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Abstract

In this study combined heat and mass transfer by mixed convective flow along a moving vertical flat plate with
hydrodynamic slip and thermal convective boundary condition is investigated. Using similarity variables, the governing
nonlinear partial differential equations are converted into a system of coupled nonlinear ordinary differential equations. The
transformed equations are then solved using a semi-numerical/analytical method called the differential transform method
and results are compared with numerical results. Close agreement is found between the present method and the numerical
method. Effects of the controlling parameters, including convective heat transfer, magnetic field, buoyancy ratio,
hydrodynamic slip, mixed convective, Prandtl number and Schmidt number are investigated on the dimensionless velocity,
temperature and concentration profiles. In addition effects of different parameters on the skin friction factor, Cf �xx, local
Nusselt number, Nu�xx, and local Sherwood number Sh�xx are shown and explained through tables.
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Introduction

Nonlinear equations play an important role in applied

mathematics, physics and issues related to engineering due to

their role in describing many real world phenomena. The

importance of obtaining exact or approximate solutions of

nonlinear partial differential equations is still a big problem that

compels scientists and engineers to seek different methods for exact

or approximate solutions. A variety of numerical and analytical

methods have been developed to obtain accurate approximate and

analytic solutions for problems. Numerical methods give discon-

tinuous points of a curve and thus it is very time consuming to

obtain a complete curve of results. There are also some analytic

techniques for nonlinear equations. Some of these analytic

methods are Lyapunov’s artificial small parameter method [1],

d-expansion method [2], perturbation techniques [3,4], variational

iteration method (VIM) [5,6] and homotopy analysis method

(HAM) [7,8].

In recent years semi-numerical/analytical methods have

become popular in magnetofluid dynamics research as they

provide an alternative to purely numerical methods and require

significantly less computational resources. One such method, the

differential transform method (DTM) was first introduced by Zhou

[9] in electrical circuit theory for solving both linear and nonlinear

initial value problems. Developing this method for partial

differential equations and obtaining closed form series solutions

for linear and nonlinear initial value problems was carried out by

Chen and Ho [10] in 1999, and Ayaz [11] applied DTM to the

system of differential equations.

The significant advantage of the differential transform method

over numerical methods is that it does not require linearization or

discretization to be applied to nonlinear differential equations and

therefore is not affected by the related errors. Also, DTM does not

require a perturbation parameter and also the validity is

independent of whether or not there exist small parameters in

the considered equation. This method has been adapted in recent

years and successfully applied to simulate many multi-physical

transport phenomena problems including magnetic liquid film

flows [12], mixed convection flow [13], micropolar convection

[14].

Magnetohydrodynamics (MHD) is concerned with the mutual

interaction of fluid flow and magnetic fields. The fluids being

investigated must be electrically conducting and non-magnetic,

which limits the fluids to liquid metals, hot ionized gases (plasmas)

and strong electrolytes. The use of an external magnetic field is a

very important issue in many industrial applications, especially as a

mechanism to control material construction. Some important

examples of magnetohydrodynamic flow of an electrically
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conducting fluid past a heated surface are MHD power

generators, plasma studies, petroleum industries, cooling of

nuclear reactors, the boundary- layer control in aerodynamics,

and crystal growth [15,16]. The goal of the thermal treatment is to

cool the material to a desirable temperature before spooling or

removing it. As the high temperature material emerges from a

furnace or a die, is exposed to the colder ambient, therefore

transient conduction process accompanied by surface heat loss is

initiated [17]. When high temperatures are encountered in the

application areas, the thermal radiation effect becomes very

important. High temperature plasmas, cooling of nuclear reactors,

liquid metal fluids, and power generation systems are some

important applications of radiative heat transfer from a surface

plate to conductive fluids. There have been some studies that

consider hydromagnetic radiative heat transfer flows. Spreiter and

Rizzi [18] studied solar wind radiative magnetohydrodynamics.

