

significantly greater body mass than non-gravid females

(N = 155; mass = 1.5460.15 g), and males (N = 147; mass =

1.4660.15 g, P,0.001; Figure 3b). Non-gravid females were

marginally heavier than males but this difference was not

significant (P = 0.1). Head length (P = 0.6) and head width

(P = 0.9) were also not significantly different between sexes.

Figure 2. Maximum-likelihood phylogenetic tree. The tree represents 30 unique Morethia boulengeri haplotypes from 471 bp of mitochondrial
DNA ND2 gene sequence, using M. adelaidensis (a closely-related species) as the outgroup. Sequences are coded according to major branches of the
tree and their sampling locations are shown on the associated map. Sample names refer to the Australian Biological Tissue Collection numbers and
unlabelled samples are those collected in this study (indicated by rectangle on map). Bootstrap values are shown on the figure and branches with less
than 50% bootstrap support were collapsed.
doi:10.1371/journal.pone.0109830.g002
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2.3 Relationships between SVL and candidate variables
We found no significant relationship between male or female

SVL and any of the geographical variables (e.g. bioregion, latitude

or elevation). In contrast, all of the climate variables were

important in explaining male and female SVL variation. However,

these variables were highly correlated, so we selected mean

maximum summer temperature (P,0.001; Figure 4a) and mean

rainfall in 2008 (P,0.001; Figure 4b) based on their significance

levels to use in the final model. Our habitat models included

percent cover of bare ground (P = 0.003; Figure 4c) and the

density of mature trees (P = 0.01; Figure 4d). Furthermore, we

found a significant interaction between sex and the density of

mature trees (P = 0.002), whereby female SVL increased relative

to the density of mature trees. In relation to management models,

we found no significant relationship with SVL and any of the

candidate variables from this domain. In the final model, both

climate variables remained significant, whereby SVL increased

relative to decreasing temperature and increasing rainfall.

However, in the presence of the climate variables, bare ground

and large trees were no longer significant.

Discussion

We examined factors affecting body size variation in a

widespread Australian lizard on a regional-scale. Our key findings

include: 1) Very limited genetic divergence among sampled M.
boulengeri suggesting body size variation was not due to

unrecognized species (Figure 2), 2) Strong evidence of sexual size

dimorphism in SVL, especially in respect to gravid females,

lending support for the fecundity selection hypothesis (Figure 3),

and 3) Climate variables, rather than ecological, geographical or

land management variables, were the best candidates for

explaining differences in overall body size (SVL) in this system

(Figure 4). We further discuss these findings in the remainder of

the paper and conclude with some key implications for biodiversity

conservation in changing landscapes.

3.1 Phylogenetic structure
Our analysis revealed broad geographic phylogenetic structure

in M. boulengeri but on scale larger than our study region

(Figure 2). Because we were primarily interested in testing for

cryptic species within our study area, we chose not to use faster

evolving markers such as microsatellites. Microsatellites are

commonly used to explore patterns of divergence caused by

movement across the landscape [44]. Therefore, we are confident

that body size variation in M. boulengeri was not due to a

previously unrecognized subspecies or species complex within our

sample.

3.2 Sexual size dimorphism
Our data suggests that sexual size dimorphism in M. boulengeri

was influenced by fecundity selection. Sexual differences in body

size and shape are among the most common expressions of sexual

dimorphism in lizards [32]. We found M. boulengeri was sexually

dimorphic in SVL (Figure 3a) and to some degree, body mass

(Figure 3b). By contrast, M. boulengeri was not sexually dimorphic

in head length or head width. Our surveys were conducted during

the species breeding season [43] and hence, sexual differences in

body mass were probably attributed to embryo development in

gravid females (Figure 3b). In species where offspring number is

not genetically determined, there is a correlation between offspring

number and female body size [56], a relationship known as the

fecundity selection hypothesis. This hypothesis predicts that

females will evolve larger abdomen length to accommodate more

eggs. The more offspring a species produces can be a measure of

fitness and contribute to divergent morphological differences such

as variation in SVL [32]. In contrast, sexual differences in head

size are attributed to male-male rivalry and arise through sexual

selection processes. Our findings clearly show that gravid females

had larger SVL than non-gravid females (which were possibly

sexually immature or first year breeders) and males, suggesting

that the fecundity selection hypothesis, rather than the sexual

selection hypothesis, is a plausible explanation for sexual size

dimorphism in this species. However, further studies are required

to further test this assumption.

