
Presentation Accuracy of the Web Revisited: Animation
Methods in the HTML5 Era
Pablo Garaizar1*, Miguel A. Vadillo2, Diego López-de-Ipiña1

1 Deusto Institute of Technology, DeustoTech., Universidad de Deusto, Bilbao, Spain, 2 Department of Experimental Psychology, University College London, London,

United Kingdom

Abstract

Using the Web to run behavioural and social experiments quickly and efficiently has become increasingly popular in recent
years, but there is some controversy about the suitability of using the Web for these objectives. Several studies have
analysed the accuracy and precision of different web technologies in order to determine their limitations. This paper
updates the extant evidence about presentation accuracy and precision of the Web and extends the study of the accuracy
and precision in the presentation of multimedia stimuli to HTML5-based solutions, which were previously untested. The
accuracy and precision in the presentation of visual content in classic web technologies is acceptable for use in online
experiments, although some results suggest that these technologies should be used with caution in certain circumstances.
Declarative animations based on CSS are the best alternative when animation intervals are above 50 milliseconds. The
performance of procedural web technologies based on the HTML5 standard is similar to that of previous web technologies.
These technologies are being progressively adopted by the scientific community and have promising futures, which makes
their use advisable to utilizing more obsolete technologies.

Citation: Garaizar P, Vadillo MA, López-de-Ipiña D (2014) Presentation Accuracy of the Web Revisited: Animation Methods in the HTML5 Era. PLoS ONE 9(10):
e109812. doi:10.1371/journal.pone.0109812

Editor: Hussein Suleman, University of Cape Town, South Africa

Received March 13, 2014; Accepted September 13, 2014; Published October 10, 2014

Copyright: � 2014 Garaizar et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits
unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Data Availability: The authors confirm that all data underlying the findings are fully available without restriction. All relevant data are within the paper and its
OSF repository (https://osf.io/6j3iz/).

Funding: This work is funded by Grant PSI2011-26965 from Dirección General de Investigación of the Spanish Government (http://www.idi.mineco.gob.es/
portal/site/MICINN/) and Grant IT363-10 from the Basque Government (http://www.hezkuntza.ejgv.euskadi.net/r43-2518/es/). The funders had no role in study
design, data collection and analysis, decision to publish, or preparation of the manuscript.

Competing Interests: The authors have declared that no competing interests exist.

* Email: garaizar@deusto.es

Introduction

Computers have been an indispensable tool for scientific

research since the advent of computer science, not only because

of their computing power, but also due to their ability to present

multimedia information. Even prior to the popularization of

graphical user interfaces, computers have been used to present

visual stimuli in tachistoscopic applications subject to strict time

constraints. The success of the Web as a primary medium of

communication facilitated the creation of the first experimental

applications based on web technologies [1].

Given the great diversity of web technologies, web user-agents,

and existing operating systems, there is some controversy about

the suitability of using the Web for these objectives. For this

reason, several studies have analysed the accuracy and precision of

different web technologies in order to determine their limitations.

However, existing work is not comprehensive (e.g., GIF and

Silverlight have not been explored thoroughly), and did not

examine different options for controlling display in HTML5 (e.g.,

WebGL, CSS Animations). Therefore, an update seems necessary

[2,3]. The aim of this paper is twofold: (1) to provide an update of

the extant evidence about presentation accuracy and precision of

the Web in the presentation of multimedia stimuli, and (2) to

extend these studies to HTML5-related technologies which have

remained untested. The results of the present study have

implications for researchers interested in developing online

experiments where stimuli have to be presented under strict

timing requirements (e.g., subliminal priming [4,5]) or reaction

times have to be measured with a high degree of accuracy and

precision [6,7].

Declarative and procedural animations
Extant technologies for the accurate presentation of visual

stimuli in web applications can be broadly divided in two different

categories: those based on declarative animations and those based

on procedural animations. The former focus on what should

happen, while the latter describe how the desired goal will be

achieved. Both approaches have advantages and disadvantages.

Declarative animations allow developers to define the require-

ments of the animation and forget about the low-level implemen-

tation details needed to meet them. However, there is no warranty

of compliance. This is, if developers set up animations with

requirements that cannot be met by the system (e.g., declaring a

10-ms colour transition to a device with a 50-ms timer granularity),

final results may differ significantly from the original design. To

create a declarative animation, developers define a set of

keyframes and the animation engine (the browser in the case of

web animations) generates all the steps between them. Listing 1

shows an example of a declarative animation where the initial and

final keyframes are defined.

PLOS ONE | www.plosone.org 1 October 2014 | Volume 9 | Issue 10 | e109812

http://creativecommons.org/licenses/by/4.0/
https://osf.io/6j3iz/
http://www.hezkuntza.ejgv.euskadi.net/r43-2518/es/
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0109812&domain=pdf


Listing 1. Example of a declarative animation using SVG and
SMIL. A 100 x 100 px red rectangle’s width will be expanded from
100 to 500 px in 4 s, with a initial delay of 1s.

,?xml version="1.0" encoding="UTF-8"?.

,svg xmlns="http://www.w3.org/2000/svg".

,rect id="box" x="200" y="200"

width="100" height="100" fill="red".

,animate attributeName="width" be-

gin="1s" dur="4s" from="100" to="500"/.

,/rect.

,/svg.

In procedural animations, objects are animated by a procedure

(a script), not by defining keyframes. Developers can choose

between different approaches to code the desired animation

depending on the particular features of the available software and

hardware. However, procedural animations are tightly coupled

with the running environment (i.e., hardware, operating system,

web user-agent versions, and so on) and might be affected by small

changes to it.

Web animations using classic web technologies
From its inception, the Web required complementary technol-

ogies to provide functionality not offered by HTML. HTML5

breaks this trend. The aim of this new standard is to provide

HTML with enough features to create native web applications.

We consider all pre-HTML5 web technologies as classic, even

though they are still in use. In the following paragraphs, we give a

brief overview of these web technologies.

GIF89a. Graphics Interchange Format (GIF) is a bitmap

image format with animation features created by CompuServe in

1987. GIF89a is the version 89a (July, 1989) of this format.

Advantages of GIF images include their small size and wide

support of web user-agents. They have been extensively used since

the beginning of the Web, and they are still common in web pages.

GIF animations function independently of JavaScript.

Although this might be desirable for unattended animations, it

means that GIF89a-based animations cannot be synchronized

with other events. For example, the use of GIF animations is not

recommended for applications that require high accuracy and

precision. This is especially true when presenting several

multimedia elements or registering the user interaction depending

on the status of the animation (e.g., gather participants’ response

time after a target is presented in a priming experiment). The low

granularity of the duration of each frame in a GIF89a animation is

also problematic. GIF89a uses hundredths of a second instead of

milliseconds to define durations [8]. This limitation is inexplicably

masked by some GIF89a editing programs that allow specifying

image durations in ms, even though they will be rounded to

hundredths of seconds (e.g., GIMP – The GNU Image Manip-

ulation Program). Similarly, some web user-agents automatically

modify the intervals specified in GIF89a files if they are too

demanding (e.g., in all versions of Microsoft Internet Explorer,

intervals are rounded to 100 ms if they are lower than 50 ms).

Java. Java is both a programming language and a system for

developing application software and deploying it in a cross-

platform computing environment (the Java Virtual Machine,

JVM). The Java programming language uses a syntax similar to C

and C++. The main contribution of Java is the ‘‘write once, run
anywhere’’ (WORA) approach: Java source code is compiled to

Java bytecode, a hardware-independent binary code that can run

on any platform with a JVM. The core benefit of Java is its

portability and popularity in the field of software development.

Java is undoubtedly considered one of the most popular

programming languages.

With respect to the Web, Java has been used to create server

applications (through servlets or Java Server Pages) and to deploy

client applications (via Applets). Despite its success on all

platforms, Java is gradually losing support from developers of

web user-agents [9]. Recent security issues have resulted in fewer

and fewer web sites relying on Java to extend the functionality of

client-side web applications [10].

Flash. Flash is a technology for developing Rich Internet

Applications (RIA). Using Flash, developers can handle different

media types such as text, vector graphics and bitmap, audio, or

video. Flash provides direct access to multimedia hardware like

microphones or cameras, and it is being widely used in

videoconferencing and multimedia streaming applications. People

with no programming skills can program simple Flash applications

using authoring tools such as Adobe Flash Professional. Profes-

sional developers can use the ActionScript language, a dialect of

ECMAScript, to program complex Flash applications (e.g.,

experimental tasks for conducting behavioural studies). Once

compiled, Flash applications run in a virtual machine known as

Adobe Flash Player. This player can be installed for free as a

plugin in the majority of web user-agents in many software

platforms. The widespread deployment of Adobe Flash Player in

users’ browsers has ostensibly boosted Flash technology into the

most popular RIA.

Its principal limitation is that it is not truly integrated into the

web application, but embedded as an external object. As a result,

Flash generates performance inefficiency and power consumption.

Moreover, in 2011 Apple CEO Steve Jobs explained why they do

not use Flash on iOS devices: ‘‘Flash was created during the PC
era – for PCs and mice. Flash is a successful business for Adobe,
and we can understand why they want to push it beyond PCs. But
the mobile era is about low power devices, touch interfaces and open
web standards – all areas where Flash falls short.’’ [11]. Shortly

after, Adobe announced the end of Flash for mobile and TV

platforms, focusing its efforts on the HTML5 standard [12].

Arguably, this popular technology has a bleak future.

Silverlight. Silverlight is Microsoft’s answer to the success of

Flash. Therefore, Silverlight is also a technology for developing

RIAs that relies on a virtual machine to run them. The Silverlight

virtual machine is available for the majority of web user-agents on

Microsoft Windows and Apple Mac OS X. The Moonlight project

provides unofficial Silverlight support for GNU/Linux, FreeBSD

and other free operating systems. The main advantage of

Silverlight over the aforementioned technologies is its integration

with other development technologies based on Microsoft.Net.

However, the lack of multiplatform support (officially, only for

Microsoft Windows and Apple Mac OS X) and the popularity of a

competing technology such as Adobe Flash, has relegated its use to

scenarios where Microsoft technologies are used exclusively.

Native code. When the main goal is to maximize the

accuracy and precision of animations, it might be tempting to

rely on native code for those user-agents that allow that possibility.