Nath et al. [19] obtained a set of similarity solutions for radiative-

MHD stellar point explosion dynamics using shooting methods.

Noor et al. [20] considered MHD free convection thermophoretic

flow over a radiate isothermal inclined plate with heat source/sink

effect.

Mixed convection flow and heat transfer over a continuously

moving surface is applicable to many industrial fields such as hot

rolling, paper production, wire drawing, glass fiber production,

aerodynamic extrusion of plastic sheets, the boundary-layer along

a liquid film, condensation process of metallic plate in a cooling

bath and glass, and also in polymer industries [21]. The flow over

a continuous material moving through a quiescent fluid is induced

by the movement of the solid material and also by thermal

buoyancy which will determine the momentum and thermal

transport processes [22]. The first study of the flow field due to a

surface moving with a constant velocity in a quiescent fluid was

undertaken by Sakiadis [23]. Since then, other researchers

investigated various aspects of mixed convection problems such

as heat and (or) mass transfer, suction/injection, thermal radiation,

MHD flow, porous media, slip flows, etc. [24,25].

In some situations such as the spreading of a liquid on a solid

substrate, corner flow and the extrusion of polymer melts from a

capillary tube, no slip conditions yield unrealistic behavior and

must be replaced by slip conditions especially in applications of

microfluidics and nanofluidics [26–28]. The difference between

the fluid velocity at the wall and the velocity of the wall itself is

directly proportional to the shear stress. The proportional factor is

called the slip length. The corresponding slip boundary condition

is uj jwall~ls
Lu

Ly

����
����, where ls is the slip length [29]. For gaseous flow

the slip condition of the velocity and the jump condition of

the temperature are uj jwall~l
2{sv

sv

Lu

Ly

����
����z 3m

4r Tgas

LT

Lx

����
���� and

Twall~
2{sT

sT

2k

kz1

l

Pr

LT

Ly
, respectively where sv and sT are the

tangential momentum coefficient and the temperature accommo-

dation coefficient [30]. Some relevant papers on slip flows are Kim

et al. [31], Martin and Boyd [32], Kuznetsov and Nield [33].

The above researchers restricted to either prescribed temper-

atures or heat flux at the wall or slip. The idea of using convective

boundary conditions which are the generalization of isothermal

and thermal slip boundary conditions was introduced by Aziz [34]

and was followed by Magyari [35] who found an exact solution of

Aziz’s [34] problem in a compact integral form and Ishak [36]

who extended the same problem for a permeable flat plate.

The goal of the present study is to develop similarity

transformations via one parameter linear group of transformations

and the corresponding similarity solutions for mixed convection

flow of viscous incompressible fluid past a moving vertical flat plate

with thermal convective and hydrodynamic slip boundary

conditions and to solve the transformed coupled ordinary

differential equations using the differential transform method.

The effects of the Prandtl numberPr, the Schmidt number Sc, the

mixed convective parameter Ri, the buoyancy ratio parameter N,

the radiation parameter R, the magnetic field parameter M and

the slip parameter a on the flow, heat and mass transfer

characteristics are investigated numerically.

In section 2 the geometry of the flow along a moving vertical flat

plate under consideration in this problem is modeled with

hydrodynamic slip and thermal convective boundary condition

assumptions. The system with two independent variables is

reduced to one variable equations and a system of nonlinear

ordinary differential equations is obtained using a linear group of

transformations. Sections 3 and 4 provide methods of solution for

the governing equations of the problem, the differential transform

method and numerical solution, respectively. In section 5 physical

reasons are illustrated for the behavior of the graphs and tables of

the problem, and finally inferences are made and conclusions are

drawn.