3.3 Correlates of body size variation
Our data suggests that body size variation (SVL) in M.

boulengeri was consistent with a Bergmann cline. However, other

factors aside from latitude were important in this study. For

example, our exploratory analysis showed SVL was not related to

any geographical variables (including latitude) but instead was

related to both climate and ecological variables (Figure 4). Both

temperature and precipitation were related to body size variation,

whereby male and female SVL increased as a function of

decreasing temperature and increasing rainfall (Figure 4a, b).

Furthermore, we found SVL decreased as the percent cover of

bare ground increased (Figure 4c), and female SVL increased

Figure 3. Sexual differences in body size. Regression analysis showing mean values and 95% confidence intervals for: a) snout-vent length (SVL
mm), and b) body mass (g) between male, gravid female and non-gravid female Morethia boulengeri in southern New South Wales.
doi:10.1371/journal.pone.0109830.g003
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relative to the increase in the density of mature trees (Figure 4d).

However, when we included the two climate variables in the final

model, the two habitat variables no longer remained significant.

Instead, we found temperature and rainfall were the best two

candidates for explaining body size variation in this system, a trend

congruent with other studies that use climate variables as a proxy

for latitude when investigating Bergmann clines [57]. Our findings

thus contradict with our original hypothesis that lizard body size

decreases with elevation and contrasts with other studies on

squamates that have investigated the relationship between climate

variables and body size variation [14–16].

One physiological explanation for Bergmann’s rule in endo-

therms is the heat-conservation hypothesis, which states that larger

animals are better at enduring colder climates than smaller

animals [8]. This hypothesis, may also apply to some ectotherms,

especially organisms that are capable of behaviorally regulating

their body temperature [58]. Many lizards are capable of

maintaining a preferred body temperature by moving between

sun and shade (shuttling) or changing their body posture [26], in

which case, the heat-conservation hypothesis may apply in

shuttling heliotherms such as M. boulengeri, which spends large

amounts of time alternating between sun and shade. In cooler

climates, larger lizards may have a selective advantage over

smaller individuals due to their ability to retain heat for longer, a

hypothesis that requires further investigation. Alternatively, body

size differences may be driven by measures of productivity,

including resource availability [35]. However, examining prey

relationships was beyond the scope of this study and is an area of

research that requires further investigation.

3.4 Implications for management
For many endotherms, it is well established that on geological

timescales (over millennia), body size decreases as a function of

increasing temperature [9–12]. But how adaptive is this trait and

does it apply to populations over contemporary timescales (e.g.

several decades)? Recent studies have shown that body size of birds

and mammals are declining due to rising global temperatures

[2,59], a phenomenon reported to be the third universal response

of climate warming [29]. The implications of climate-induced

declines in body size are not fully understood, but are likely to

effect trophic interactions, community organization and ecosystem

function [60]. From an anthropocentric perspective, agricultural

sustainability is dependent on a functioning ecosystem to provide

environmental services such as pollination and pest control [61].

Common lizard species such as M. boulengeri play pivotal roles in

maintaining ecosystem function as they not only prey on a wide

range of herbivorous invertebrates [40], but they also contribute to

overall food web dynamics.

In temperate Australia, M. boulengeri is preyed upon by a wide

variety of species, including several small threatened elapids [40]

and birds such as the Bush Stone Curlew Burhinus grallarius [62].

Climate change forecasts, which predict warmer temperature,

decreased precipitation and increased aridity in south-eastern

Australia [63], could potentially result in reduced lizard biomass,

decoupling of trophic interactions and increased stress on reptile

populations due to compositional changes to vegetation commu-

nities and ecosystem shifts [64]. Management practices that

ultimately improve the quality and quantity of native vegetation in

agricultural landscapes will not only improve biodiversity out-

Figure 4. Regression analysis of Morethia boulengeri and candidate variables. The relationships show a positive association with snout-vent
length (SVL) and: (a) temperature, (b) rainfall (c) percent bare ground cover, and (d) density of mature trees .50 cm diameter.
doi:10.1371/journal.pone.0109830.g004
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comes for common lizard species such as M. boulengeri [65], but

may also mediate evolutionary divergent processes, such as

changes in body size, that are predicted by habitat fragmentation

studies [37].

Supporting Information

Appendix S1 Candidate variables used in regression
models.
(DOC)
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