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Abstract

In many situations, 3D cell cultures mimic the natural organization of tissues more closely than 2D cultures. Conventional
methods for phenotyping such 3D cultures use either single or multiple simple parameters based on morphology and
fluorescence staining intensity. However, due to their simplicity many details are not taken into account which limits
system-level study of phenotype characteristics. Here, we have developed a new image analysis platform to automatically
profile 3D cell phenotypes with 598 parameters including morphology, topology, and texture parameters such as wavelet
and image moments. As proof of concept, we analyzed mouse breast cancer cells (4T1 cells) in a 384-well plate format
following exposure to a diverse set of compounds at different concentrations. The result showed concentration dependent
phenotypic trajectories for different biologically active compounds that could be used to classify compounds based on their
biological target. To demonstrate the wider applicability of our method, we analyzed the phenotypes of a collection of 44
human breast cancer cell lines cultured in 3D and showed that our method correctly distinguished basal-A, basal-B, luminal
and ERBB2+ cell lines in a supervised nearest neighbor classification method.
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Introduction

Over the past decade, in vivo models and 2D cell cultures

represented the two principle approaches used to study cellular

processes. The extreme low throughputs of in vivo models and

poor (patho-) physiological relevance of over-simplified monolayer

cell cultures motivated the development of 3D cell culture

methods. In many situations, 3D cell cultures mimic the natural

organization of tissues more closely than 2D cultures, enabling

cells to develop complex micro-tissue phenotypes. Especially for

the study of tissue development where the spatial organization,

architecture and interaction with the extracellular matrix are

critical, 3D cell culture models may bridge the gap between in vivo
studies and simple 2D cell mono-layer cultures [1,2], 3D cell

cultures are also used frequently in tumor studies, allowing the

effects of ECM, stromal cells and individual genes on tumor

growth and invasion to be studied [3–7].

One potential application of 3D cultures is for the high-

throughput screening (HTS) and high content analysis (HCA) of

pharmacologically active compounds [8]. For such purposes, 3D

cultures are treated with compound libraries in 96- or 384-wells

micro plates. Here, 3D cultures have presented a challenge in

collecting image data with sufficient resolution because acquiring

high resolution images is time consuming and therefore not always

feasible for HTS. Many methodologies have been established for

the image analysis of HTS [9], although the quantification of

phenotypes is mostly performed with single or multiple simple

parameters. This is not sufficient to study of the full range of effects

of test compounds.

Our goal was to develop an automated multi-parametric

profiling platform which is suited for HTS and is able to quantify

cellular phenotypes exhaustively. Such a platform should apply

rapid image preprocessing and segmentation methods that are

suited for images with limited resolution. More importantly, this

platform should be able to recover heterogeneous cell behavior.

For example, it should be able to distinguish epithelial cells that

develop branched structures from those that do not in response to

a specific treatment. Such cell-to-cell heterogeneity seems essential

for the plasticity of tissue responses e.g. in response to inflamma-

tion and associated with tumor invasion [10,11].

As proof of concept, we investigated mouse breast cancer cells

(4T1) after they formed micro-tissues in 3D by monitoring their

cellular phenotypic response to a diverse set of compounds, using a

novel 3D screening and ultra high content analysis (uHCA)

technique. An overview of the project workflow is presented in the

Figure 1. After image acquisition, we extensively mined images for
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feature data which we used for multi-parametric phenotype

profiling. To investigate phenotypic patterns, principle component

analysis (PCA) was first used to reduce the dimensionality of the

dataset. Subsequently, we compared various multi-parametric tests

to identify biologically active compounds. Next, polynomial

regression modeling was applied to characterize concentration

dependent trajectories for each biologically active compound, and

the distance between the trajectories was used for hierarchical

clustering of compounds. Finally, multiple classification models

were used to identify distinct phenotypic patterns.

Methods

An overview of the project workflow is presented in Figure 1

and more information on the individual data analysis steps can be

found in File S1.

Cell culturing, fluorescence staining, and image
acquisition

To generate 3D micro-tissues, mouse triple negative breast

cancer cells (4T1) were obtained from the American Type Culture

Collection (ATCC) (Manassas, VA, USA) and were cultured in a

mixture of collagen type IV and laminin-rich basement membrane

extract (Matrigel) for 4 days in 384-well high content imaging

micro plates. 24 hours after seeding, cells were exposed to 29

different compounds with different biological activities (Table S1)

at 6 different concentrations (0.03 mM, 0.1 mM, 0.316 mM, 1 mM,

3.16 mM, 10 mM) in quadruplicate (See Figure S1 for plate layout).