However, both Microsoft Active X [13] and Gecko NPAPI [14]

show that granting execution privileges to native code from user-

agents might not be a good security policy. Currently, their use is

restricted to applications within corporation intranets where those

security problems can be properly monitored and isolated.

Furthermore, both technologies are limited to specific user-agents

(Microsoft Internet Explorer in the case of Active X, and Gecko-

based browsers, among which Mozilla Firefox is the most

prominent example, in the case of NPAPI). Therefore, they are

far from being multiplatform solutions. The third option for

Presentation Accuracy of the Web Revisited

PLOS ONE | www.plosone.org 2 October 2014 | Volume 9 | Issue 10 | e109812

http://www.w3.org/2000/svg


running native code, Google Native Client [15], aims to solve both

problems, providing an execution environment automatically

protected and supported by multiple platforms, but its develop-

ment is still in the early stages.

Web animations in the HTML5 era
HTML5 provides a wide variety of mechanisms to create

animations. Web developers can use application programming

interfaces (APIs) to create declarative animations such as

Cascading Style Sheets (CSS) or Scalable Vector Graphics

Animations (SVG) with Synchronized Multimedia Integration

Language (SMIL), or procedural animations via SVG with

JavaScript, HTML Canvas or WebGL. The well-known inaccu-

racy of standard JavaScript timers (setTimeout and setIn-

terval) [16] can be avoided via the Using Timing Control for

script-based animations API (requestAnimationFrame).

Using the Timing control for script-based animations API,

developers request animation updates to the browser, instead of

trying to figure out when is the best moment to do it themselves.

Considering that the browser keeps control of all the running

animations using this API, it is in a better position to determine the

optimal frame rate to run all the animations as smoothly as

possible. In the following paragraphs, we give an overview of these

web technologies.

CSS Animations. This API allows the animation of HTML

document elements using CSS. Web designers and developers

create a CSS animation declaring a set of keyframes with different

transitions between them. The CSS Transitions API provides a

way to define a transition timing function (e.g., linear, ease-

in-out, cubic-bezier) to perform a transform of a CSS-

styled HTML element. These two-dimensional (e.g., scaleX,

skewY) or three-dimensional (e.g. rotate3d) transforms are

defined using the CSS Transforms API. The main advantage of

using CSS Animations (and related APIs to define CSS transitions

and transforms) is to provide semantic information about the

animation to the web user-agent (so they can then decide the most

effective way to run the animation.) In addition, CSS Animations

do not need JavaScript events to run. Leaving free the JavaScript

event queue is a good practice to increase responsiveness of the

web application. The main disadvantage of CSS Animation is its

lack of flexibility for defining animations. CSS Animations are

limited to a combination of the features offered by CSS

Transitions and CSS Transforms. Furthermore, not all animation

can be created declaratively. Finally, support for these new

standards is still incomplete in mobile browsers.

SVG with SMIL. SVG is a XML dialect for creating vector

images. Among its many features, it includes the ability to embed

JavaScript or to use SMIL to create declarative animations. The

advantages of using SMIL in SVG are similar to the advantages of

using CSS animations: it provides semantic information about the

animation, avoids JavaScript timers, and creates animations that

can be used outside the browser. SVG with SMIL shares all the

disadvantages of CSS Animations. In addition, support for SMIL

in most modern browsers is incomplete. Despite the renewed

interest in SVG due to HTML5, browser vendors have devoted

more effort to comply with the CSS Animations standard than

improving their support of SVG with SMIL.

SVG with JavaScript. JavaScript code can be seamlessly

embedded into SVG files. Within a SVG file, JavaScript is able to

change its properties, create new shapes or animate them over

time. HTML5 allows the inclusion of SVG mark-up in HTML

documents and interaction with other elements of the Document

Object Model (DOM, a hierarchical representation of the

structure and style of HTML documents). The main advantage

of using SVG with JavaScript is the low consumption of

computational resources when working at high resolutions, due

to its vector nature. Even in procedural animations, SVG provides

semantic information about the shapes that are animated.

Therefore, browsers can optimize the display update process.

Another benefit is the flexibility of combining SVG and Java-

Script. As mentioned before, procedural animations can go

beyond the possibilities offered by declarative animations. The

main disadvantage of combining SVG and JavaScript is the poor

performance of JavaScript timers. In addition, performance is

severely affected as the number of shapes in SVG increases. Using

it for animations that constantly change the objects in scene is not

recommended.

Canvas. The HTML Canvas 2D Context API provides a

blank canvas (a blank bitmap) to draw shapes, text, or images on it.

Canvas contents can be easily modified applying transforms

(scale, rotate, translate), compositing changes, or

modifying shadow attributes. This HTML element has been

essential to creating video games in HTML5. It offers good

performance in complex scenes and features like dumping the

content of the canvas to an img element. Among its drawbacks,

two stand out: the dependence on JavaScript timers to update

animations, and a progressive loss of performance as the size of the

scene to render increases.

WebGL. WebGL enables a 2D/3D context for the HTML5

canvas element. WebGL specification is derived from OpenGL ES

2.0. WebGL provides a 3D immediate mode rendering API where

OpenGL-like resources (textures, buffers, framebuffers, render-

buffers, shaders, and programs) are represented as DOM objects.

The main advantage of WebGL is its good performance with 3D

scenes. WebGL and OpenGL are very similar, allowing game

developers to easily port their skills to the Web. Recent Graphics

Processing Units (GPU) provide the 3D acceleration needed for an

optimal experience with WebGL. There are two disadvantages of

using WebGL: the complexity associated with 3D graphical

programming, and the possibility that there is no 3D hardware

acceleration. In this case, WebGL reverts to 3D software

rendering, and the overall performance is greatly affected.

Previous studies
In 2001, Schmidt assessed the accuracy of different web

animation methods, including GIF89a-based animations [2], and

estimated that intervals below 200 ms should not be defined in

GIF89a. Technologies based on virtual machines, such as Java or

Flash, have been widely used to control the presentation of audio-

visual contents for longer than a decade now. Schmidt also

assessed their accuracy and precision, concluding that time

intervals were reliable only above 100 ms in Java and 250 ms in

Flash. Given the subsequent improvements to both virtual

machines, it is necessary to update that evaluation, as well as

include less common technologies, such as Silverlight.

There is no information available about the accuracy of the

execution of time intervals in SMIL under the most widely-used

players regarding SVG with SMIL-based animations. These

players include Apple’s QuickTime Player, Microsoft’s Windows

Media Player, and RealNetwork’s RealPlayer, as well as the web

user-agents themselves, which can show SVG and SMIL

animations either natively or via plug-ins.

The World Wide Web Consortium (W3C) is prioritizing CSS

Animations. Although this specification has not reached the status

of ’’standard,’’ the most recent versions of web user-agents are

already compatible with CSS Animations [17]. Perhaps because of

this, the accuracy and precision of this technology has not been

tested thoroughly. Most web developers have relied on JavaScript

Presentation Accuracy of the Web Revisited

PLOS ONE | www.plosone.org 3 October 2014 | Volume 9 | Issue 10 | e109812



to generate procedural animations, mainly because it does not

require installing any plug-in in the most popular web user-agents

(i.e., Microsoft Internet Explorer, Mozilla Firefox, Google

Chrome, Apple Safari, Opera).

Nevertheless, this solution is constrained by its limited execution

speed. The performance of JavaScript interpreters has improved

very little until the recent popularity of applications with

sophisticated web interfaces (e.g., Google Maps, Gmail). Schmidt

also included an evaluation of JavaScript procedural animations,

and concluded that JavaScript should not be used for procedural

animations with an interval lower than 120 ms. Adams compared

procedural animations based on JavaScript with those based on

Flash and he found differences between them, in favour of the

latter [18]. However, during the last years we have witnessed a

revolution in the development of new APIs within the HTML5

standard and their adoption by the main user-agent developers,

particularly by Google Chrome and Firefox. Because of this, some

authors have published updated results about JavaScript-based

animations in terms of accuracy and precision [19,20].

Regarding the accuracy and precision measuring the user

interaction, several researchers have analysed a variety of web

technologies, particularly Java and Flash. Eichstaedt developed a

filter to discard unreliable measurements of reaction times in Java

applets using a control thread with a timer to detect the influence

of the operating system load in the measurement [3].

Keller, Gunasekharan, Mayo, and Corley proposed a filtering

algorithm for inaccurate measurements – similar to the one of

Eichstaedt – as part of their online experiment suite, WebExp,

implemented in Java [21]. After filtering inaccurate measure-

ments, they obtained standard deviations around 1 ms. Similarly,

McGraw, Tew, and Williams compared the precision of reaction

times obtained with Macromedia Authorware (a decreasingly

popular authoring tool for the development of applications that

could be run both natively or from a web user-agent) against E-

Prime, a well-known, tachistoscopic software for experiment

design [22]. After manipulating user-agents, system load and

network traffic, they concluded that both technologies had similar

precisions for animations with 150, 200, 250, and 1000 ms

intervals, except under conditions of high system load. The results

of Schmidt also pointed towards 100 ms as the lower threshold for

reliable measurements in Authorware.

A study by Reimers and Stewart analysed the validity of Flash to

measure reaction times accurately in online experiments [23].

They found that measurements based on Flash under laboratory

conditions were 10–40 ms slower than those made by a native

Linux application [24]. The difference was 30–40 ms greater

when tests were conducted outside the laboratory. The following

year, they assessed the mobile version of Flash (Adobe Flash Lite)

and found the estimations of reaction times were substantially

greater in the mobile version (60–80 ms) compared to its desktop

analogue. Similarly, they observed that the distribution of these

measurements varied in different devices [25]. Schubert et al. also

found a 10–35 ms lag in response times gathered using their Flash-

based experiment software (ScriptingRT) compared to those

gathered using offline experiment software, such as E-Prime and

DMDX [26]. Finally, Reimers and Stewart conducted a study on

the presentation and response time measurement accuracy in

Flash and HTML5/JavaScript web experiments. They found that

Flash and JavaScript’s presentation and response time measure-

ment were similar within the same system, but they varied greatly

across different hardware systems [20].

Research rationale
The Web was born in a research centre, and it has been closely

linked to the research world ever since. Researchers from various

disciplines use the Web to conduct their experiments, and social

scientists are especially interested in conducting experiments on

the Internet. Compared with laboratory experiments, it is

relatively easy to access large samples on the Internet. However,

researchers have little control over the experimental conditions in

which participants take part in online experiments. Online

researchers do not know if the participants have been paying

attention to the task or have correctly understood the instructions.

