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Abstract

Background: Statins have recently been highlighted for their pleiotropic actions distinct from cholesterol-lowering effects.
Despite this interest, it is currently unknown whether statin therapy inhibits peritoneal dialysis (PD)-related epithelial-
mesenchymal transition (EMT).

Methods: In vitro, human peritoneal mesothelial cells (HPMCs) were exposed to 5.6 mM glucose (NG) or 100 mM glucose
(HG) with or without simvastatin (1 mM). In vivo, PD catheters were inserted into 32 Sprague-Dawley rats, and saline (C,
n = 16) or 4.25% peritoneal dialysis fluid (PDF) (PD, n = 16) was infused for 4 weeks. Eight rats from each group were treated
with 5 mg/kg/day of simvastatin intraperitoneally. Changes in the protein expression of EMT markers such as E-cadherin, a-
SMA, Snail, and fibronectin in HPMCs and the peritoneum were evaluated by Western blot analysis and
immunofluorescence or immunohistochemical staining. We also explored whether activation of the mevalonate pathway
and its downstream small GTPases were involved in dialysis-related peritoneal EMT and could be inhibited by statin
treatment.

Results: Compared to NG cells, E-cadherin expression was significantly decreased, while a-SMA, Snail, and fibronectin
expression were significantly increased in HPMCs exposed to HG, and these changes were abrogated by simvastatin (p,
0.05). In addition, the cobblestone-like appearance of normal HPMCs was converted into a fibroblast-like morphology after
HG treatment, which was reversed by simvastatin. These EMT-like changes were also observed in HPMCs treated with
geranyl-geranyl pyrophosphate (5 mM). HG significantly increased the protein expression of RhoA and Rac1 in the
membrane fractions, and these increases were ameliorated by simvastatin (p,0.05). In PD rats, E-cadherin in the
peritoneum was significantly decreased, whereas a-SMA, Snail, and fibronectin expression were significantly increased (p,
0.05) compared to C rats. The thickness of the mesothelial layer in the peritoneum were also significantly greater in PD rats
than in C rats (p,0.05). These changes of the peritoneum in PD rats were significantly attenuated by simvastatin.

Conclusion: This study demonstrated that PD-related EMT was mediated via the mevalonate pathway, and statin treatment
inhibited the EMT changes in HG-treated HPMCs and PDF-stimulated PD rats. These findings suggest that statins may be a
promising therapeutic strategy for preservation of peritoneal membrane integrity in long-term PD patients.
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Introduction

Even though peritoneal dialysis (PD) is generally accepted as an

established modality for the management of patients with end-

stage renal disease (ESRD), a concern about peritoneal membrane

failure has consistently been raised in long-term PD. Many factors

have been demonstrated to be involved in the development of

peritoneal dysfunction. In particular, the nonphysiologic nature of

PD solutions—high concentrations of glucose and lactate, low pH,

and glucose degradation products—is a major factor responsible

for deleterious effects on the peritoneal membrane [1,2]. These

components also induce chronic inflammation in the peritoneal

cavity, which is often exacerbated by recurrent episodes of

peritonitis and consequently leads to structural and functional

alterations of the peritoneal membrane [3].
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Peritoneal fibrosis (PF) is the ultimate form of peritoneal

damage. It is characterized by the loss of the peritoneal mesothelial

cell (PMC) monolayer, submesothelial fibrosis, angiogenesis, and

hyalinizing vasculopathy [3–6]. In the past, resident stromal

fibroblasts and inflammatory cells had been considered to be the

main cells responsible for PF [7,8]. Recently, however, PMCs have

emerged as an active player in the alteration of the peritoneal

membrane. After PD initiation, PMCs progressively lose their

epithelial characteristics and acquire a myofibroblast-like pheno-

type through the process of epithelial-mesenchymal transition

(EMT) [5]. EMT is a normal physiologic process during embryo

implantation, embryogenesis, or organ development, but it is also

involved in various pathologic processes, including cancer

metastasis and fibrotic disorders [7]. Indeed, EMT enables PMCs

to gain migratory and invasive capacities, thus they can intrude

into the subepithelial stroma and produce extracellular matrix

(ECM) components such as fibronectin and collagen, which

ultimately leads to PF [8].