Replicates were located on the same plates. Cells growing in 0.2%

DMSO without any compound treatment were included as

controls. There were 24 control wells in each of the 384-well

micro plates. To avoid an edge effect, the first and last two rows

and columns were left empty.

After 72 hours of exposure, the cultured micro-tissues were

fixed and stained with Hoechst 33258 (final concentration 0.4 mg/

mL) and Rhodamine-phalloidin (final concentration 0.1 mM) to

visualize nuclei and F-actin, respectively.

For the classification of the 44 breast cancer cell lines, these

were cultured and stained (at 96 hr) similarly as described above

for the 4T1 cells. The human breast cancer cell lines were from

ATCC or as described [12] and provided to us by Prof. Dr. John

A. Foekens and Dr. John W. Martens from Erasmus University

Medical Center-Daniel den Hoed Cancer Center, Rotterdam,

The Netherlands.

Figure 1. An overview of the project workflow. The details are explained in the Methods and Results of the manuscript and more information
on the individual data analysis steps can be found in the File S1.
doi:10.1371/journal.pone.0109688.g001
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For each well of a 384-well plate, 2 channels (corresponding to

Rhodamine and Hoechst fluorescence) of 16-bit image stacks were

collected using an automated microscope system: BD pathway

855, equipped with a 4X magnification/0.16NA UPlanSApo

objective. For each image slice (n = 17), pixel size was 1.6 mm and

step size in z direction was 50 mm

2D projection
In order to achieve high-throughput in our methodology, we used

wide-field microscopy for screening as its imaging process is much

faster than confocal laser scanning microscopy. However, due to its

limited depth of field, each image slice obtained from a wide-field

microscope includes both in-focus regions and out-of-focus regions

of micro-tissue specimen (Figure 2a, 2b) that are bigger than the

depth of field. To extract only the in-focus information, a free open

source plugin of ImageJ ‘‘Stack Focuser’’ was used to compose 2D

image slices (Figure 2c, 2d) by projecting only in-focus regions from

each slice of image stacks (details see File S1).

Segmentation
For the Hoechst stained nuclei channel, our novel Watershed

Masked Clustering [13,14] was applied to retrieve the binary

masks for individual nuclear regions. This algorithm first generates

watersheds on the Gaussian filter (s= 2.0) convolved images to

separate the adjacent nuclei into individual compartments.

Convolving with a Gaussian filter prevented the influence of

noise from causing artificial local maxima. Next, K-means

clustering was applied on the images prior to convolving to refine

the region of the nucleus in each compartment (Figure 2e, File S1).

For the Rhodamine stained F-actin channel, median filter and

rolling ball were applied before segmentation to remove the

background and reduce the noise level. The radius of rolling ball

was chosen to be slightly bigger than the smallest cell colonies.

Next, the local Niblack algorithm [15] was used to define regions

of cell colonies (Figure 2f, File S1).

Multi-parametric profiling
Quantification algorithms assembled from the literature [16,17]

were incorporated into an ImageJ plugin to extract different

morphological and fluorescence intensity parameters from the

images (Figure 2g, Table S2). We observed that the 3D micro-

tissues formed different subpopulations: 1) spherical colonies and

2) branched and interconnected complex network. Upon exposure

to different compounds, the proportion and the shape of these two

subpopulations often changed in a specific pattern. To quantita-

tively study these changes, an automated classifier for these two

subpopulations was developed and embedded in the image

analysis pipeline (see File S1, Figure S2). Relevant information

was collected for each subpopulation based on fluorescence

intensity and morphology (Table S2). In total, 598 parameters

were measured from the images of each well for the whole

population and the two subpopulations. A complete description

can be found in File S1.

Software and all image data are available at: http://dx.doi.org/

10.4121/uuid:d5b91e46-07e7-4077-bd63-3fa2b82c847f

Results

4T1 breast cancer cells acquire a complex phenotype in
3D culture, which is perturbed by biologically active
compounds

Images obtained from the control wells showed that the 4T1

cells spontaneously formed a heterogeneous array of multi-cellular

structures comprising spheroids and branched micro-tissues that

were interconnected to form a complex network (Figure S3a). Cells

were exposed to 29 test compounds including tyrosine kinase

inhibitors, cytostatic drugs, and Wnt-signalling activators (Table

S1). Exposure to many of the 29 test compounds resulted in a

change in various aspects of network formation after 72 hours,

such as branch length and thickness, number of branches, and the

proportion and shape of spheroids (Figure S3b–f). Some

compounds, such as the protease inhibitor bortezomib, and

several compounds at higher concentrations, showed apparent

toxicity, characterized by complete inhibition of network forma-

tion and pronounced inhibition of cell growth (Figure S3f).