Nomenclature

B magnetic field strength

C concentration

Cw wall concentration

C? ambient concentration

D diffusion coefficient (m2/s)

f (g) dimensionless stream function

g acceleration due to gravity (m/s2)

hs heat transfer coefficient (W/m2.K)

k thermal conductivity (W/m.K)

L characteristic length (m)

N buoyancy ratio parameter

Nu�xx local Nusselt number

Pr Prandtl number

p pressure (N/m2)

qm wall mass flux (kg/s m2)

qw wall heat flux (W/m2)

Ri mixed convective parameter

Gr�xx local Grashof number

Sh�xx local Sherwood number

T temperature inside boundary layer (K)

Tw wall temperature (K)

T? ambient temperature (K)

�uu, �vv velocity components along �xx{ and �yy{axes (m/s)

�xx, �yy Cartesian coordinates along and normal to the plate (m)

Greek Symbols

a thermal diffusivity of the porous medium (m2/s)

bT volumetric thermal expansion coefficient of the base (1/K)

bC volumetric solutal expansion coefficient of the base (1/K)

m absolute viscosity of the base fluid (Ns/m2)

u kinematic viscosity of the fluid (m2/s)

s electric conductivity

c convective heat transfer parameter

w(g) dimensionless concentration function

g similarity variable

h(g) dimensionless temperature

r fluid density (kg/m3)

y stream function
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Mathematical Modeling

Figure 1 shows the geometry assumed in this study, along with

the rectangular coordinates, �xx and �yy, and the corresponding

velocity components, �uu and �vv (where i represents momentum, ii

represents thermal and concentration boundary-layers and in

general thermal and concentration boundary-layer thickness are

not the same). The temperature of the ambient fluid is T?, the

unknown temperature of the plate is Tw and the left surface of the

plate is heated from a hot fluid of temperature Tf (wT?) or is

cooled from a cooled fluid (Tf vT?) by the process of convection

which yields a heat transfer variable coefficient hf (�xx). It is also

assumed that the ambient fluid is of uniform concentration C?,

the unknown concentration of the plate is Cw. A transverse

magnetic field with variable strength B(�xx)~B0

�
�xx1=2 is applied

parallel to the �yy axis, where B0 is the constant magnetic field [37].

Variable electric conductivity s~s0 �uu is assumed, where s0 is the

constant electric conductivity [37]. The magnetic Reynolds

number is assumed to be small and hence the induced magnetic

field can be neglected. Fluid properties are invariant except

density, which is assumed to vary only in those changes that drive

the flow (i.e., the Boussinesq approximation). Under the assump-

tion of boundary-layer approximations, the governing boundary-

layer equations in dimensional form are:

L �uu

L�xx
z

L�vv

L�yy
~0, ð1Þ

r �uu
L�uu

L�xx
z�vv

L�uu

L�yy

� �
~

m
L2�uu

L�yy2
z rgbT T{T?ð ÞzrgbC C{C?ð Þ½ �{ s0B2

0

�xx
�uu2,

ð2Þ

�uu
LT

L�xx
z�vv

LT

L�yy
~ az

16 s1T3
?

3 r cp k1

� �
L2T

L�yy2
, ð3Þ

�uu
LC

L�xx
z�vv

LC

L�yy
~D

L2C

L�yy2
, ð4Þ

subject to the boundary conditions:

�vv~0,�uu~UwzUslip

~Ur
x

L

� �1=2

zN1u
L �uu

L �yy
, { k

L T

L �yy

~hf �xxð Þ Tf {Tw

� 	
, C~Cw at �yy~0,

�uu?0, T?T?, C?C? as �yy??,

ð5Þ

where T is the temperature, C is the concentration, u is the

kinematic viscosity, k is the thermal conductivity, a is the thermal

diffusivity, D is the mass diffusivity of species of the fluid, bT is the

volumetric thermal coefficient, bC is the volumetric concentration

coefficient, g is the acceleration due to gravity, s1 is the Stefan-

Boltzmann constant, k1 is the Rosseland mean absorption

coefficient, a~k
�

r cp is the thermal diffusivity of the fluid, r is

the density of the fluid, m is viscosity, hf (�xx) is the heat transfer

coefficient and N1 is the velocity slip factor.