The pioneers of Internet-based research often had to face a high

level of scepticism in the evaluation of their studies. Therefore,

they conducted numerous studies comparing social and psycho-

logical effects in the laboratory and on the Internet. Except for

minor exceptions, the overall conclusion is that the advantages of

performing online experiments outweigh their possible disadvan-

tages [1].

Among the studies that arouse methodological concerns are the

those that require precise and accurate presentation of stimuli and

response time measurements. As previously mentioned, there are

several studies on the suitability of web technologies to conduct

online experiments within strict time constraints [27,22]. Howev-

er, there is a need to update the results and conclusions obtained in

these studies due to the continuous evolution of web technologies.

During the last decade, studies of the suitability of some web

technologies such as Java or Flash have been properly updated.

Other web technologies have not received the same attention and

the available experimentation data is more than 10 years old.

Some of the earlier drawn conclusions may not stand any longer.

Therefore, an update of these measurements is necessary and thus

performed in this work.

At the same time, the Web has evolved into the most prominent

platform for developing applications. Nearly every service is

available through the Web. The apparent simplicity of an

architecture based on a small set of well-known methods has

been able to cover a myriad of different scenarios. The maturity of

the Web has been made possible by the latest technological

advances in its infrastructure (i.e., on-demand scalable computing

resources) and user-agents (i.e., fully-featured web applications

players). However, HTML5 is not an isolated specification; it is

related to a broad set of technologies that should be analysed in

detail.

Although some researchers have previously studied the accuracy

and precision of HTML5 applications, there is a dearth of

comprehensive evaluations about the suitability of these web

technologies at software level. Because they do not rely on the

same timing mechanisms, it is not only necessary to conduct

between-systems studies due to the heterogeneity of devices used

by participants in online experiments, but also to analyse all the

possibilities offered by HTML5 to create animations on the same

system. There are combinations of HTML5 APIs recommended

for some cases and discouraged in other cases. The main aim of

this study is to assess the accuracy and precision of web

technologies to create animations for experimental paradigms,

taking into account the type of animation used (declarative vs.

procedural) and the timers involved.

To achieve our goal, we have conducted three studies. In Study

1, we analysed the accuracy and precision of animations that use

different timing mechanisms in Flash. In this study, each timer was

evaluated in several consecutive tests to determine whether any

degradation of accuracy and precision over time occurs. In Study

2, we analysed several classic (i.e., pre HTML5) web technologies

with a dual purpose: 1) updating or providing new data on the

Presentation Accuracy of the Web Revisited

PLOS ONE | www.plosone.org 4 October 2014 | Volume 9 | Issue 10 | e109812



accuracy and precision of web technologies not analysed in the last

decade (GIF89a and Silverlight), and 2) repeating some of the

previous studies on already analysed technologies (Java and Flash)

to provide more evidence and a baseline to compare the results of

our study with previously published results. Finally, in Study 3 we

compared the combinations of modern web technologies (i.e.,

related to HTML5) to create declarative (CSS Animations, and

SVG with SMIL) and procedural (SVG with JavaScript, Canvas,

and WebGL) animations.

Study 1: Analysis of timing mechanisms in Flash

The aim of Study 1 is to find out which of the combinations

between timing mechanisms and frame rates available in Adobe

Flash is the most accurate and precise. Once identified, we used

this optimal timing mechanism and frame rate combination to

create the Flash animations analysed in Study 2. Each combina-

tion was evaluated in several consecutive tests to see if any

degradation of accuracy and precision as a function of time

occurred.

Methodology and apparatus
The potential delays that can take place when presenting visual

content in a personal computer makes using the same computer to

present content and assess its time accuracy unreliable. Ideally, an

external system, fully equipped with the necessary sensors, should

be used to register the precise moment in which the content is

shown (onset time) and the moment in which is removed from the

screen (offset time). For this reason, all our tests have been

conducted using the Black Box Toolkit (BBTK) as an external

measurement device [28,29].

We decided to use an Apple computer to test each technology.

This allowed us to compare the most popular operating systems

(Microsoft Windows, GNU/Linux, and Apple Mac OS) in the

same physical device. The computer was an Apple MacBook Pro

A1211 with an Intel Core 2 Duo T7600 processor, an ATI

Radeon Mobility X1600 graphics card, a SigmalTel 9220 A1

High Definition Audio sound card, and a 14006900 pixel LCD

monitor at 60 Hz. We tested the accuracy and precision of the

visual display of this equipment in two separate tests. One of them

used the six-hour version of E-Prime’s RefreshClockTest, with

favourable results. The other one was PsychoPy’s timeByFrames,

which also yielded favourable results.

We installed Microsoft Windows 7 Professional 32-bit edition

with Service Pack 1 in the computer described above. We used the

latest version of Google Chrome web user-agent that was available

when the study was conducted (Google Chrome 17).

Procedure
The following tests were based on a procedure similar to that of

Schmidt [2]. We defined non-gradual black to white keyframe

transitions. All the tests consisted of a 2006200 pixel animation

placed at the centre of the screen. We tested two factors: the timing

mechanism and the FPS rate of the Flash animation. For each

case, five independent 60-second series were recorded, and only

the first 100 samples of each series were analysed. Therefore, 500

samples were recorded for each combination.

We evaluated the following timing mechanisms: (1) loop, leaving

the control of the animation in the hands of the loop parameter of

the Flash player; (2) no-loop, resetting the animation after the last

keyframe (gotoAndPlay(1)); (3) setInterval, by means of an

aperiodic ActionScript timer (setInterval(changeBack-

ground, 50)); (4) polling, checking actively whether it is time to

change the background (see Listing 2); and (5) timer, controlling

the animation through a Timer object (see Listing 3). We

evaluated the following FPS rates: (1) 20 FPS, very frequent in

banners and simple Flash applications (an update every 50 ms); (2)

60 FPS, the refresh rate of the screen (an update every 16.667 ms),

and (3) 100 FPS, above the screen’s refresh rate (an update every

10 ms). As mentioned before, we conducted five consecutive tests

for each combination in order to discover any degradation of

accuracy and precision as a function of time (i.e., during a ten-

minute long test, the first 100 samples were collected at the

beginning of the first minute, the second 100 samples at the

beginning of the third minute, the third 100 samples at the

beginning of the fifth minute, the fourth 100 samples at the

beginning of the seventh minute, and the last 100 samples at the

beginning of the ninth minute of the test). All the tests were

conducted on Google Chrome 17 and Microsoft Windows 7 SP1,

which are the most popular user-agent and operating system,

respectively. Additionally, we only evaluated the 50-ms interval, as

it marks a turning point in the quality of performance in all our

preliminary tests. All tests are available for download at https://

osf.io/6j3iz/.

Listing 2. ActionScript code snippet to control an animation
through polling.

addEventListener(Event.ENTER_FRAME, update);

function update(event:Event) {

var currentTime:int = getTimer();

var newCurrentTime:int = getTimer();

vardtInt:int = newCurrentTime-currentTime;

while (dtInt ,50) {

dtInt = newCurrentTime-currentTime;

newCurrentTime = getTimer();

}

changeBackground();

}

Listing 3. ActionScript code snippet to control an animation
through a Timer object.

var myTimer:Timer = new Timer(5 );

myTimer.addEventListener(TimerEvent.TIMER,

changeBackground);

myTimer.start( );

Results and discussion
Before analysing the results of our studies, we decided to

compute missed frames, rather than measured timing errors

(MTEs), for several reasons. Because the focus of these studies is

the analysis of the accuracy and precision of several software

mechanisms to create animations for the Web, timing errors

attributable to hardware issues (i.e., rise and decay times of LCD

displays) should not be considered as software errors. The same

happens with limitations in measurement equipment (i.e., the

BBTK photosensors do not provide a continuous analogue value,

but rather a discrete digital one based on an adjustable threshold).

Therefore, we decided to convert the MTE to missed frames using

the formula:

Missed frames~
DMTE{ tick

2
, MTEv0

DMTEz tick
2

, MTE§0

(
ð1Þ

where D denotes the floor function.

Presentation Accuracy of the Web Revisited

PLOS ONE | www.plosone.org 5 October 2014 | Volume 9 | Issue 10 | e109812

https://osf.io/6j3iz/
https://osf.io/6j3iz/


A a missed frame represents a single screen refresh (i.e., 16.667

ms at 60 Hz) and it is constant across all conditions. Missed frames

could be negative in animations where presentation times are at

least one tick shorter than estimated duration (e.g., a 80-ms blank

keyframe in a 100-ms interval animation).

As shown in Figure 1, although the loop and no-loop timing

options remain stable throughout the five series, the performance

of the rest of timing mechanisms (setInterval, polling, timer) suffers

a progressive degradation through the testing. To determine which

factors have an impact in the number of missed frames, we

analysed them with an analysis of variance (ANOVA) with Timer

(loop, no-loop, setInterval, polling, and timer), FPS (20, 60, and

100 FPS), Series (1–5), and Colour (White vs. Black) as factors.

Given the large number of measurements analysed (N = 7500), all

main effects and interactions were significant. Consistent with our

preliminary analysis, the main effect of FPS was relatively large,

F(2, 7499) = 4201.554, p,0.001, gp
2 = 0.533, confirming that

there is a decline in performance when the number of FPS is lower

(20) or higher (100) than the refresh rate of the screen.

Interestingly, the main effect of Timer, F(4, 7499) = 2751.154,

p,0.001, gp
2 = 0.600, and the main effect of Series, F (4,

7499) = 3390.185, p,0.001, gp
2 = 0.649, were also significant,

showing that choosing a proper timing mechanism has a

noticeable impact on performance.

The results of the ANOVA also revealed important interactions

between some of these factors: The Timer x FPS x Series

interaction, F(32, 7499) = 118.232, p,0.001, gp
2 = 0.340, the

Timer x FPS interaction, F(8, 7499) = 662.020, p,0.001,

gp
2 = 0.419, and the Timer x Series interaction, F(16,

7499) = 653.211, p,0.001, gp
2 = 0.587, were all significant.

Although significant, all other main effects and interactions had

small effect sizes (all gp
2,0.2).