Identification of biologically active compounds
The primary goal of our present HTS method was to identify

biologically active compounds which significantly affect the

cellular phenotype compared to controls. To remove between-

plate variation, we firstly performed cross-plate normalization by

calculating the robust z-score [18] for each of 598 measured

parameters (see File S1). The normalized z-scores were used for

principle component analysis (PCA) and 9 principle components

were obtained to preserve 90% data variation. A 3D plot of data

points on the first 3 principle components is given in Figure S4.

The parameters that contribute most to the first 3 principle

components are shown in Table S3. These include subpopulation

parameters, intensity parameters and morphological parameters.

To identify biologically active compounds, we compared three

multi-parametric tests based on the 9 principle components:

Mahalanobis distance, Chi-square and Wilks’ lambda test (see File

S1). Mahalanobis distance at a= 0.05 came the closest to visual

scoring a treatment as having an effect on phenotype. Figure S5a

shows the false positives and false negatives for the different

statistical tests. The Mahalanobis distance to control (DMSO) of

all active compounds is shown in Figure S5b. Table S4 lists the

active compounds (21 out of 29) and the concentrations at which a

statistically significant effect on the phenotype was detected.

Concentration dependent phenotypic trajectories of
biologically active compounds

We found for many biologically active compounds, that data

points seem to move away from negative controls in a trajectory

with increasing concentration. This is shown clearly in a PCA plot

of the first 2 principle components (Figure 3a). Interestingly, the

trajectories of the different active compounds separate the most at

medium concentrations but converge at higher concentrations.

This may be explained by the fact that at high concentrations

(10 mM) severe toxicity is induced which inhibits not only cell

invasion and branching but also proliferation and growth, leading

to a similar phenotype. This is shown for the compounds Arq 197,

dasatinib, entinostat, and sorafenib tosylate at the concentration of

10 mM (Figure 3b). Most compounds had only a marginal effect

on cellular network formation at the lowest concentration that was

tested (0.03 mM), except for dasatinib that already induced

apparent inhibition of network formation at this concentration.

At the concentration of 0.316 mM, all compounds induced distinct

phenotypes. Dasatinib inhibited branch-ing but not proliferation

so that bigger cell colonies were formed, while entinostat induced

much thinner branches compared to control (Figure 3b). Sorafe-

nib tosylate and Arq 197 caused formation of much shorter

branches, indicative of inhibition of invasion. Most strikingly, we

found that trajectories of compounds that inhibit the same

biological target were more similar to each other than to

trajectories of compounds with a different target (Figure 3a),

indicating that phenotypic development of 4T1 cells is effected by
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different biological targets in characteristic ways and that we can

identify this with our uHCA methodology.

Trajectory modeling and phenotypic pattern recognition
To further characterize the different phenotypes, we used 2nd