2.1 Normalization
The following boundary-layer variables are introduced to

express Eqs. (1)–(5) in dimensionless form:

x~
�xx

L
, y~

�yy Re1=2

L
,

u~
�uu

U0
,v~

�vv L

u Re1=2
, h~

T{T?

Tf {T?
, w~

C {C?

Cw{C?
,

ð6Þ

where Re~U0L=u is the Reynolds number based on the

characteristic length L and characteristic velocity U0. The stream

function y defined as u~
Ly

Ly
, v~{

Ly

Lx
is substituted into Eqs.

(2)–(5) to reduce the number of equations and number of

dependent variables. Therefore the following three dimensionless

equations are obtained:

Ly

Ly

L2y

Lx Ly
{

Ly

Lx

L2y

Ly2
{

L3 y

Ly3
{Ri hzN w½ �z M

x

Ly

Ly

� �2

~0, ð7Þ

Pr
Ly

Ly

Lh

Lx
{

Ly

Lx

Lh

Ly

� �
{ 1zRð Þ L

2h

Ly2
~0, ð8Þ

Sc
Ly

Ly

Lw

Lx
{

Ly

Lx

Lw

Ly

� �
{

L2 w

L y2
~0: ð9Þ

Here Pr~u =a is the Prandtl number, Sc~u =D is the Schmidt

number, N~bC(Cw{C?)= bT (Tf {T?) is the buoyancy ratio

parameter, M~s0 B2
0

�
r is the magnetic field parameter,

R~16 s1 T3
?=3 k1k is the radiation parameter, Gr~

gbT Tf {T?

 �

L3
�

u2 is the Grashof number, Ri~Gr
�

Re2 is

the mixed convective parameter [38], Riw0 is for aiding

buoyancy flow and Riv0 is for opposing buoyancy flow and

Ri~0 is for purely forced convective flow in which buoyancy

effects are not present.

The boundary conditions take the following form:

L y

Ly
~x1=2z

Re1=2N1(x) u

L

L2 y

Ly2
,
Ly

Lx
~0,

Lh

Ly
~{

L hf (x)

k Re1=2
(1{h) , w~1 at y~0 ,

L y

Ly
?0, h?0, w?0 as y??:

ð10Þ

2.2 Application of Linear Group Analysis and Similarity
Equations

The transport Eqs. (7)–(10) form a highly coupled nonlinear

boundary value problem. Numerical solutions of these equations

are complicated and time consuming. In this section the linear
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group of transformations is imposed on the problem to combine

the two independent variables (x,y) into a single independent

variable g (similarity variable) and reduce Eqs. (7)–(10) into

ordinary differential equations with corresponding boundary

conditions. For this purpose all independent and dependent

variables are scaled as:

x�~x Aa1 , y�~y Aa2 , y�~y Aa3 ,

h�~h Aa4 , w�~w Aa5 , hf
�~ hf Aa6 ,N1

�~ N1 Aa7 ,
ð11Þ

where A, ai (i~1,2,:::,6,7) are constants, the values of ai should

be chosen such that the form of the Eqs. (7)–(10) is invariant under

the transformations. Eqs. (7)–(10) will be invariant if ai are related

by

a1~4a2, a3~3a2, a4 ~ a5~ 0, a6~{a2, a7~a2: ð12Þ

It is clear from Eqs. (11) and (12) that

y

x1=4
~

y�

x�1=4
: ð13Þ

This combination of variables is invariant under this group of

transformations and consequently, is an absolute invariant which

are functions having the same form before and after the

transformation. This functional form is denoted using

g~
yffiffiffi
x4
p , ð14Þ

where g is the similarity independent variable. By the same

argument, other absolute invariants are

y~ x3=4f gð Þ, h~ h gð Þ, w~ w gð Þ,

hf ~x{1=4 hf


 �
0
, N1~x1=4 N1ð Þ0,

ð15Þ

Figure 1. Flow configuration and coordinate system for an assisting flow (a) fixed plate, (b) moving plate.
doi:10.1371/journal.pone.0109404.g001
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where f (g), h(g) and w(g) are the dimensionless velocity,

temperature, concentration function, hf


 �
0

is the constant heat

transfer coefficient, N1ð Þ0 is the constant hydrodynamic slip factor.