Recently, numerous aspects of 3-hydroxy-3-methyl-glutaryl-

coenzyme A (HMG-CoA) reductase inhibitors, or statins, have

been highlighted due to their pleiotropic effects aside from their

lipid-lowering property [9–11]. Of note, one of the key actions of

statins is inhibition of the downstream products of the mevalonate

pathway such as farnesyl pyrophosphate (FPP) and geranyl-

geranyl pyrophosphate (GGPP) [12]. As a result, isoprenylation of

small RhoGTPases and Ras, the final products of this pathway, is

inhibited [13–15]. Interestingly, previous studies have found that

activation of small RhoGTPases such as RhoA, Rac1, and Cdc42

plays a key role in the process of EMT implicated in diverse renal

diseases [16–19]. In addition, a recent study by Zhang et al. [20]

showed that the RhoA/ROCK signaling pathway mediated EMT

in rat PMCs in response to transforming growth factor (TGF)-b1.

These findings suggest that statins may reverse EMT-like changes

through the inhibition of isoprenylation of small RhoGTPases.

However, to our knowledge, this assumption has not yet been

tested. In this study, therefore, we investigated the effect of statins

on PD-related EMT both in vitro and in vivo.

Materials and Methods

Ethics statement
This study was carried out in strict accordance with the

recommendations in the Guide for the Care and Use of

Laboratory Animals of the National Institutes of Health. The

protocol for all animal experiments was approved by the Ethics

Committee and the Institutional Animal Care and Use Committee

of Yonsei University College of Medicine.

Human omental tissue was obtained from patients who

underwent elective abdominal surgery. For the use of omental

tissue, we obtained written informed consent from these patients

and received approval from the Institutional Review Board of our

institution.

Isolation of human PMCs (HPMCs)
HPMCs were isolated according to the method described by

Stylianou et al [21]. Briefly, a piece of human omentum was

washed three times with sterile phosphate-buffered saline (PBS)

and incubated in a 0.05% trypsin-0.02% ethylenediaminetetra-

acetic acid (EDTA) solution for 20 min at 37uC with continuous

shaking. After incubation, the suspension containing free HPMCs

was centrifuged at 1006g for 10 min at 4uC. The cell pellet was

then washed once and re-suspended in M199 medium supple-

mented with 10% fetal bovine serum (FBS), 100 U/ml penicillin,

100 mg/ml streptomycin, and 26 mM NaHCO3, and seeded onto

culture dishes. The cells were grown in the same medium at 37uC
in humidified 5% CO2 in air, and the medium was changed 24 hr

after seeding, and then every 3 days.

HPMCs experiments
Subconfluent HPMCs were serum-restricted for 24 hr, and the

medium was then changed to serum-free M199 medium

containing normal glucose (5.6 mM, NG), NG + mannitol

(94.4 mM, NG+M), NG + simvastatin (1 mM) (Sigma Chemical

Co., St Louis, MO, USA), or high glucose (100 mM, HG) with or

without simvastatin (1 mM). The dose of simvastatin used in the

experiments was determined using a 3-(4,5-dimethylthiazol-2-yl)-

2,5-diphenyltetrazolium bromide (MTT) cell viability assay and

trypan blue exclusion. To explore whether isoprenoids of the

mevalonate pathway were involved in peritoneal EMT, HPMCs

were treated with NG+GGPP (5 mM) (Sigma Chemical Co.).

HPMCs exposed to HG were also treated with Rho/ROCK

inhibitor (Y27632, 1 mM) (Sigma Chemical Co.) or Rac inhibitor

(EHT1864, 1 mM) (R&D Systems, Minneapolis, MN, USA). At

72 hr after the media change, cells were harvested.
Evaluation of small GTPase activation. To examine the

activation of small GTPases, membrane and cytosol proteins were

prepared separately and the expression of RhoA and Rac1 were

determined in each fraction by Western blotting. Briefly, HPMCs

treated as above were washed with cold PBS and lysed by freeze-

thawing in ice-cold lysis buffer containing 50 mM HEPES

(pH 7.4), 5 mM NaCl, 1 mM MgCl2, 2 mM EDTA, 1 mM

dithiothreitol, 10 mM sodium fluoride, 1 mM phenylmethylsulfo-

nyl fluoride, 10 mg/ml aprotonin, and 10 mg/ml leupeptin (Sigma

Figure 1. MTT (A) and tryphan blue (B) assay for cell viability.
HPMCs were incubated for 72 hr with 5.6 mM glucose (NG), NG+
mannitol (94.4 mM, NG+M), high glucose (100 mM, HG), or HG+0.1 mM,
1 mM, or 10 mM simvastatin (HG + statin). Cell viability was maintained
at up to 1 mM simvastatin, but was decreased by 20% at 10 mM. *; p,
0.05 vs. other groups.
doi:10.1371/journal.pone.0109628.g001
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Chemical Co.). The homogenates were centrifuged at 4uC and

100,0006g for 30 min and the resulting supernatant (cytosolic

fraction) was collected. The pellets were then homogenized in the

same lysis buffer containing 2% Triton X-114 and centrifuged at

8006g for 10 min at 4uC, and the supernatant was collected. This

supernatant was referred to as the membrane fraction. The

activity of Rho-kinase was determined by using the colorimetric

G-LISA RhoA activation assay biochemical kit (Cytoskeleton,

Denver, CO, USA) according to the manufacturer’s protocol as

previously described [22].