order polynomial regression modeling to build the trajectory for

each identified active compound. First, we investigated data

variation for each of the 9 principle components. We compared

the data between control and active compounds using a two

sample Kolmogorov-Smirnov (KS) test. The principle components

with no significant difference, equal data variation, or bigger

variation in negative controls than in active compounds, were

excluded to avoid overtraining, resulting in retaining only the first

2 components. Next, a 2D polynomial regression model of the

trajectory for each compound was trained and the difference

between the trajectories of two compounds i,j was computed based

Figure 2. Stepwise demonstration of the image analysis method. Scale bar represents 100 micrometer. (a) Image stack obtained from
the Hoechst stained nuclei channel. (b) Image stack obtained from the Rhodamine stained F-actin channel. (c) In-focus 2D image projected from the
stacks of Hoechst stained nuclei channel. (d) In-focus 2D image projected from the stacks of Rhodamine stained F-actin channel. (e) Binary nuclear
mask after segmentation by Watershed Masked Clustering. (f) Binary cellular mask after segmentation. The subpopulation classification result is also
shown here. The green contour represents branched and interconnected complex networks. The red contour represents spherical colonies. (g)
Quantitative parameters measured for each well of the 384-well plates. See Methods for further description.
doi:10.1371/journal.pone.0109688.g002
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Figure 3. 2D PCA plot of phenotype profiles for various active compounds and their concentration dependent phenotypic
trajectories. (a) 2D PCA plot of phenotype profiles for negative control (DMSO) and 12 active compounds at different concentrations. Percentages
of data variation preserved in each principle component are shown with each axis. Compounds with the same biological target are colored
identically. Red: BCR-ABL target inhibitor; Yellow: VEFGR inhibitor; Green: EGFR inhibitor; Purple: HDAC inhibitor; Blue: c-MET inhibitor. Concentration
is represented by the size of data points. The trend lines were added for each effective compound using 2nd polynomial regression models. (b)
Comparison of microscope images of four example compounds with two DMSO control images. Each compound has a different biological target. 2D
projected images from the Rhoadamine stained F-actin channel are shown here. Scale bar represents 500 micrometer
doi:10.1371/journal.pone.0109688.g003
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on the coefficient of determination R2 (see File S1). Subsequently,

a hierarchical clustering with complete linkage [19] was applied on

the distance matrix defined in the File S1 (Figure 4a). Consistent

with our finding in the PCA analysis, compounds with the same

biological target cluster together but compounds with different

targets are separated. To further validate our hypothesis that

phenotypic responses are specific to the biological target that is

inhibited, we applied classification. Five classes of compounds

were defined based on their biological target (Figure 4b). Only

active concentrations were taken into account, and compound

classes with less than 15 data points were not included in order to

avoid the curse of dimensionality. We tested several classification

algorithms on the 598 z-score space, including k-nearest neighbor

classification, linear Bayes normal classification [21,21,22] qua-

dratic Bayes normal classification [20,22] nearest mean classifica-

tion, support vector machine classification (SVC) [23,24] with

different kernels, and Fisher linear classification [20,22,25]. Before

classification, a forward feature selection with the Mahalanobis

distance metric was performed and only the selected features were

used for classification. To evaluate the performance of feature

selection and classification, 10-fold cross validation was used. For

each of 10 tests, a classification error rate (%) was calculated as

follows:

P number of erroneously classified objects per class

size of class

|prior probability of class

ð1Þ

where the prior probability is equal for each class (20%).

According to the feature selection result, we found that the most

frequently selected discriminative parameters included morphol-

ogy- and intensity-based parameters and parameters from both the

whole population and the two subpopulations. The classification

result is shown in Figure 4c.

The lowest mean classification error rate of 12.8% was obtain

from a linear kernel based SVC with 7 features selected. 1-nearest

neighbor classification also showed a relatively high classification

accuracy with an error rate of 13.1% when 6 features were

selected. With this high classification accuracy of different

classification methods, further evidence is provided that our

method may be used to identify the biological targets of

compounds.

Contribution of the different parameter classes to the
classification

To recover the heterogeneity of all responses of the 4T1 cells to

the different compounds, we had analyzed different multi-cellular

subpopulations and quantified phenotype parameters for each

subpopulation separately. In order to establish the value of

analyzing these subpopulations separately, we repeated the above

analysis excluding subpopulation-related parameters, collecting

only 288 parameters from each well. The result showed that

excluding subpopulation parameters caused a failure to co-cluster

all BCR-ABL inhibitors together, and EGFR inhibitors together.

We also repeated classification without subpopulation parameters

and the classification accuracy was decreased; SVC with linear

kernel still performed relatively better than other classification

methods when 8 features were selected, but the error rate

increased to 16.5% compared to the error rate of 12.8% when

subpopulation parameters were used.

We also repeated the analysis without moments and intensity

parameters. Only morphological parameters were measured from

the whole object population and the two subpopulations, resulting

in 152 parameters extracted from each well for classification. The

classification results of SVC with linear kernel showed that

omission of moments and intensity parameters increased the

misclassification error to 15.4%. These results show that simpli-

fication of the analysis by omitting either subpopulation param-

eters or intensity and moments parameters e.g. to decrease time

for computation, compromises the quality of the analysis.