Substituting Eqs. (14) and (15) into Eqs. (7)–(9), the following

ordinary differential equations are obtained

f ’’’z
1

4
3f f ’’{2f ’2{4M f ’2

 �

z Ri hz Ri N w ~0, ð16Þ

1zRð Þh’’z 3 Pr

4
f h’~0, ð17Þ

w’’z
3 Sc

4
f w’~0, ð18Þ

subject to the boundary conditions

f (0)~0, f ’(0)~1zaf 00(0),

h’(0) ~{Bi 1{h(0)½ � ,w(0)~1, f ’(?)~ h(?)~w(?)~0,
ð19Þ

where primes denote differentiation with respect to g. Here

Bi~ hf


 �
0

L=k Ra1=2 is the Biot number and a~ N1ð Þ0u Re1=2=L

is the hydrodynamic slip parameter. Nondimensionalizing proce-

dure is explained in detail in Appendix A.

2.3 Quantities of Engineering Interest
The physical parameters of interest in the present problem are

the skin friction factor Cf �xx, local Nusselt number Nu�xx and local

Sherwood number Sh�xx which may be determined, respectively by

the following expressions:

Cf �xx~
m

r U2
w(�xx)

L �uu

L �yy

� �
�yy~0

,

Nu�xx~
�xx

DT
{

L T

L �yy

� �
�yy~0

, Sh�xx~
�xx

DC
{

L C

L �yy

� �
�yy~0

:

ð20Þ

Using Eqs. (6), (14), (15), we have from Eq. (20)

Re
1=2
�xx Cf �xx~f 00(0),

Re
{1=2
�xx Nu�xx~{ h 0(0), Re

{1=2
�xx Sh�xx~{ w 0(0),

ð21Þ

where Rex~U �xx=u is the local Reynolds number.

The Differential Transform Method

DTM is employed to obtain semi-analytical/numerical solu-

tions to the well-posed two-point boundary value problem defined

by Eqs. (16)–(18) and conditions (19). DTM is an extremely strong

technique in finding solutions to magnetohydrodynamic and

complex material flow problems. It has also been used very

effectively in conjunction with Padé approximants. Rashidi et al.

[39] studied transient magnetohydrodynamic flow, heat transfer

and entropy generation from a spinning disk using DTM- Padé.

To provide a summary of the method, the transformation of the

kth derivative of a function in one variable is considered which is

defined as:

F kð Þ~ 1

k!

dkf gð Þ
dgk


 �
g~g0

, ð22Þ

where f gð Þ is the original function and F kð Þ is the transformed

function. The differential inverse transform of F kð Þ is:

f gð Þ~
X?
k~0

F kð Þ g{g0ð Þk: ð23Þ

The concept of the differential transform is derived from a

Taylor series expansion and in actual applications the function

f gð Þ is expressed by a finite series as follows:

f gð Þ~
Xm

k~0

F kð Þ g{g0ð Þk: ð24Þ

The value of m is decided by convergence of the series

coefficients. The fundamental mathematical operations performed

by DTM are listed in Table 1. Taking differential transforms of

Eqs. (16)–(18), the following transformed equations are obtained:

kz1ð Þ kz2ð Þ kz3ð ÞF kz3½ �~

(
Xk

r~0

{3=4ð Þ k{rz1ð Þ k{rz2ð ÞF r½ �F k{rz2½ �

z 0:5zMð Þ k{rz1ð Þ rz1ð ÞF rz1½ �F k{rz1½ �

 !

{RiH k½ �{Ri N W k½ �),

ð25Þ

kz2ð Þ kz1ð ÞH kz2½ �~

1= 1zRð Þð Þ
Xk

r~0

{ 3=4ð ÞPr k{rz1ð ÞF r½ �H k{rz1½ �
 !