Animal studies
Peritoneal access ports were inserted in 32 male Sprague-

Dawley rats weighing 250–280 g, and 2 ml of saline with 1 IU/ml

heparin was instilled intraperitoneally until wound healing. One

week after surgery, 16 rats received a daily (once per day) 20 ml of

saline instillation and 16 rats were instilled daily with 20 ml of

4.25% peritoneal dialysis fluid (PDF, Dianeal, Baxter Healthcare

Ltd., Singapore) for 4 weeks. Eight rats from each group were

treated with simvastatin (5 mg/kg per day) intraperitoneally, while

8 rats in each group were left untreated (control). Simvastatin dose

was determined based on the previous studies [23,24]. After 4

weeks of PD, the abdomen was opened by a midline incision and

Figure 2. Effects of simvastatin on EMT and fibronectin expression in HPMCs. (A) HPMCs were incubated for 72 hr with 5.6 mM glucose
(NG), NG + mannitol (94.4 mM, NG+M), NG+1 mM simvastatin (NG + statin), high glucose (100 mM, HG), or HG+1 mM simvastatin (HG + statin) (A
representative of five Western blots). E-cadherin protein expression was significantly lower, while the protein expression of Snail, a-SMA, and
fibronectin were significantly higher in HG-stimulated HPMCs compared to NG cells, and these changes were significantly attenuated by simvastatin.
*; p,0.05 vs. NG, {; p,0.05 vs. HG. (B) Compared to NG cells, HPMCs cultured under HG medium showed a weak staining of E-cadherin, a strong
signal intensity of a-SMA, and increased nuclear translocation of Snail, all of which were ameliorated by the administration of simvastatin (6400).
doi:10.1371/journal.pone.0109628.g002

Figure 3. Morphologic changes under an inverted phase-contrast microscope in HPMCs exposed to 5.6 mM glucose (NG), NG +
mannitol (94.4 mM, NG+M), NG+1 mM simvastatin (NG + statin), high glucose (100 mM, HG), or HG+1 mM simvastatin (HG + statin).
The cobblestone-like appearance of HPMCs was converted into a fibroblast-like morphology 72 hr after HG treatment, which was reversed by
simvastatin (640).
doi:10.1371/journal.pone.0109628.g003
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the entire anterior abdominal wall was removed at the contralat-

eral side to the tip of the implanted catheter. One fifth of the whole

tissue adjacent to the liver was fixed in 10% neutral-buffered

formalin for pathologic examination, while the parietal peritone-

um dissected from the major part of the tissue was washed in ice-

cold PBS, snap-frozen in liquid nitrogen, pulverized with a mortar

and pestle while frozen, and suspended in SDS sample buffer [2%

SDS, 10 mM Tris-HCl, pH 6.8, 10% (vol/vol) glycerol]. After

centrifugation at 16,0006g for 15 min at 4uC, the supernatant was

kept at 280uC until use.

Western blot analysis
The protein expression of E-cadherin (BD Biosciences, San

Jose, CA, USA), Snail (Abcam, Cambridge, UK), a-SMA (Sigma

Chemical Co.), fibronectin (DAKO, Glostrup, Denmark), RhoA

(Santa Cruz Biotechnology, Inc., Santa Cruz, CA, USA), and

Rac1 (Abcam) in HPMCs and peritoneal tissue was evaluated by

Western blot as previously described [25]. The band densities were

measured using Image J software v1.60 (National Institutes of

Health Image software, Bethesda, Maryland, USA; online at

http://rsbweb.nih.gov/ij), and the densitometric intensity corre-

sponding to each band was normalized with a/b tubulin

expression. The changes in the optical densities of bands from

the treated groups relative to NG cells or the peritoneum of

control rats were used in the analysis.