Even ignoring the time degradation across series, the timing

mechanisms that we have evaluated can be sorted from best to

worse as follows: (1) loop (M: 0.67, SD: 1.087), (2) no-loop (M:

0.68, SD: 1.175), (3) setInterval (M: 0.88, SD: 1.658), (4) timer (M:

1.06, SD: 1.591), and (5) polling (M. 2.42, SD: 1.58). Therefore,

Figure 1. Number of missed frames per series for Adobe Flash animation using different timing mechanisms.
doi:10.1371/journal.pone.0109812.g001

Presentation Accuracy of the Web Revisited

PLOS ONE | www.plosone.org 6 October 2014 | Volume 9 | Issue 10 | e109812



we used the 60-FPS loop timing mechanism in all subsequent tests

on Adobe Flash (see Study 2).

Study 2: pre-HTML5 web technologies

The aim of Study 2 is twofold: 1) to provide new evidence on

the accuracy and precision of animations created with web

technologies not studied in more than ten years (GIF89 and

Silverlight); 2) to recreate some of the previous studies on web

technologies already analysed during the last decade (Java and

Flash).

Methodology and apparatus
The hardware for this study was the same as setup used in Study

1. Regarding the software, we used three web user-agents

compatible with Microsoft Windows 7 Professional 32-bit edition

with Service Pack 1: Internet Explorer, Google Chrome, and

Mozilla Firefox. In each case, we used the latest version that was

available when the study was conducted (Internet Explorer 9,

Google Chrome 17, and Mozilla Firefox 10).

Procedure
The procedure of Study 2 is also similar to that of Schmidt [2].

We defined non-gradual black-to-white keyframe transitions

varying the duration of each keyframe with values of 500, 100,

50, and 16.667 ms (i.e., 30, 6, 3, and 1 tick at 60 Hz, respectively).

All the tests consisted of a 2006200 pixel animation placed at the

centre of the screen. For each case, five independent 60-second

series were recorded, and only the 100 first samples of each series

were analysed. Therefore, 500 samples were recorded for each

combination of interval (500, 100, 50, and 16.667 ms), web

technology (GIF89a, Flash, Java, and Silverlight), and user-agent

(Internet Explorer, Google Chrome, and Mozilla Firefox).

GIF89a was tested using 2006200 pixel animations with a

resolution of 72 points per inch (ppi). The animation consisted of

two keyframes, one black and one white, shown for a specific

interval. Given that this technology does not allow defining

intervals shorter than 10 ms, these intervals were set to 500, 100,

50, and 10 ms in separate tests.

Adobe Flash was tested with loop-animations at 60 frames per

second (FPS). Given that the refresh time is constant, we varied the

number of black and white keyframes to obtain the desired

intervals. Thus, the 16.667 ms animation consisted of just one

black keyframe followed by one white keyframe, while the 500 ms

animation consisted of 30 black keyframes followed by 30 white

keyframes. The justification for this choice is explained thoroughly

in Study 1.

Regarding Java, we used an applet with a single parameter

defining the animation interval measured in ms. Therefore, we

prepared four HTML documents with a 2006200 pixel applet

and the appropriate animation interval (500, 100, 50, or

16.667 ms). This applet uses the scheduleAtFixedRate

method from the ScheduledExecutorService interface,

receiving as arguments a specific thread (Runnable interface),

and initial delay, an interval, and a measurement unit (see Listing

4). The following setup was used: 1) the thread called the

repaint method, which changes the applet’s background; 2) the

initial delay was set to 0; 3) the interval is taken from the applet’s

parameter; and 4) the time unit was fixed to ms (Time-

Unit.MILLISECONDS). This produced a periodic change in the

background colour.

T
a

b
le

1
.

D
e

sc
ri

p
ti

ve
st

at
is

ti
cs

o
f

th
e

n
u

m
b

e
r

o
f

m
is

se
d

fr
am

e
s

fo
r

G
IF

8
9

a
an

im
at

io
n

s.

5
0

0
1

0
0

5
0

1
0

G
o

o
g

le
C

h
ro

m
e

M
e

an
(S

D
)

0
.0

6
(0

.3
4

2
)

0
.0

1
(0

.8
9

1
)

0
.0

1
(1

.0
6

5
)

5
.5

1
(1

.0
2

4
)

R
an

g
e

2
2

+2
2

1
+2

2
2

+1
+4

+8

M
o

z
il

la
F

ir
e

fo
x

M
e

an
(S

D
)

0
.2

4
(1

.3
7

9
)

0
.2

9
(1

.0
5

5
)

0
.1

7
(0

.9
5

6
)

5
.7

9
(1

.1
7

6
)

R
an

g
e

2
1

+1
8

2
1

+2
2

2
+1

+4
+8

In
te

rn
e

t
E

x
p

lo
re

r

M
e

an
(S

D
)

0
.0

6
(0

.2
6

6
)

0
.0

2
(0

.9
2

2
)

3
.0

2
(0

.9
2

3
)

5
.5

1
(1

.0
7

2
)

R
an

g
e

2
1

+1
2

3
+2

+1
+5

+3
+8

d
o

i:1
0

.1
3

7
1

/j
o

u
rn

al
.p

o
n

e
.0

1
0

9
8

1
2

.t
0

0
1

Presentation Accuracy of the Web Revisited

PLOS ONE | www.plosone.org 7 October 2014 | Volume 9 | Issue 10 | e109812



Listing 4. Java applet to run a simple procedural animation.

import javax.swing.JApplet;

import java.awt.Color;

import java.awt.Graphics;

import java.awt.Dimension;

import java.awt.Image;

import java.util.concurrent.Executors;

import java.util.concurrent.ScheduledExecutorService;

import java.util.concurrent.TimeUnit;

public class Square extends JApplet {

int speed, h, w;

boolean isWhite;

Graphics bufferGraphicsWhite;

Image offscreenWhite;

Graphics bufferGraphicsBlack;

Image offscreenBlack;

public void init() {

speed = Integer.parseInt(getParameter("speed"));

Dimension d = getSize();

h = d.height;

w = d.width;

isWhite = true;

offscreenWhite = createImage(w, h);

bufferGraphicsWhite = offscreenWhite.getGraphics();

bufferGraphicsWhite.setColor(Color.WHITE);

bufferGraphicsWhite.fillRect(0, 0, w, h);

offscreenBlack = createImage(w, h);

bufferGraphicsBlack = offscreenBlack.getGraphics();

bufferGraphicsBlack.setColor(Color.BLACK);

bufferGraphicsBlack.fillRect(0, 0, w, h);

try {

ScheduledExecutorService executorService =

Executors.newSingleThreadScheduledExecutor();

executorService.scheduleAtFixedRate(new Runnable() {

@Override

public void run() {

repaint();

}

}, 0, speed, TimeUnit.MILLISECONDS);

} catch (Exception e) {

System.err.println("Applet init didn’t complete successfully");

}

}

public void update(Graphics g) {

paint(g);

}

public void paint(Graphics g) {

if (isWhite) {

g.drawImage(offscreenBlack,0,0,this);

} else {

g.drawImage(offscreenWhite,0,0,this);

}

isWhite = !isWhite;

}

}

Silverlight animations were defined declaratively with XAML

(eXtensible Application Markup Language). This content-oriented

XML dialect allows defining declarative animations without specifying

any details about their low-level implementation in Microsoft.Net. The

XAML file included an animated Rectangle object loaded with the

ColorAnimationUsingKeyFrames instruction with a duration

of 1 sec (Duration=’’0:0:1.000’’), repeating permanently

(RepeatBehavior=’’Forever’’) a white keyframe with a

duration of 500 ms (KeyTime=’’0:0:0.500’’). All tests are

available for download at https://osf.io/6j3iz/.

Results and discussion
The number of missed frames in the GIF89a tests is shown in

Table 1. As expected, this technology does not produce substantial

delays when the animation interval is larger than 100 ms,

regardless of the user-agent (Google Chrome 17, Mozilla Firefox

10, or Internet Explorer 9). Below that threshold, the resulting

performance falls considerably, although unevenly, in all user-

agents. In the case of Internet Explorer 9, any interval below

100 ms is reinterpreted as a 100-ms interval. Consequently, tests

with 50 ms intervals show a 50 ms delay, whereas tests with

16.667 ms intervals show delays around 85 ms. In the case of

Mozilla Firefox 10, GIF89a animations were executed correctly,

except for the 16.667 ms interval, which yielded delays similar to

those of Internet Explorer (around 85 ms). Finally, in the case of

Google Chrome 17, the results of the tests with intervals below

100 ms are very similar to those observed in Mozilla Firefox 10,

although the mean number of missed frames is smaller in all tests.

Another interesting finding is that this technology is stable across

time. As can be seen in Figure 2, the number of missed frames

varies very little within the series of 5 consecutive tests for each

case.

Regarding Adobe Flash, we evaluated the different setup and

programming options offered by Adobe Flash to identify the best

combination (see Study 1). After discarding the configurations that

yielded the worst results, the performance of Adobe Flash was

good, with few missed frames in each test (see Table 2).

The results of the tests conducted on Java are shown in Table 3.

They were slightly worse than those obtained with Adobe Flash,

especially regarding Google Chrome 17 and Internet Explorer 9

(the mean number of missed frames is larger than 0.8 in all setups).

Table 4 shows the results of the tests conducted on Microsoft

Silverlight. This technology behaved similarly to Adobe Flash,

except for the 16.667 ms interval, which showed a worse

performance in all user-agents (SDs above 1 in all cases).

To fully comprehend the pattern of results and to identify the

most important factors of the number of missed frames, we

conducted a 4 (Technology: GIF89a, Flash, Java, Silverlight) x 3

(User-Agent: Google Chrome 17, Mozilla Firefox, 10, Internet

Explorer 9) x 4 (Interval: 500, 100, 50, 16.667) x 5 (Series: 1–5) x 2

(Colour: White vs. Black) ANOVA on the number of missed

frames. As expected, the main effect of Series was not significant,

indicating that performance does not change across the series of

measurements (F(4, 23999) = 1.658, p = .157). As in our previous

analyses, several main effects and interactions yielded significant

results due to the relatively large number of data points that we

recorded, even though their effect size was small. Among all the

main effects analysed, the main effect of Interval is the most

relevant in terms of effect size, F(4, 23999) = 6434.541, p,.001,

gp
2 = 0.523. Regarding the interactions between factors, Tech-

nology x User-Agent is the one with the largest effect size, F(16,

23999) = 82.384, p,0.001, gp
2 = 0.053. Note, however, the

relatively small effect size of this interaction. Therefore, the

performance of these technologies might vary depending on the

time interval and the specific combination of technology and user-

agent. All other main effects and interactions had very small effect

sizes (all gp
2s,0.05).