Comparison to other analysis methods
In order to compare the performance of our newly developed

analysis method with other published methods, we analyzed our

images with PhenoRipper [26] and CellProfiler [27]. PhenoR-

ipper is a platform using a segmentation-free approach: it breaks

down images into small blocks and clusters the blocks to different

types according to the pixel intensity distribution. Then it

quantifies images by proportions of different types of block. As

the quantification is not executed based on segmentation, this

approach is highly computational efficient, using ,5 minutes to

analyze four complete 384 well plates of our data set. As correct

block size is essential, we tested different block size ranging from

20 to 80. However, after plotting profiles of all data points on a 2D

multidimensional scaling (MDS) plot using this platform, we found

that the distances between compounds in the plot (Figure S6a) did

not reflect the similarities or dissimilarities in the images observed

by eye. For example, the negative control (DMSO) data points are

closely located to data points of the positive control Arq 197 with

concentration 3.16 mM in the MDS plot even though these two

conditions showed clearly discrete phenotypes (Figure S6b,c).

CellProfiler is segmentation dependent software. It is able to

calculate morphological parameters including Zernike moments,

object intensity parameters, topological parameters, texture

parameters and image intensity parameters. In total we measured

395 parameters (including the per-image mean and standard

deviation for object measurement) for each well using CellProfiler.

After robust z-score normalization, we applied PCA and plotted

the concentration trajectories for the active compounds. However,

these trajectories were not biological activity specific (Figure S7a)

which was also reflected in the hierarchical clustering result which

did not show co-clustering of compounds with the same biological

target (Figure S7b). However, we did not try to obtain

subpopulation features with this method, which may have

improved the clustering results. Finally we applied Mahalanobis

distance (a= 0.05) to identify the active concentrations of the

biologically active compounds, and those concentrations were used

for classification. The lowest error rate of 26.8% was obtained

when SVC with linear kernel was applied with 14 parameters

selected. Compared to the classification error rate of 12.8%

obtained using our method, this higher error rate indicates that

subpopulation information which is lacking in CellProfiler plays a

very important role in our method and should be taken into

account for compound characterization

Reproducibility of our methodology
To validate the reproducibility of our multi-parametric profiling

platform, the 4T1 cell screen was repeated independently on a

different occasion. Ten biologically active compounds were

included in this screen and we obtained similar results as in the

first screen (see Figure S8).

Other Applications: classification of breast cancer cell
lines

To investigate the wider applicability of our multi-parametric

image analysis platform, we used it to classify 44 known human
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Figure 4. Characterization of cellular phenotype by clustering and classification. (a) Hierarchical clustering result using an average
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1{R2
p

matrix as distance matrix. The scale of dendrogram is the natural logarithm of
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1{R2
p

. (b) Five defined classes of test compounds and corresponding
compounds and number of data points. (c) Classification result using multiple classification methods. Feature selection with search algorithm
‘‘forward’’ and criterion ‘‘Mahalanobis distance’’ was applied to detect optimal number of features. For each classification method and each number
of selected features, 10 fold cross-validation was repeated 10 times, resulting in 10 error rates. The average error rates are shown in the chart with
standard deviation as error bar. SVC means support vector machine classification.
doi:10.1371/journal.pone.0109688.g004
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breast cancer cell lines (Table S5) that have been categorized as

basal-A, basal-B, luminal or luminal/ERBB2+ based on their gene

expression profiles [28–31]. The cell lines were cultured in ECM-

rich hydrogel in 384-well high content imaging micro plates, with

each cell line having 3 or 6 replicates. Obtaining of image stacks and

data analysis were as described for the experiments with the 4T1

cells. After robust z-score normalization, we applied supervised

forward feature selection with criterion Mahalanobis distance and

different classification methods for categorizing basal-A, basal-B,

luminal and ERBB2+ cell lines. 10-fold cross-validation was used to

assess classification performance (Figure 5a). The mean classifica-

tion error was lowest when 8 features were selected and 1-nearest

neighbor classification method was used, resulting in an error rate of

5.9%. The selected features include intensity parameters from the

whole population and subpopulations, morphological parameters

and topological parameters from the whole population and

subpopulations. Based on these 8 selected features, a PCA was

applied (Figure 5b), which clearly shows the separation between the

various human breast cancer cell classes. Excluding parameters

from the subpopulations resulted in a significantly increased

classification error rate (24.9%). Similarly, omitting wavelets,

moment and intensity features from our feature set increased the

error rate to 35%.