Immunofluorescence staining
HPMCs grown on chamber slides were fixed in 4% parafor-

maldehyde for 10 min at 4uC, washed three times with PBS, and

incubated with 1% BSA for 20 min at room temperature. For

Figure 4. RhoA1 and Rac1 protein expression in the membrane and cytosol fractions of HPMCs exposed to 5.6 mM glucose (NG),
NG + mannitol (94.4 mM, NG+M), NG+1 mM simvastatin (NG + statin), high glucose (100 mM, HG), or HG+1 mM simvastatin (HG +
statin). (A) The protein expression of RhoA and Rac1 were significantly increased in the membrane fraction of HG-stimulated HPMCs compared to
NG cells, and simvastatin significantly attenuated the increases in RhoA and Rac1 expression in the membrane fraction of HPMCs exposed to HG. *;
p,0.05 vs. NG, {; p,0.05 vs. HG. (B) An immunofluorescence study revealed that HG provoked the translocation of RhoA and Rac1 from the cytosol
to the membrane fraction, and simvastatin treatment inhibited this translocation of RhoA and Rac1 induced by HG (640). (C) The levels of Rho kinase
were significantly increased in HG-treated HPMCs than in NG cells, and these changes were significantly abrogated by simvastatin. *; p,0.05 vs. NG, {;
p,0.05 vs. HG.
doi:10.1371/journal.pone.0109628.g004
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immunofluorescence staining, primary polyclonal antibodies to E-

cadherin, Snail, a-SMA, RhoA, and Rac1 were diluted in 1:100

with antibody diluent (DAKO) and were applied for 3 hr at room

temperature. After washing with PBS, Cy3 (red)- or Cy2 (green)-

conjugated anti-rabbit IgG antibody (Research Diagnostics, Inc.,

Flanders, NJ, USA) was added for 60 min.

Immunohistochemical and Masson’s trichrome staining
The peritoneum samples were fixed in 10% neutral-buffered

formalin, processed in the standard manner, and 5 mm-thick

sections of paraffin-embedded tissues were utilized for immuno-

histochemical staining. Slides were deparaffinized, hydrated in

ethyl alcohol, and washed in tap water. Antigen retrieval was

carried out in 10 mM sodium citrate buffer for 20 min using a

Black & Decker vegetable steamer. Primary antibodies for E-

cadherin, Snail, a-SMA, and fibronectin were diluted to the

appropriate concentrations with 2% casein in bovine serum

albumin (BSA), and then were added to the slides with an

overnight incubation at 4uC. After washing, a secondary antibody

was added for 20 min, and the slides were washed and incubated

with a tertiary PAP complex for 20 min. Diaminobenzidine was

added for 2 min and the slides were counterstained with

hematoxylin. A semi-quantitative score of staining intensity was

determined by examining at least 5 fields of the peritoneum in

each section under 6400 magnification and by digital image

analysis (MetaMorph version 4.6r5, Universal Imaging Corp.,

Downingtown, PA, USA). For Masson’s trichrome staining, 5 mm-

thick sections of paraffin-embedded tissues were deparaffinized,

hydrated in ethyl alcohol, washed in tap water, and re-fixed in

Bouin’s solution at 56uC for 1 hr. After washing in running tap

water for 10 min and staining with Weigert’s iron hematoxylin

working solution for 10 min, the sections were stained with

Biebrich scarlet-acid fuchsin solution for 15 min, followed by a 10-

min wash. The slides were then differentiated in phosphomolyb-

dic-phosphotungstic acid solution for 15 min, transferred to

aniline blue solution and stained for 10 min, and were reacted

with 1% acetic acid solution for 5 min. The thickness of the

peritoneum, which was defined as the tissue between the

mesothelial surface and the underlying muscle or parenchyma,

was assessed as previously described [26]. Briefly, the maximal

thickness of the peritoneum was measured in three Masson’s

trichrome-stained tissue sections per rat and five fields, the center

of which included the area of maximal thickness, and were

examined under6400 magnification. Areas and perimeter lengths

of the peritoneum were obtained from drawn outlines and the

average thickness was calculated from rectangular approximation

based on the values for area and perimeter in each field of view.

Statistical analysis
All values are expressed as means 6 standard errors of the mean

(SEM). Statistical analyses were performed using the statistical

package SPSS for Windows Ver. 11.0 (SPSS, Inc., Chicago, IL,

USA). Results were analyzed using one-way ANOVA with a post
hoc Bonferonni’s test for multiple comparisons. P-values ,0.05

were considered statistically significant.