Overall, the accuracy and precision in the presentation of visual

content in classic web technologies was acceptable, with a mean

number of missed frames below 1 in most tests where intervals

lasted above 100 ms, and standard deviations ranging from 0.109

Presentation Accuracy of the Web Revisited

PLOS ONE | www.plosone.org 8 October 2014 | Volume 9 | Issue 10 | e109812

@Override
https://osf.io/6j3iz/


(100-ms Flash animations on Google Chrome) to 2.057 missed

frames (500-ms Java animations on Internet Explorer).

However, some results suggest that in certain conditions, these

technologies should be used with caution. In the case of GIF89a,

the results are good for intervals equal or larger than 50 ms in

Google Chrome 17 and Mozilla Firefox 10, and also for intervals

equal or larger than 100 ms in Internet Explorer. But these

animations cannot control or synchronize their status once they

have been started. Consequently, this technology is not adequate

for many web applications that require high accuracy and

precision in the presentation of multimedia content.

Flash, possibly the most popular current option for the

development of interactive web applications, yielded very good

results. In all cases, except in Internet Explorer 9 with 16.667 ms,

it produced a mean number of missed frames below 0.1 and a

standard deviation below 1. These values were obtained using the

loop timing mechanism, since the mechanisms implemented in

ActionScript (setInterval, polling, and timer) yielded worse results

in our previous tests.

Regarding Java, the poor performance observed in Google

Chrome 17 and Internet Explorer 9 (around 1 missed frame, on

average, in all conditions) contrasts the good results obtained in

Mozilla Firefox 10 (on average, below 0.4 missed frames in all

conditions). This result is surprising, since Java is a technology

based on a virtual machine with reduced interaction with the

HTML document where it is embedded.

Finally, despite its reduced popularity among users and the low

number of web applications designed for Silverlight, its perfor-

mance is very similar to that of Flash. The exception is noticeably

worse accuracy and precision in tests with the shortest interval

(16.667 ms), which is reasonable for a client-based technology that

was developed as an analogue of Adobe Flash.

Study 3: HTML5 web technologies

The aim of Study 3 is to conduct a comprehensive analysis of

the precision and accuracy of the animations created using

combinations of modern (HTML5-related) web technologies.

First, we analysed web technologies to create declarative

animations: CSS Animations and SVG with SMIL. Next, we

analysed web technologies to create procedural animations: SVG

with JavaScript, Canvas and WebGL. In all procedural animations

tests, the API for the Temporal Control of Procedural Animations

(i.e., requestAnimationFrame) was used in order to avoid

the problems related to the use of standard JavaScript timers

(setTimeout and setInterval).

Methodology and apparatus
In this study we used the same hardware as in previous studies.

We installed three different operating systems in the computer

described above: 1) Microsoft Windows 7 Professional 32-bit

edition with Service Pack 1; 2) Ubuntu Linux 10.04 LTS ‘‘Lucid

Linx’’ 32-bit edition; and 3) Apple Mac OS X 10.7.3 ‘‘Lion’’. We

chose these because they were the most stable versions of each

operating system at the time the tests were conducted. We used

two user-agents compatible with the three operating systems:

Google Chrome and Mozilla Firefox. In each case, we used the

latest version that was available when the study was conducted

(Google Chrome 17 and Mozilla Firefox 10).

Figure 2. Number of missed frames per series for GIF89a
animation on: (a) Google Chrome 17, (b) Mozilla Firefox 10, (c)
Internet Explorer 9.
doi:10.1371/journal.pone.0109812.g002

Presentation Accuracy of the Web Revisited

PLOS ONE | www.plosone.org 9 October 2014 | Volume 9 | Issue 10 | e109812



T
a

b
le

2
.

D
e

sc
ri

p
ti

ve
st

at
is

ti
cs

o
f

th
e

n
u

m
b

e
r

o
f

m
is

se
d

fr
am

e
s

fo
r

A
d

o
b

e
Fl

as
h

an
im

at
io

n
s.

5
0

0
1

0
0

5
0

1
6

.6
6

7

G
o

o
g

le
C

h
ro

m
e

M
e

an
(S

D
)

0
.0

6
(0

.2
3

4
)

0
.0

1
(0

.1
0

9
)

0
.0

1
(0

.4
2

5
)

0
.0

4
(0

.2
1

5
)

R
an

g
e

0
+1

0
+1

2
1

+2
0

+2

M
o

z
il

la
F

ir
e

fo
x

M
e

an
(S

D
)

0
.0

6
(0

.2
4

6
)

0
.0

1
(0

.1
3

4
)

0
(0

.3
5

)
0

.0
5

(0
.2

4
)

R
an

g
e

2
1

+1
2

1
+1

2
1

+1
0

+2

In
te

rn
e

t
E

x
p

lo
re

r

M
e

an
(S

D
)

0
.0

6
(0

.2
3

8
)

0
.0

1
(0

.1
3

4
)

0
.0

1
(0

.8
1

6
)

0
.5

1
(0

.6
5

3
)

R
an

g
e

0
+1

2
1

+1
2

1
+1

0
+2

d
o

i:1
0

.1
3

7
1

/j
o

u
rn

al
.p

o
n

e
.0

1
0

9
8

1
2

.t
0

0
2

T
a

b
le

3
.

D
e

sc
ri

p
ti

ve
st

at
is

ti
cs

o
f

th
e

n
u

m
b

e
r

o
f

m
is

se
d

fr
am

e
s

fo
r

Ja
va

an
im

at
io

n
s.

5
0

0
1

0
0

5
0

1
6

.6
6

7

G
o

o
g

le
C

h
ro

m
e

M
e

an
(S

D
)

0
.9

4
(1

.7
3

5
)

0
.8

5
(1

.4
2

6
)

1
.7

1
(2

.8
2

3
)

1
(0

.7
7

4
)

R
an

g
e

2
6

+8
0

+8
0

+1
6

0
+5

M
o

z
il

la
F

ir
e

fo
x

M
e

an
(S

D
)

0
.1

2
(0

.3
2

5
)

0
.3

6
(1

.8
4

5
)

0
.0

9
(0

.5
1

4
)

0
.0

4
(0

.2
4

9
)

R
an

g
e

0
+1

0
+1

3
0

+6
0

+2

In
te

rn
e

t
E

x
p

lo
re

r

M
e

an
(S

D
)

0
.9

5
(2

.0
5

7
)

0
.9

6
(1

.6
9

5
)

2
.1

8
(3

.1
8

2
)

0
.9

(0
.4

4
3

)

R
an

g
e

2
6

+8
0

+1
4

0
+1

6
0

+5

d
o

i:1
0

.1
3

7
1

/j
o

u
rn

al
.p

o
n

e
.0

1
0

9
8

1
2

.t
0

0
3

Presentation Accuracy of the Web Revisited

PLOS ONE | www.plosone.org 10 October 2014 | Volume 9 | Issue 10 | e109812



Procedure
We again defined non-gradual black-to-white keyframe transi-

tions, varying the duration of each keyframe with values 500, 100,

50, and 16.667 ms (i.e., 30, 6, 3, and 1 tick at 60 Hz, respectively).

All the tests consisted of a 2006200 pixel animation placed at the

centre of the screen. In each case, we recorded five independent

60-second series, but analysed only the first 100 samples of each

series. Therefore, 500 samples were recorded for each combina-

tion of interval (500, 100, 50, and 16.667 ms), web technology

(CSS Animations, SVG with SMIL, SVG with JavaScript,

Canvas, and WebGL), user-agent (Google Chrome, and Mozilla

Firefox) and operating system (Microsoft Windows, MacOS X,

GNU/Linux).

We tested declarative animations in HTML5 using CSS Animations

and SVG with SMIL, and prepared procedural animations were

prepared with SVG, Canvas, and WebGL with JavaScript. In all cases,

we used the timer provided by the API for the Temporal Control of

Procedural Animations (i.e., requestAnimationFrame). These

technologies were tested in Google Chrome 17 and Mozilla Firefox 10

running under Microsoft Windows 7 SP 1, Ubuntu Linux 10.04 LTS,

and Apple Mac OS X 10.7. We selected these user-agents because

both of them were available for the three operating systems and

because they were compatible with all the technologies mentioned so

far.

CSS animations were defined using two keyframes. The first (run at

keyframe 0%, which indicates the first moment of the animation

sequence) sets the background colour of the div element to white and

the second (run at keyframe 50%), sets it back to black. The total

duration of the animation is twice the value of the tested interval.

Thus, for a 100 ms test, a 200 ms duration is defined, so that 50% of

the total duration of the animation corresponds to the desired 100 ms

keyframe duration. Given that a non-gradual transition from black to

white was required, we used the step function for transitions. In the

case of SVG with SMIL, it was necessary to prepare two different

versions for each user-agent, because Google Chrome 17 does not

support cross-references in the definition of an animation’s onset.

Because of this, we unrolled the animation loops for SVG with SMIL

tests in this user-agent using shell scripts. These SVG files do not

therefore loop the animation endlessly, but perform a fixed number of

changes (e.g., 120 changes for a 1-minute animation with an interval

rate of 500 ms). Procedural animations all use a similar structure

based on requestAnimationFrame, that updates the back-

ground colour of the object with the required methods in each case.

Therefore, our tests of the accuracy and precision of the Canvas 2D

API to present visual content rely on the fillStyle property and

the fillRect method to update the background colour of the

animation. In the case of WebGL, the background colour is updated

with clearcolor and clear methods of context 3D. This was

done using the setAttributeNS method in SVG procedural

animations. All tests are available for download at https://osf.io/

6j3iz/.

Results and discussion
Table 5 shows the results of the tests conducted using CSS.

There is a marked decline in performance in tests with intervals

below 50 ms, with particularly poor results for Mozilla Firefox 10

on Windows 7 (M: 4.89, SD: 5.041). Above that interval,

performance is comparable with the results of classic online

technologies.

The tests of SVG and SMIL yielded a pattern of results very

similar to that observed in tests of CSS Animations (see Table 6).

However, the decline in performance in tests with intervals below

50 ms is more pronounced, producing extremely poor results in

Google Chrome 17 under Windows 7 (M: 24.69, SD: 44.167).