Discussion

In this study, we developed a new methodology for 3D cell

culturing in conjunction with high-throughput imaging and image

analysis for the characterization of compounds according to their

effect on the phenotype of cultured micro-tissues. Our method is

the first for high-content analysis of 3D micro-tissues that is

capable of classifying complex phenotypes of 3D cell cultures and

can do this in an automated, high-throughput fashion. Our

method requires only an initial human-based step (defining

branched and spheroidal structures) to train an automatic

classifier. This simple procedure is then followed up by a largely

automated method to classify multi-cellular structures and retrieve

the subpopulation related parameters. The classifier can be

applied for a broad class of phenotypes. For example, we applied

it to successfully classify 44 different breast cancer cell lines (this

manuscript) and also to invasive prostate cancer cells and invasive

lung cancer cells (not yet published). If we sub-classify a very

different kind of biology, such as tubular versus non-tubular kidney

epithelium or villous versus non-villous colon epithelium (other

examples of applications we have tried), we would redefine the

sub-classes.

This platform can be used for many different applications

including identification of biologically active compounds, and

concentration dependent trajectory construction. We also demon-

strated that our platform can be used to correctly classify a

collection of human breast cancer cell lines into known subclasses.

Although the group of Bissell et al. have pioneered automated

phenotyping of human breast cancer cell lines [32], a complete

classification of these cell lines could only be achieved so far with

more elaborate and expensive techniques such as gene expression

analysis. Recently, a promising new method for nuclear segmen-

tation of 3D cell cultures using curvature-based partitioning was

presented [33]. This was used to compare the morphogenesis of

four breast cancer cell lines in terms of colony organization.

However, this method uses confocal microspcopy images and it is

not known whether it would be possible to classify breast cancer

cell lines with this method.

For each application of our present methodology, the selected

features for phenotype characterization included intensity param-

eters, morphological parameters and topological parameters from

Figure 5. Classification of human breast cancer cell lines. (a) According to the cross-validation result, the smallest error rate was achieved
when 8 features were selected. (b) A 3 dimensional PCA plot was generated based on these 8 selected features. Percentages of data variation
preserved in each principle component were shown with each axis. Different categories of breast cancer cells are colored differently to show the
separation between the various human breast cancer cell classes.
doi:10.1371/journal.pone.0109688.g005
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the whole population and subpopulations Taken together, these

findings indicate that to systematically study phenotypes associated

with modulation of different cellular pathways, it is necessary to

quantify images with a full spectrum of phenotypic information. It

will not only reveal details that are otherwise not resolved, but also

enable adaption to different cell lines or new biological questions.

Although the use of 598 parameters may seem redundant initially, it

enables us to analyze 3D-cellular phenotypes under a wide variety of

conditions, while our feature selection methodologies automatically

identify those features that contribute most to the separation and

characterization of the particular phenotypes under study.

Compared to other methods, we demonstrated that our

methodology offers significant advantages in terms of recognition

of specific phenotypes within still reasonable computational

demands (see File S1). While some other methods such as

PhenoRipper [26] are suitable for analyzing sub-cellular data in

2D imaging-based assays, they are not appropriate for the type of

images used in this study. Another advantage of our methodology

is that it can be incorporated in the user friendly, freely available

ImageJ environment written in Java, and therefore can be run

with various operating systems (Linux, Windows, Mac OS X).

Supporting Information

Figure S1 The experiment layout of a 384-well micro
plate. Compounds are indexed from C1 to C9 on this plate.

DMSO is control. The different shades of grey represents the 6

different concentrations used, increasing from 0.03 mM to 10 mM.

The first and last two rows and columns remained empty to avoid

an edge effect.

(TIF)

Figure S2 Subpopulation classification. (a) Segmentation

results of a projected Rhodamine stained f-actin image. (b)

Manually selected spherical objects and (c) branched objects. (d)

Skeleton of each binary object. (e) Features calculated from each

binary object for subpopulation classification. (f) Cross-validation

result for comparing different classification methods and identify-

ing optimal number of features for classification. Average error

rate of a 10-fold cross-validation is shown in the chart with

standard deviation as error bars.

(TIF)

Figure S3 Mouse breast cancer cell (4T1) exposed to
different compounds in 3D cell culture. For a clear

representation of cellular phenotypic responses to different

compounds, these images were acquired by a Nikon Eclipse Ti

microscope in confocal mode. We used a dry air lens with 4X

magnification and 0.2 NA. Two channels (Hoechst stained nuclei

channel and Rhoadamine stained F-actin channel) z-stack of 32 xy

epifluorescence image slices were collected from each well, with

acquisition step size in z direction 50 mm. Maximum intensity

projection was applied to compress 3D image stacks to 2D image

representation. Concentration of all compounds shown here was

0.316 mM. Scale bar represents 100 micrometer. (a) Untreated

cells cultured in 0.2% DMSO, (b) cells exposed to compound Arq

197, (c) cells exposed to dasatinib, (d) cells exposed to entinostat, (e)

cells exposed to sorafenib tosylate, (f) cells exposed to bortezomib.