Figure 5. The protein expression of EMT markers and fibronectin in HPMCs. HPMCs were incubated with 5.6 mM glucose (NG) and NG+
5 mM GGPP (NG+GGPP) for 72 hr. (A) GGPP treatment significantly decreased E-cadherin expression and significantly increased the protein expression
of Snail, a-SMA, and fibronectin in HPMCs (A representative of five Western blots). *; p,0.05 vs. NG. (B) The protein expression of RhoA and Rac1 were
significantly increased in the membrane fraction of HPMCs exposed to GGPP. *; p,0.05 vs. NG.
doi:10.1371/journal.pone.0109628.g005
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Results

Effects of simvastatin on EMT and fibronectin expression
in HPMCs

As shown in Figure 1, the MTT assay demonstrated that

HPMCs remained viable at up to 1 mM of simvastatin, but the

viability was decreased by 20% at 10 mM. The viability was also

assessed by trypan blue exclusion, in which all groups demon-

strated.95% viability, suggesting no differences between control

and simvastatin (1 mM)-treated groups. Therefore, the dose of

1 mM was used for the experiments. To evaluate the effects of

statins on EMT in vitro, HPMCs were incubated for 72 hr with

NG, NG+M, NG+simvastatin, or HG with or without simvastatin.

E-cadherin protein expression was significantly lower, while the

protein expression of Snail, a-SMA, and fibronectin were

significantly higher in HG-stimulated HPMCs compared to NG

cells (P,0.05) (Fig. 2A). Furthermore, the changes in HPMCs

exposed to HG were significantly abrogated by simvastatin

treatment (P,0.05) (Fig. 2A). These findings were corroborated

by the immunofluorescence analysis. HPMCs cultured under HG

medium showed a weak staining of E-cadherin, a strong signal

intensity of a-SMA, and increased nuclear translocation of Snail,

all of which were ameliorated by the administration of simvastatin

(Fig. 2B). On the other hand, mannitol used as an osmotic control

had no effect on EMT and fibronectin expression in HPMCs. In

addition, the expression of EMT markers and fibronectin in NG

cells was not affected by simvastatin.

Moreover, we observed the morphologic changes of HPMCs

under an inverted phase-contrast microscope. The cobblestone-

like appearance of HPMCs was converted into a fibroblast-like

morphology after HG treatment, which was reversed by

simvastatin (Fig. 3).

Activation of small GTPases such as RhoA and Rac1 in

HPMCs. Posttranslational modification of Rho proteins by

geranyl-geranlyation is essential for their membrane location and

activity. Thus, the assessment of these proteins in the membrane

fraction of the cells can reflect their degree of prenylation through

the mevalonate pathway [27,28]. Since inhibiting isoprenylation of

the mevalonate pathway products was the main mechanism of

statins, the membrane-associated protein expression of RhoA and

Rac1 was evaluated in HPMCs by Western blot analysis after

separation of the membrane and cytosol fractions. Compared to

NG cells, the protein expression of RhoA and Rac1 were

significantly increased in the membrane fraction of HG-stimulated

HPMCs (P,0.05), and simvastatin significantly abrogated the

increases in RhoA and Rac1 expression in the membrane fraction

of HPMCs exposed to HG (P,0.05) (Fig. 4A). Furthermore, the

immunofluorescence study revealed that HG provoked the

translocation of RhoA and Rac1 from the cytosol to the

membrane fraction, and simvastatin treatment inhibited this

translocation of RhoA and Rac1 induced by HG (Fig. 4B). In

addition, the levels of Rho kinase were significantly increased in

HG-treated HPMCs than in NG cells (P,0.05), and these changes

were significantly ameliorated by simvastatin (P,0.05) (Fig. 4C).

Figure 6. The protein expression of EMT markers and fibronectin in HPMCs exposed to 5.6 mM glucose (NG), NG with 1 mM Y27632
(Rho/ROCK inhibitor) (NG+Y27632), NG with 1 mM EHT1864 (Rac inhibitor) (NG+EHT1864), high glucose (100 mM, HG), HG with
1 mM Y27632 (HG+Y27632), or HG with 1 mM EHT1864 (HG+EHT1864). The administration of Y27632 and EHT1864 significantly attenuated
the changes in EMT markers and fibronectin expression in HPMCs cultured under HG medium. *; p,0.05 vs. NG, {; p,0.05 vs. HG, `; p,0.05 vs. HG.
doi:10.1371/journal.pone.0109628.g006
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Involvement of isoprenoids of the mevalonate pathway
in EMT of HPMCs

To evaluate whether isoprenoids of the mevalonate pathway

were involved in peritoneal EMT, HPMCs were incubated with

5 mM GGPP for 72 hr. The administration of GGPP significantly

decreased E-cadherin protein expression and significantly in-

creased the protein expression of Snail, a-SMA, and fibronectin in

HPMCs (P,0.05) (Fig. 5A). The protein expression of RhoA and

Rac1 were also significantly increased in the membrane fraction of

HPMCs exposed to GGPP (P,0.05) (Fig. 5B).