T
a

b
le

4
.

D
e

sc
ri

p
ti

ve
st

at
is

ti
cs

o
f

th
e

n
u

m
b

e
r

o
f

m
is

se
d

fr
am

e
s

fo
r

M
ic

ro
so

ft
Si

lv
e

rl
ig

h
t

an
im

at
io

n
s.

5
0

0
1

0
0

5
0

1
6

.6
6

7

G
o

o
g

le
C

h
ro

m
e

M
e

an
(S

D
)

0
.0

6
(0

.9
4

)
0

.0
1

(0
.7

1
3

)
0

.0
2

(0
.8

0
6

)
0

.2
6

(1
.1

5
4

)

R
an

g
e

2
3

+2
2

2
+2

2
2

+2
0

+1
3

M
o

z
il

la
F

ir
e

fo
x

M
e

an
(S

D
)

0
.0

6
(0

.8
9

3
)

0
.0

1
(0

.7
4

1
)

0
.0

1
(0

.7
9

7
)

0
.3

3
(1

.5
3

3
)

R
an

g
e

2
2

+2
2

2
+2

2
2

+2
0

+1
4

In
te

rn
e

t
E

x
p

lo
re

r

M
e

an
(S

D
)

0
.0

6
(0

.9
3

5
)

0
.0

2
(0

.7
5

8
)

0
.0

1
(0

.7
9

2
)

0
.2

8
(1

.0
2

7
)

R
an

g
e

2
2

+2
2

2
+2

2
2

+2
0

+1
1

d
o

i:1
0

.1
3

7
1

/j
o

u
rn

al
.p

o
n

e
.0

1
0

9
8

1
2

.t
0

0
4

Presentation Accuracy of the Web Revisited

PLOS ONE | www.plosone.org 11 October 2014 | Volume 9 | Issue 10 | e109812

https://osf.io/6j3iz/
https://osf.io/6j3iz/


T
a

b
le

5
.

D
e

sc
ri

p
ti

ve
st

at
is

ti
cs

o
f

th
e

n
u

m
b

e
r

o
f

m
is

se
d

fr
am

e
s

fo
r

C
SS

an
im

at
io

n
s.

5
0

0
1

0
0

5
0

1
6

.6
6

7

W
in

d
o

w
s7

G
o

o
g

le
C

h
ro

m
e

M
e

an
(S

D
)

0
.0

6
(0

.6
4

9
)

0
.0

1
(0

.5
2

2
)

0
(0

.6
0

6
)

2
.6

2
(0

.7
9

)

R
an

g
e

2
2

+2
2

2
+1

2
2

+2
+2

+7

M
o

z
il

la
F

ir
e

fo
x

M
e

an
(S

D
)

0
.0

6
(0

.6
0

3
)

0
.0

1
(1

.0
4

3
)

0
.0

1
(1

.1
0

7
)

4
.8

9
(5

.0
4

1
)

R
an

g
e

2
2

+2
2

3
+2

2
2

+3
0

+2
2

G
N

U
/L

in
u

x

G
o

o
g

le
C

h
ro

m
e

M
e

an
(S

D
)

0
(0

.9
6

1
)

0
(0

.5
3

7
)

0
(0

.4
5

9
)

2
.1

7
(0

.5
8

8
)

R
an

g
e

2
2

+2
2

2
+2

2
2

+2
0

+4

M
o

z
il

la
F

ir
e

fo
x

M
e

an
(S

D
)

0
(0

.7
0

8
)

0
(0

.6
5

5
)

0
(0

.7
8

9
)

0
.3

2
(0

.6
9

1
)

R
an

g
e

2
2

+2
2

2
+2

2
2

+2
0

+3

M
a

c
O

S
X

G
o

o
g

le
C

h
ro

m
e

M
e

an
(S

D
)

2
0

.0
6

(0
.8

5
)

0
(0

.6
6

7
)

0
(0

.4
6

1
)

2
.4

2
(0

.7
1

)

R
an

g
e

2
1

+1
2

2
+1

2
2

+1
+2

+4

M
o

z
il

la
F

ir
e

fo
x

M
e

an
(S

D
)

2
0

.0
6

(0
.7

0
7

)
2

0
.0

1
(0

.6
6

8
)

0
(0

.5
3

7
)

0
.1

4
(0

.3
6

2
)

R
an

g
e

2
1

+1
2

1
+1

2
1

+1
0

+3

d
o

i:1
0

.1
3

7
1

/j
o

u
rn

al
.p

o
n

e
.0

1
0

9
8

1
2

.t
0

0
5

Presentation Accuracy of the Web Revisited

PLOS ONE | www.plosone.org 12 October 2014 | Volume 9 | Issue 10 | e109812



T
a

b
le

6
.

D
e

sc
ri

p
ti

ve
st

at
is

ti
cs

o
f

th
e

n
u

m
b

e
r

o
f

m
is

se
d

fr
am

e
s

fo
r

SV
G

+S
M

IL
an

im
at

io
n

s.

5
0

0
1

0
0

5
0

1
6

.6
6

7

W
in

d
o

w
s7

G
o

o
g

le
C

h
ro

m
e

M
e

an
(S

D
)

0
.0

6
(0

.2
8

1
)

0
.0

1
(0

.8
9

3
)

0
.0

1
(1

.0
4

1
)

2
4

.6
9

(4
4

.1
6

7
)

R
an

g
e

2
2

+2
2

2
+2

2
2

+1
0

4
9

8

M
o

z
il

la
F

ir
e

fo
x

M
e

an
(S

D
)

0
.0

7
(0

.5
7

5
)

0
.0

1
(1

.0
9

2
)

0
(1

.0
8

2
)

4
.7

3
(4

.0
5

5
)

R
an

g
e

2
1

+2
2

3
+2

2
2

+3
0

+1
6

G
N

U
/L

in
u

x

G
o

o
g

le
C

h
ro

m
e

M
e

an
(S

D
)

0
(0

.1
1

)
0

(0
.5

6
4

)
0

(0
.7

5
3

)
1

1
.1

1
(3

.9
8

3
)

R
an

g
e

2
1

+1
2

1
+2

2
2

+1
0

+3
9

M
o

z
il

la
F

ir
e

fo
x

M
e

an
(S

D
)

0
(0

.7
2

9
)

0
(0

.6
5

)
0

(0
.8

0
6

)
0

.3
4

(0
.7

1
9

)

R
an

g
e

2
3

+4
2

2
+2

2
2

+2
0

+3

M
a

c
O

S
X

G
o

o
g

le
C

h
ro

m
e

M
e

an
(S

D
)

2
0

.0
6

(0
.2

5
4

)
2

0
.0

1
(0

.2
5

7
)

0
(0

.3
9

3
)

1
4

.4
7

(4
.9

3
7

)

R
an

g
e

2
1

+1
2

1
+1

2
1

+1
+1

+4
0

M
o

z
il

la
F

ir
e

fo
x

M
e

an
(S

D
)

2
0

.0
6

(0
.7

0
5

)
2

0
.0

1
(0

.6
7

9
)

0
(0

.5
5

4
)

0
.1

3
(0

.3
6

9
)

R
an

g
e

2
1

+1
2

1
+1

2
1

+1
0

+2

d
o

i:1
0

.1
3

7
1

/j
o

u
rn

al
.p

o
n

e
.0

1
0

9
8

1
2

.t
0

0
6

Presentation Accuracy of the Web Revisited

PLOS ONE | www.plosone.org 13 October 2014 | Volume 9 | Issue 10 | e109812



Figure 3. Number of missed frames per series for: (a) CSS animations, (b) SVG+ SMIL animations.
doi:10.1371/journal.pone.0109812.g003

Presentation Accuracy of the Web Revisited

PLOS ONE | www.plosone.org 14 October 2014 | Volume 9 | Issue 10 | e109812



T
a

b
le

7
.

D
e

sc
ri

p
ti

ve
st

at
is

ti
cs

o
f

th
e

n
u

m
b

e
r

o
f

m
is

se
d

fr
am

e
s

fo
r

C
an

va
s

2
D

an
im

at
io

n
s.

5
0

0
1

0
0

5
0

1
6

.6
6

7

W
in

d
o

w
s7

G
o

o
g

le
C

h
ro

m
e

M
e

an
(S

D
)

0
.8

(0
.3

9
9

)
0

.8
5

(0
.5

4
7

)
0

.8
5

(0
.5

5
7

)
0

.9
3

(0
.5

0
4

)

R
an

g
e

0
+1

0
+2

0
+2

0
+3

M
o

z
il

la
F

ir
e

fo
x

M
e

an
(S

D
)

0
.6

6
(0

.7
)

0
.6

9
(1

.0
5

5
)

0
.8

5
(0

.5
7

9
)

0
.9

4
(0

.4
6

8
)

R
an

g
e

0
+3

2
1

+2
0

+3
0

+3

G
N

U
/L

in
u

x

G
o

o
g

le
C

h
ro

m
e

M
e

an
(S

D
)

0
.1

1
(0

.7
0

8
)

0
.8

(0
.4

6
7

)
0

.8
8

(0
.4

4
2

)
0

.8
2

(0
.7

2
6

)

R
an

g
e

2
2

+1
2

1
+3

2
1

+2
0

+3

M
o

z
il

la
F

ir
e

fo
x

M
e

an
(S

D
)

0
.7

6
(0

.5
5

6
)

0
.1

8
(0

.4
4

6
)

0
.0

9
(0

.5
8

9
)

0
.3

4
(0

.6
8

5
)

R
an

g
e

2
1

+3
2

2
+2

2
2

+2
0

+4

M
a

c
O

S
X

G
o

o
g

le
C

h
ro

m
e

M
e

an
(S

D
)

0
.5

4
(0

.5
0

7
)

0
.4

8
(0

.5
1

6
)

0
.3

5
(0

.4
9

3
)

0
.5

6
(0

.4
9

7
)

R
an

g
e

2
1

+1
2

1
+1

2
1

+1
0

+1

M
o

z
il

la
F

ir
e

fo
x

M
e

an
(S

D
)

0
.4

5
(0

.4
9

8
)

0
.4

7
(0

.4
9

9
)

0
.2

2
(0

.4
1

2
)

0
.0

6
(0

.2
6

5
)

R
an

g
e

0
+1

0
+1

0
+1

0
+3

d
o

i:1
0

.1
3

7
1

/j
o

u
rn

al
.p

o
n

e
.0

1
0

9
8

1
2

.t
0

0
7

Presentation Accuracy of the Web Revisited

PLOS ONE | www.plosone.org 15 October 2014 | Volume 9 | Issue 10 | e109812



T
a

b
le

8
.