(TIF)

Figure S4 3D PCA plot of all 29 compounds and
concentrations. Compounds are marked with different colors

and the concentration is represented by the size of data points.

Percentages of data variation preserved in each principle

component are shown with each axis.

(TIF)

Figure S5 Identification of biologically active com-
pounds. (a) Comparison of three multi-parametric tests for the

identification of biologically active compounds. ‘‘positive’’ indi-

cates correctly identified active concentration of a test compound

(p value ,a). ‘‘False positive’’ indicates the concentration which is

identified as active but no obvious difference was observed

compared to control images. ‘‘negative’’ indicates correctly

identified inactive concentration of a test compound (p value .

= a). ‘‘False negative’’ indicates the concentration which is

identified as inactive but obvious differences were observed

compared to control images. ‘‘#’’ means ‘‘number of’’. (b)

Natural logarithm of Mahalanobis distance to DMSO control of

all active compounds. Compounds are marked with different

colors and shapes. Black dashed line corresponds to the distance

with p-value = 0.05.

(TIF)

Figure S6 Comparison to PhenoRipper. (a) A two

dimensional MDS plot after using PhenoRipper for the analysis

of the compound screen in 4T1 cells. The block size used was 50.

Compounds are identified by their color. The highlighted orange

point corresponds to a well treated with Arq 197 at a

concentration of 3.16 mM, and the highlighted purple point

corresponds to a control well. (b–c) Phenotype images corre-

sponding to the highlighted points in (a).

(TIF)

Figure S7 Comparison to CellProfiler. (a) A 2D PCA plot

of phenotype profiles for negative control (DMSO) and 13 active

compounds at different concentrations using CellProfiler to profile

compounds in the 4T1 screen (not all compounds are shown).

Percentages of data variation preserved in each principle

component are shown with each axis. Compounds are marked

with different shapes and colors. Compounds with the same

biological target are colored the same. Red: BCR-ABL target

inhibitor; Yellow: VEFGR inhibitor; Green: EGFR inhibitor;

Purple: HDAC inhibitor; Blue: c-MET inhibitor. Concentration is

represented by the size of data points. The trend lines were added

for each effective compound using polynomial regression model

with order two. (b) Hierarchical clustering result for all active

compounds using an average
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1{R2
p

matrix as distance matrix.

The scale of dendrogram is the natural logarithm of
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1{R2
p

.

(TIF)

Figure S8 Reproducibility of our methodology. (a) A two

dimensional PCA plot of phenotype profiles for negative control

(DMSO) and 11 active compounds from a repeated experiment.

Percentages of data variation preserved in each principle

component are shown with each axis. Compounds are marked

with different shapes and colors. Compounds with the same

biological target are colored the same. Red: BCR-ABL target

inhibitor; Yellow: VEFGR inhibitor; Green: EGFR inhibitor;

Purple: HDAC inhibitor; Blue: c-MET inhibitor. Concentration is

represented by the size of data points. The trend lines were added

for each effective compound using polynomial regression model

with order two. (b) Classification result using multiple classification

methods. Feature selection and classification algorithms are the

same as in the first experiment.

(TIF)

Table S1 Compounds used in the 4T1 cell 3D micro-
tissue screen.

(DOC)
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Table S2 Morphological, moment and intensity param-
eters measured for the whole object population, raw
intensity images, and subpopulations.
(DOC)

Table S3 Top 5 parameters which contribute most to
each of the 3 first principle components in the 4T1 cell
screen.
(DOC)

Table S4 Biologically active compounds and corre-
sponding active concentration identified using Mahala-
nobis distance (a = 0.05).
(DOC)

Table S5 Breast cancer cell lines (basal-A, basal-B,
luminal or ERBB2+) used for classification.
(DOC)

File S1 Image analysis for multi-parametric phenotype
profiling, identification of the biologically active com-

pounds, and phenotypic trajectory modeling using 2nd
order polynomial regression model.

(DOC)
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