Effect of small GTPase inhibitors on EMT and fibronectin
expression in HPMCs

Rho/ROCK inhibitor (Y27632) and Rac inhibitor (EHT1864)

were added to HG-stimulated HPMCs, and the changes in EMT

markers and fibronectin expression were determined. The

administration of these two small GTPase inhibitors significantly

ameliorated the changes in EMT markers and fibronectin

expression in HPMCs cultured under HG medium (P,0.05)

(Fig. 6).

Effects of simvastatin on peritoneal EMT and ECM
accumulation in a PD rat model

Finally, the effects of simvastatin on peritoneal EMT and ECM

accumulation were explored in a PD rat model. E-cadherin

protein expression was significantly lower, while Snail, a-SMA,

and fibronectin protein expression were significantly higher in rats

treated with 4.25% PDF compared to control rats (P,0.01), and

these changes were significantly abrogated by simvastatin treat-

ment (P,0.05) (Fig. 7). Immunohistochemical staining of the

peritoneum also revealed that EMT markers and fibronectin

protein expression were significantly higher in rats treated with

4.25% PDF relative to control rats, and simvastatin significantly

attenuated EMT and ECM accumulation in PD rats (Fig. 8).

Moreover, Masson’s trichrome staining found that the subme-

sothelial layer was significantly thicker and peritoneal fibrosis was

more extensive in PD rats with 4.25% PDF than control rats, and

these changes were significantly abrogated by simvastatin treat-

ment (Fig. 9).

Discussion

PF is one of the most serious complications of long-term PD,

leading to membrane failure. Even though resident peritoneal

fibroblasts and infiltrating inflammatory cells have been consid-

ered to play a key role in the development PF, EMT of PMCs has

recently been highlighted as another potential mechanism

responsible for PF [5–8]. This study shows for the first time that

statin treatment abrogates PD-related EMT of HPMCs and ECM

accumulation in a PD rat model. In addition, we demonstrate that

these beneficial effects of statin are mediated, at least in part, by

inhibiting isoprenylation of small RhoGTPases such as RhoA and

Rac1.

Besides a physiologic role of EMT in embryogenesis or organ

development, it also plays a pathologic role in cancer metastasis

and fibrotic disorders.7 A number of recent studies have found that

PMCs also undergo EMT during PD [5,29–31]. In particular,

Yanez-Mo et al. [5] showed that PMCs undergo a transition from

Figure 7. The protein expression of EMT markers and ECM in the peritoneum of control (C), C+ simvastatin (C + statin), 4.25% PDF
instillation (PD), or 4.25% PDF + simvastatin (PD + statin) rats. E-cadherin protein expression was significantly lower, while Snail, a-SMA, and
fibronectin protein expression were significantly higher in rats treated with 4.25% PDF compared to control rats, and these changes were significantly
ameliorated by simvastatin. *; p,0.05 vs. C, {; p,0.05 vs. PD.
doi:10.1371/journal.pone.0109628.g007
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an epithelial phenotype to a mesenchymal phenotype soon after

PD is initiated and this process is accompanied by a decrease in

the expression of cytokeratins and E-cadherin, suggesting that

these cells indeed acquire structural changes during PD. Consis-

tent with these findings, in the present study, E-cadherin

expression was significantly decreased, while Snail, a-SMA, and

fibronectin expression was significantly increased in HPMCs

exposed to HG and in the peritoneum of rats instilled with 4.25%

PDF. Furthermore, the cobblestone-like appearance of normal

HPMCs was converted into a fibroblast-like morphology after HG

treatment. These findings support previous evidence of EMT of

PMCs under pathologic conditions.