D
e

sc
ri

p
ti

ve
st

at
is

ti
cs

o
f

th
e

n
u

m
b

e
r

o
f

m
is

se
d

fr
am

e
s

fo
r

SV
G

+J
av

aS
cr

ip
t

an
im

at
io

n
s.

5
0

0
1

0
0

5
0

1
6

.6
6

7

W
in

d
o

w
s7

G
o

o
g

le
C

h
ro

m
e

M
e

an
(S

D
)

0
.8

(0
.3

9
7

)
0

.8
5

(0
.5

4
8

)
0

.8
5

(0
.5

6
7

)
0

.9
3

(0
.4

8
5

)

R
an

g
e

0
+1

0
+3

2
1

+2
0

+3

M
o

z
il

la
F

ir
e

fo
x

M
e

an
(S

D
)

1
.3

(0
.8

9
)

1
.5

(0
.5

)
0

.7
6

(0
.4

6
6

)
0

.8
8

(0
.3

3
)

R
an

g
e

0
+4

+1
+2

0
+3

0
+1

G
N

U
/L

in
u

x

G
o

o
g

le
C

h
ro

m
e

M
e

an
(S

D
)

0
.1

1
(0

.6
7

7
)

0
.8

(0
.5

0
8

)
0

.8
8

(0
.4

0
1

)
0

.8
1

(0
.7

3
8

)

R
an

g
e

2
2

+2
2

1
+3

2
1

+3
0

+3

M
o

z
il

la
F

ir
e

fo
x

M
e

an
(S

D
)

0
.7

7
(0

.6
4

7
)

0
.1

8
(0

.4
4

6
)

0
.0

9
(0

.5
6

4
)

0
.3

5
(0

.7
5

3
)

R
an

g
e

2
1

+3
2

1
+2

2
2

+2
0

+4

M
a

c
O

S
X

G
o

o
g

le
C

h
ro

m
e

M
e

an
(S

D
)

0
.5

6
(0

.5
0

8
)

0
.5

(0
.5

1
2

)
0

.4
(0

.4
9

8
)

0
.5

3
(0

.5
0

3
)

R
an

g
e

2
1

+1
2

1
+1

2
1

+1
0

+2

M
o

z
il

la
F

ir
e

fo
x

M
e

an
(S

D
)

0
.5

4
(0

.4
9

9
)

0
.5

2
(0

.5
)

0
.2

6
(0

.4
3

7
)

0
.0

7
(0

.2
5

2
)

R
an

g
e

0
+1

0
+1

0
+1

0
+1

d
o

i:1
0

.1
3

7
1

/j
o

u
rn

al
.p

o
n

e
.0

1
0

9
8

1
2

.t
0

0
8

Presentation Accuracy of the Web Revisited

PLOS ONE | www.plosone.org 16 October 2014 | Volume 9 | Issue 10 | e109812



T
a

b
le

9
.

D
e

sc
ri

p
ti

ve
st

at
is

ti
cs

o
f

th
e

n
u

m
b

e
r

o
f

m
is

se
d

fr
am

e
s

fo
r

W
e

b
G

L
an

im
at

io
n

s.

5
0

0
1

0
0

5
0

1
6

.6
6

7

W
in

d
o

w
s7

G
o

o
g

le
C

h
ro

m
e

M
e

an
(S

D
)

0
.7

8
(0

.4
1

3
)

0
.7

3
(0

.4
4

3
)

0
.8

5
(0

.3
5

9
)

0
.9

3
(0

.2
6

2
)

R
an

g
e

0
+1

0
+1

0
+1

0
+1

M
o

z
il

la
F

ir
e

fo
x

M
e

an
(S

D
)

0
.9

8
(0

.9
4

2
)

0
.6

9
(1

.0
2

8
)

0
.9

1
(0

.6
5

9
)

0
.9

5
(0

.5
1

4
)

R
an

g
e

0
+3

2
1

+2
0

+3
0

+3

G
N

U
/L

in
u

x

G
o

o
g

le
C

h
ro

m
e

M
e

an
(S

D
)

0
.3

(0
.4

6
2

)
0

.8
4

(0
.3

6
9

)
0

.9
(0

.2
9

5
)

0
.8

1
(0

.3
9

6
)

R
an

g
e

2
1

+1
0

+1
0

+1
0

+1

M
o

z
il

la
F

ir
e

fo
x

M
e

an
(S

D
)

0
.7

3
(0

.5
3

6
)

0
.1

7
(0

.4
8

6
)

0
.0

9
(0

.3
5

3
)

0
.4

(0
.7

2
5

)

R
an

g
e

2
1

+2
2

1
+2

2
2

+2
0

+3

M
a

c
O

S
X

G
o

o
g

le
C

h
ro

m
e

M
e

an
(S

D
)

0
.5

8
(0

.5
0

7
)

0
.4

7
(0

.5
2

3
)

0
.4

4
(0

.4
9

7
)

0
.5

5
(0

.4
9

8
)

R
an

g
e

2
1

+1
2

1
+2

0
+1

0
+1

M
o

z
il

la
F

ir
e

fo
x

M
e

an
(S

D
)

0
.4

6
(0

.6
0

8
)

0
.3

(0
.4

7
1

)
0

.1
2

(0
.3

4
)

0
.0

9
(0

.3
2

)

R
an

g
e

2
5

+6
2

1
+1

2
1

+2
0

+3

d
o

i:1
0

.1
3

7
1

/j
o

u
rn

al
.p

o
n

e
.0

1
0

9
8

1
2

.t
0

0
9

Presentation Accuracy of the Web Revisited

PLOS ONE | www.plosone.org 17 October 2014 | Volume 9 | Issue 10 | e109812



Overall, the performance of both technologies for declarative

animations is equal or better than the one observed in the

equivalent tests of classic web technologies, except in the case of

16.667 ms, where the performance falls to unacceptable levels. As

can be seen in Figure 3, these values remain stable, except for

condition 16.667 in SVG and SMIL, which suffers a noticeable

increase in the number of missed frames.

The tests of procedural animations with the Canvas 2D API

yielded similar results in all conditions, with means ranging

from 0.11 to 0.94 missed frames, and standard deviations from

0.265 to 1.055 (see Table 7). A similar pattern is observed in

SVG and JavaScript animations, with means ranging from 0.07

to 1.50 and standard deviations from 0.252 to 0.890 (see

Table 8), and in WebGL animations, with means between 0.09

and 0.98 and standard deviations between 0.262 and 1.028 (see

Table 9). In all cases, some specific combinations of user-agent

and operating systems yielded particularly good results (e.g.,

Mozilla Firefox 10 under Mac Os X is the most successful

combination in most tests). The factors responsible for the worst

performance are more difficult to identify, given that the worst

results are scattered unevenly over different user-agents and

explorers in each test.

To get a clearer view of the factors responsible for performance

in these tests, we conducted a 5 (Technology: CSS, SMIL, SVG,

Canvas, WebGL) x 2 (User-Agent: Google Chrome 17, Mozilla

Firefox 10) x 3 (Operating system: Windows 7, GNU/Linux, Mac

OS X) x 4 (Interval: 500, 100, 50, 16.667) x 5 (Series: 1-5) x 2

(Colour: White vs. Black) ANOVA on the number of missed

frames. The results of this analysis are very similar to the previous

one: 1) as a result of the large number of observations, many effects

reach significance levels; 2) once more, the main effect of Series is

not significant, showing that these technologies do not suffer from

temporal degradation, F,1; 3) among all the main effects

analysed, the main effect of Interval is the most relevant in terms

of effect size, F(3, 59999) = 1127.896, p,0.001, gp
2 = 0.054. The

most relevant interaction is Technology x Interval, F(24,

59999) = 695.966, p,0.001, gp
2 = 0.124, probably due to the

poor results drawn by CSS and SMIL in 16.667 ms animations.

These results are consistent with the previous interpretation of the

differences found across intervals, user-agents, and operating

systems. However, even these two effects have a very small size. All

the datasets regarding these results are available to download at

https://osf.io/6j3iz/.

We conclude that, among all the tested technologies, declarative

animations based on CSS are the most effective alternative when

animation intervals are above 50 ms, given that they yielded a low

number of missed frames (means from 0.00 to 20.06, standard

deviations from 0.459 to 1.107). They are also temporally stable

(without a main effect of Series or important interactions involving

this factor) and independent of the performance of JavaScript (it

does not overload its event queue and it is not affected by it,

either). The same conclusion could be extended to the combina-

tion of SVG and SMIL, except for their inefficient implementation

in Google Chrome, which precludes a good performance and does

not allow cross-referenced temporal loops.

The performance of procedural web technologies around

the HTML5 standard (Canvas, SVG, an WebGL with

requestAnimationFrame) is very similar to that of

previously analysed web technologies (means of missed frames

between 0.06 and 1.50 with standard deviations between 0.252

and 1.055, compared to means between 0.00 and 2.18 and

standard deviations between 0.109 and 3.182). Furthermore,

these technologies are becoming standard and have a

promising future ahead, which makes their use clearly more

advisable overother technologies whose use is in clear decline

(Java, Flash, Silverlight) [9].

Conclusions and Outlook

Even though the accuracy and precision of HTML5 technol-

ogies still has room for improvement, we can conclude that the

continuous development in the performance of the new web

standards related to HTML5 indicates a promising future for web

applications that require accurate and precise presentation of

visual content.

Implications for Web-based research
As mentioned in the Introduction, the results of this study have

implications for current attempts to implement behavioural and

social studies in online technologies. Some popular experimental

paradigms require the accurate and precise presentation of very

brief visual stimuli. For instance, experiments on subliminal

priming usually require presenting stimuli with durations between

16 and 100 ms [4,5]. Some of these effects have been replicated

using Web technologies [27]. However, our results show that not

all web technologies are equally valid to develop applications with

these strict time constraints. Given the variable performance of

user-agents, timers, and technologies, researchers should carefully

decide which technologies to use, depending on the requirements

of their experiments. They should also report the specific details of

the timing mechanisms in the Methods section of their paper.