HMG-CoA reductase inhibitors, or statins, are potent inhibitors

of cholesterol biosynthesis and have emerged as the leading lipid-

lowering agents. However, it has been acknowledged that the

beneficial effects of statins are not mediated solely by their lipid-

lowering property, but also through distinct ‘‘pleiotropic’’ effects

[9–11]. In fact, statins exert these effects by preventing the

synthesis of other important isoprenoids of the cholesterol

biosynthetic pathway, such as FPP and GGPP that are

downstream of the mevalonate pathway [12]. These intermediates

play key roles in the post-translational modification of many

proteins, including small GTP binding proteins—the family of

Ras, Rho, Rap, and Rab GTPase—by serving as lipid attachments

through a process known as ‘‘prenylation’’ [13–15]. Isoprenylation

of these proteins permits the covalent attachment, subcellular

localization, and intracellular trafficking of membrane-associated

proteins [13–15]. Therefore, small G proteins are anchored to the

cell membrane if they are prenylated, while they remain in the

cytoplasm when prenylation is inhibited. In general, modification

of FPP is necessary for localization of Ras, whereas GGPP is

required for Rho, Rap, and Rab family proteins [12]. By

inhibiting the synthesis of mevalonate products, statins prevent

isoprenylation of small GTPases, leading to suppression of these

signal molecules [14]. To support this notion, we clearly

demonstrated that the expression of RhoA and Rac1 protein in

Figure 8. Immunohistochemical staining of the peritoneum of control (C), C+ simvastatin (C + statin), 4.25% PDF instillation (PD), or
4.25% PDF + simvastatin (PD + statin) rats. The intensity of E-cadherin staining was significantly lower, while Snail, a-SMA, and fibronectin
staining intensities were significantly higher in PD rats compared to C rats, and simvastatin significantly ameliorated these changes in PD rats (6200).
doi:10.1371/journal.pone.0109628.g008
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the membrane fraction was increased in cultured HPMCs exposed

to HG, and these increases were ameliorated by statin treatment.

In addition to the pivotal role of small RhoGTPases in the

regulation of cell shape, adhesion, migration, secretion, and

proliferation [12–14], several recent studies have found that small

RhoGTPases such as RhoA, Rac1, and Cdc42 exert a direct effect

on EMT in a number of cell types including renal [16–20], lens

[32], bronchial [33], and mammary epithelial cells [34].

Bhowmick et al. [34] showed that a RhoA-dependent mechanism

was responsible for TGF-b1-induced mammary epithelial EMT.

Moreover, some investigators demonstrated that overexpression of

active RhoA reduced E-cadherin expression and increased

mesenchymal cell markers [16], while transfection of a RhoA

dominant-negative vector or ROCK inhibition with Y-27632 or

fasudil inhibited EMT provoked by angiotensin II in renal tubular

epithelial cells [19]. This indicates that RhoA may be directly

involved in renal tubular epithelial EMT. Furthermore, in contrast

to the putative roles of Rac1 and Cdc42, which are believed to be

involved in the establishment and maintenance of epithelial

intercellular adhesions [35–37], activation of these proteins can

also induce EMT accompanied by breakdown of cell-cell adhesion

and rearrangement of the actin cytoskeleton [38–40]. Similar to

these cells, EMT-like changes caused by small GTPases can occur

in PMCs. A recent study by Zhang et al. [20] found that activation

of RhoA in rat PMCs by TGF-b1 up-regulated a-SMA, vimentin,

and collagen expression and down-regulated E-cadherin expres-

sion, suggesting that the RhoA/ROCK signaling pathway

mediated EMT in rat PMCs in response to TGF-b1. Based on

these findings, it is surmised that small GTPases such as RhoA,

Cdc42, and Rac1 may be involved in EMT.

Because statins have an inhibitory effect on the synthesis of

isoprenoid intermediates, it can be presumed that statins may

reverse EMT-like changes through inhibiting isoprenylation of

small RhoGTPases. This assumption was verified in the current

study. We showed for the first time that statin treatment

attenuated HG- or PD-induced EMT and ECM accumulation

in HPMCs in vitro and in vivo. In addition, we provided an

underlying mechanism of the effect of statins against EMT. The

present study revealed that HG increased membrane translocation

of RhoA and Rac1 and enhanced Rho-kinase activity in cultured

HPMCs. Moreover, HG-induced changes in EMT markers were

reversed by Rho and Rac inhibitors. Taken together, the results

suggest that HG increased isoprenylation of small GTPases, and

these proteins play a role in HG-induced EMT of HPMCs.

Furthermore, GGPP-treated HPMCs lost epithelial markers and

acquired mesenchymal markers, indicating that isoprenoid inter-

mediates were directly involved in EMT of HPMCs. All these

findings support evidence that statins can inhibit HG-induced

EMT in HPMCs, at least in part, through inhibiting isoprenyla-

tion and subsequently inactivating RhoA and Rac1.