Without this information, their findings might not be replicable by

other researchers relying on similar, but not identical, implemen-

tations.

Although the present study focuses on the accuracy and

precision of stimuli durations, our results are also relevant for

the measurement of reaction times in Web-delivered experiments.

Reaction times are quickly becoming a common dependent

variable in psychological experiments conducted over the Internet

[6,29]. However, the accuracy in the timing of stimuli imposes a

limit in the accuracy in the registration of reaction times: if a

stimulus has not been presented at the exact time or with the exact

duration, the actual reaction time of participants might not be

correctly measured. Therefore, researchers interested in collecting

reaction times in Web-delivered experiments should make sure

that they are using the most accurate technologies for the timing of

stimuli.

Limitations of present research
The current study has been an attempt to analyse all the

possibilities offered by new web technologies to create precise and

accurate animations. However, the huge amount of tests needed to

carry out this objective, together with the rapid development

cycles of the technologies used, make difficult, if not impossible, to

offer results and conclusions about the latest versions of those

technologies. The competition among the main developers of user-

agents (Google, Microsoft, Mozilla, Apple, Opera) has resulted in

a plethora of updates, which are hard to keep current (e.g., Mozilla

Firefox took longer than seven years to pass from version 1.0 to

5.0, but in the last three years has published over twenty-five new

versions).

Something similar is happening at a slower pace with operating

systems which have short release publication periods, e.g. Ubuntu

Linux. Given the new release pace of browsers and operating

systems, researchers will inevitably lag behind and publish results

and conclusions derived from out-of-date software. Nevertheless,

research performed over the Internet delegates the software

update responsibility to the participant in the experiment. For this

Presentation Accuracy of the Web Revisited

PLOS ONE | www.plosone.org 18 October 2014 | Volume 9 | Issue 10 | e109812

https://osf.io/6j3iz/


reason, the results presented in this study are valuable and useful

not only for those researchers who use these technologies only in

their labs, but also for researchers who conduct experiments on the

Internet.

Ideally, someone would publish an open access database

constantly updated with evidences about the precision and

accuracy of web technologies used for online research. Our

contribution to that envisaged database is already published in the

Open Science Framework (OSF). Both the tests and their results

can be downloaded from our OSF repository.

A second issue has to do with the hardware in which the tests

have taken place. In previous studies (see [18]; but particularly

[19]), the software analysed was tested over different hardware

systems to assess the variability of results between-systems. Taking

into account the little control that researchers carrying out

Internet research have on the hardware used by the participants

in their experiments, it is valuable to have data about the

variability among hardware systems. Our study focused on

software, undertaking an ample comparison of a wide range of

technologies among them, over an ample number of combinations

of user-agents and operating systems. Studies such as the one from

Reimers and Stewart [20] complement this one to offer Internet

researchers an insight into which technologies are most suitable for

each type of experiment. Hopefully, other researchers will

continue our work and analyse these software technologies on

different hardware equipment in order to collaboratively contrib-

ute to the public, open access database mentioned in the previous

paragraph.

Even having such open continuously updated database includ-

ing information about the precision and accuracy of the web

technologies, it is important to recall that following the recom-

mendations of this study does not prevent researchers from

conducting their own tests in their experimental setups [30]. The

purpose of the analysis presented here is to guide researchers

towards which web technologies are appropriate for a given study.

After selecting one of these technologies, it is the responsibility of

researchers to verify the accuracy and precision of their tools in a

variety of scenarios that represent plausible variations of hardware,

software and network connectivity that may occur among their

participants.

Acknowledgments

The authors would like to thank Hardin Brotherton for his corrections of a

previous draft. Correspondence concerning this article should be addressed

to Pablo Garaizar, DeustoTech Learning, Universidad de Deusto, Avda.

Universidades, 24, 48007 Bilbao, Spain. Email: garaizar@deusto.es.

Author Contributions

Conceived and designed the experiments: PG MAV DLI. Performed the

experiments: PG. Analyzed the data: PG MAV. Contributed reagents/

materials/analysis tools: DLI. Wrote the paper: PG MAV DLI.

References

1. Birnbaum MH (2004) Human research and data collection via the Internet.

Annu Rev Psychol, 55, 803–832.

2. Schmidt W (2001) Presentation accuracy of Web animation methods. Beh Res

Methods, 33(2), 187–200.

3. Eichstaedt J (2001) An inaccurate-timing filter for reaction time measurement by

Java applets implementing Internet-based experiments. Beh Res Methods, 33(2),

179–186.

4. Dehaene S, Naccache L, Le Clec’H G, Koechlin E, Mueller M, et al. (1998)

Imaging unconscious semantic priming. Nature, 395, 597–600.

5. Hassin RR, Ferguson MJ, Shidlovski D, Gross T (2007) Subliminal exposure to

national flags affects political thought and behavior. Proc Natl Acad Sci U S A,

104, 19757–19761.

6. Nosek BA (2005) Moderators of the relationship between implicit and explicit

evaluation. J Exp Psychol: General, 134, 565–584.

7. Voss A, Rothermund K, Gast A, Wentura D (2013) Cognitive processes in

associative and categorical priming: A diffusion model analysis. J Exp Psychol:

General, 142, 536–559.

8. CompuServe (1990) Graphics Interchange Format programming reference.

Available: http://www.w3.org/Graphics/GIF/spec-gif89a.txt

9. W3Techs (2014) Usage of Java for websites. Available: http://w3techs.com/

technologies/details/cp-javaruntime/all/all

10. Goodin D (2013) Critical Java zero-day bug is being ‘‘massively exploited in the

wild’’. Ars Technica. Available: http://arstechnica.com/security/2013/01/

critical-java-zero-day-bug-is-being-massively-exploited-in-the-wild/

11. Jobs S (2010) Thoughts on Flash. Available: https://www.apple.com/hotnews/

thoughts-on-flash/

12. Winokur D (2011) Flash to focus on PC browsing and mobile apps; Adobe to

more aggressively contribute to HTML5. Available: http://blogs.adobe.com/

conversations/2011/11/flash-focus.html

13. Chappell D (1996) Understanding ActiveX and OLE: a guide for developers and

managers. Microsoft Press.

14. Oeschger I (2002) API reference: Netscape Gecko plugins. Netscape Commu-

nications.

15. Yee B, Sehr D, Dardyk G, Chen J, Muth R, et al. (2009) Native client: A

sandbox for portable, untrusted x86 native code. In 30th IEEE Symposium on

Security and Privacy (pp. 79–93).

16. Resig J (2008) Accuracy of JavaScript Time. Available: http://ejohn.org/blog/

accuracy-of-javascript-time/

17. Jackson D, Hyatt D, Marrin C, Galineau S, Baron D (2013) CSS animations.

W3C Working Draft, 19 February 2013. Available: http://www.w3.org/TR/

css3-animations/
18. Adams C (2010) HTML5 versus Flash: Animation benchmarking. Available:

http://www.themaninblue.com/writing/perspective/2010/03/22/
19. Neath I, Earle A, Hallett D, Surprenant AM (2011) Response time accuracy in

Apple Macintosh computers. Beh Res Methods, 43, 353–362.

20. Reimers S, Stewart N (2014) Presentation and response timing accuracy in
Adobe Flash and HTML5/JavaScript Web experiments. Beh Res Methods,

doi:10.3758/s13428-014-0471-1
21. Keller F, Gunasekharan S, Mayo N, Corley M (2009) Timing accuracy of web

experiments: A case study using the Webexp software package. Beh Res
Methods, 41(1), 1–12.

22. McGraw K, Tew M, Williams J (2000) The integrity of web-delivered

experiments: Can you trust the data? Psychol Sci, 11(6), 502–506.
23. Reimers S, Stewart N (2007) Adobe flash as a medium for online

experimentation: A test of reaction time measurement capabilities. Beh Res
Methods, 39(3), 365–370.

24. Stewart N (2006) Millisecond accuracy video display using OpenGL under

Linux. Beh Res Methods, 38(1), 142–145.
25. Reimers S, Stewart N (2008) Using Adobe Flash Lite on mobile phones for

psychological research: Reaction time measurement reliability and interdevice
variability. Beh Res Methods, 40(4), 1170–1176.

26. Schubert TW, Murteira C, Collins EC, Lopes D (2013) ScriptingRT: A software

library for collecting response latencies in online studies of cognition. PLoS
ONE, 8, e67769. doi:10.1371/journal.pone.0067769

27. Crump MJ, McDonnell JV, Gureckis TM (2013) Evaluating Amazon’s
Mechanical Turk as a tool for experimental behavioral research. PLoS ONE,

8, e57410
28. Plant R, Hammond N, Turner G (2004) Self-validating presentation and

response timing in cognitive paradigms: How and why? Beh Res Meth Instr C,

36(2), 291–303.
29. Garaizar P, Vadillo MA, López-de-Ipiña D, Matute H (2014) Measuring

software timing errors in the presentation of visual stimuli in cognitive
neuroscience experiments. PLoS ONE 9(1): e85108. doi:10.1371/journal.pone.

0085108

30. Plant RR, Quinlan PT (2013) Could millisecond timing errors in commonly
used equipment be a cause of replication failure in some neuroscience studies?

Cogn Affect Behav Ne, 13, 598–614.

Presentation Accuracy of the Web Revisited

PLOS ONE | www.plosone.org 19 October 2014 | Volume 9 | Issue 10 | e109812

garaizar@deusto.es
http://www.w3.org/Graphics/GIF/spec-gif89a.txt
http://w3techs.com/technologies/details/cp-javaruntime/all/all
http://w3techs.com/technologies/details/cp-javaruntime/all/all
http://arstechnica.com/security/2013/01/critical-java-zero-day-bug-is-being-massively-exploited-in-the-wild/
http://arstechnica.com/security/2013/01/critical-java-zero-day-bug-is-being-massively-exploited-in-the-wild/
https://www.apple.com/hotnews/thoughts-on-flash/
https://www.apple.com/hotnews/thoughts-on-flash/
http://blogs.adobe.com/conversations/2011/11/flash-focus.html
http://blogs.adobe.com/conversations/2011/11/flash-focus.html
http://ejohn.org/blog/accuracy-of-javascript-time/
http://ejohn.org/blog/accuracy-of-javascript-time/
http://www.w3.org/TR/css3-animations/
http://www.w3.org/TR/css3-animations/
http://www.themaninblue.com/writing/perspective/2010/03/22/