Even though this study underscores an important role of statins

in terms of inhibiting small GTPases, it is possible that statins may

exhibit this favorable effect via other mechanisms. In fact, EMT

can be induced by a variety of cytokines or growth factors

including TGF-b [30], angiotensin II [41], fibroblast growth

factor-2 [42], epidermal growth factor [43], and platelet-derived

growth factor [44]. Furthermore, it can be triggered by

inflammation or oxidative stress [45], and statins have been

reported to abrogate some of these stimuli such as inflammation,

oxidative stress [46–48], connective tissue growth factor [49], or

TGF-b [50]. However, there is a lack of evidence supporting a role

for statins in inhibiting EMT by reducing these triggering factors.

On the other hand, our in vivo experiment demonstrated that

alteration of EMT markers and increased ECM accumulation in a

PD rat model were not completely ameliorated by statin

treatment. Based on these findings, it is implied that peritoneal

EMT is a complex process which is engaged by a wide spectrum of

factors other than RhoA and Rac1 activation. Therefore, the

results of the current study should be interpreted with caution, but

provide another potential mechanism of the pleiotropic effects of

statins with respect to inhibiting EMT. Finally, it is possible that

beneficial effect of statins is mediated through its fibrinolytic

activity [51,52]. Therefore, we measured tissue-type plasminogen

activator (t-PA) concentration in cell-conditioned media by ELISA

and determined plasminogen activator inhibitor-1 (PAI-1) expres-

sion by Western blot analysis. Interestingly, t-PA level was

significantly increased in HG-treated cell media compared to

controls, which was not altered by statin treatment. On the other

hand, PAI-1 expression was significantly increased in HG-treated

cells, while statin treatment decreased the increased expression of

PAI-1 in these cells (data not shown). Although t-PA has been

shown to play a role in fibrinolysis, it is reported to destruct tubule-

epithelial basement membrane, which promotes EMT [53]. Thus,

the increased t-PA level by HG treatment can be interpreted as a

process of EMT. In fact, our finding is supported by several studies

suggesting increased t-PA level in HG-treated vascular endothelial

cells [54] and PDF-treated HPMCs [55]. Of note, we also found

that statin treatment did not further alter the increased t-PA level

in HG-treated cells. This finding is not consistent with previous

studies showing that statins increase t-PA activity [51,52] Such

discrepancy is likely due to differences in cell type, time of

simulation, dose, and type of statins. Nevertheless, PAI-1

expression was significantly decreased by statin treatment.

Although our finding cannot fully support fibrinolytic activity of

statin, it suggests that statins can maintain balance between t-PA

and PAI-1, thus resulting in collagen degradation. This finding

adds more strengths of statin in terms of preserving peritoneal

membrane in addition to attenuating EMT.

Figure 9. Masson’s trichrome staining of the peritoneum of
control (C), C+ simvastatin (C + statin), 4.25% PDF instillation
(PD), or 4.25% PDF + simvastatin (PD + statin) rats. Peritoneal
fibrosis assessed by Masson’s trichrome staining was significantly more
extensive in PD rats with 4.25% PDF than C rats, and these changes
were significantly attenuated by simvastatin treatment (6200).
doi:10.1371/journal.pone.0109628.g009
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In conclusion, the present study found that PD-related EMT

was mediated through isoprenylation and subsequently activation

of RhoA and Rac1 in mevalonate pathway and statin treatment

attenuated EMT changes in HG-stimulated HPMCs and 4.25%-

PDF-instilled PD rats. These findings suggest that statins may be a

promising therapeutic strategy for preservation of peritoneal

membrane integrity in long-term PD patients.

Author Contributions

Conceived and designed the experiments: TIC THY SWK SHH.

Performed the experiments: HYK SHL BYN JSP SHK JTP. Analyzed

the data: TIC SWK SHH. Contributed reagents/materials/analysis tools:

KSK. Wrote the paper: TIC SWK SHH.

References

1. Topley N (1998) Membrane longevity in peritoneal dialysis: impact of infection

and bio-incompatible solutions. Adv Ren Replace Ther 5: 179–184.

2. Higuchi C, Nishimura H, Sanaka T (2006) Biocompatibility of peritoneal
dialysis fluid and influence of compositions on peritoneal fibrosis. Ther Apher

Dial 10: 372–379.

3. Margetts PJ, Bonniaud P (2003) Basic mechanisms and clinical implications of

peritoneal fibrosis. Perit Dial Int 23: 530–541.

4. Dobbie JW (1992) Pathogenesis of peritoneal fibrosing syndromes (sclerosing

peritonitis) in peritoneal dialysis. Perit Dial Int 12: 14–27.
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