,
ð26Þ

kz2ð Þ kz1ð ÞW kz2½ �~

Xk

r~0

{ 3=4ð ÞSc k{rz1ð ÞF r½ �W k{rz1½ �ð Þ,
ð27Þ

where F kð Þ, H kð Þ and W kð Þ are the differential transform of f gð Þ,
h gð Þ and w gð Þ, respectively, and the transformed boundary

conditions are:

F ½0�~0,F ½1�~a, F ½2�~b, ð28Þ

h ½0�~c, h ½1�~d, ð29Þ

W ½0�~1, W ½1�~", ð30Þ

where a, b, c, d and " are constants which are computed from the

boundary conditions.

Here Páde approximants are applied to the problem to increase

the convergence of a given series. As shown in Fig. 2, without

using the Páde approximant, the different orders of the DTM
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solution, cannot satisfy the boundary conditions at infinity.

Therefore, it is necessary to use DTM-Páde to provide an effective

way to handle boundary value problems with boundary conditions

at infinity. See Appendix B for a description of the Páde

approximant method.

Numerical Solution

The system of nonlinear differential equations (16)–(18) is solved

under the boundary conditions (19). The initial boundary

conditions for f and h in (19) are unknown in comparison with

the case of no-slip and no jump condition of the temperature

boundary conditions. Hence, the solution of the system cannot

Table 1. Operations for DTM.

Transformed function Original function

F (k)~G(k)+H(k) f (g)~g(g)+h(g)

F (k)~l G(k), l is a constant f (g)~l g(g)

F (k)~(kz1)(kz2)

:::(kzr)G(kzr)
f (g)~

drg(g)

dgr

F (k)~
Xk

r~0
G(r)H(k{r) f (g)~g(g) h(g)

F (k)~
Xk

r~0
(k{rz1) G(r)H(k{rz1) f (g)~g(g)

dh(g)

dg

F (k)~
Xk

r~0
(k{rz1)(k{rz2)G(r)H(k{rz2) f (g)~g(g)

d2h(g)

dg2

doi:10.1371/journal.pone.0109404.t001

Figure 2. The analytical solution of f gð Þ obtained by DTM, DTM-Padé and numerical method for a~1, Pr~0:72, Sc~0:2,
Ri~1, M~0:2 and N~ 1.
doi:10.1371/journal.pone.0109404.g002
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proceed numerically using any standard integration routine. Here,

following [40–41], a second order numerical technique is adopted.

This technique combines the features of the finite difference

method and the shooting method and is accurate because it uses

central differences.

The semi-infinite integration domain g [ 0,?½ Þ is replaced by a

finite domain g [ 0,g?½ Þ and g? should be chosen sufficiently large

so that the numerical solution closely approximates the terminal

boundary conditions (19). Here a large enough finite value has

been substituted for g?, the numerical infinity, to ensure that the

solutions are not affected by imposing the asymptotic conditions at

a finite distance. The value of g? has been kept invariant during

the run of the program.

Now a mesh is defined by gi~i h (i~0,1,:::,n), with h being the

mesh size, and Eqs. (16)–(18) are discretized using central

difference approximations for the derivatives, the following

equations are obtained at the ith mesh point:

Fiz2{2Fiz1z2Fi{1{Fi{2

2h3
z

1

4
3Fið Fiz1{2FizFi{1

h2

� �
{

2
Fiz1{Fi{1

2h

� �2

{4M
Fiz1{Fi{1

2h

� �2
!

z Ri hizRi N wi ~0,

ð31Þ

1zRð Þ hiz1{2hizhi{1

h2
z

3 Pr

4
Fi

hiz1{hi{1

2h

� �
~0, ð32Þ

wiz1{2wizwi{1

h2
z

3 Sc

4
Fi

wiz1{wi{1

2h

� �
~0: ð33Þ

Note that Eqs. (16)–(18), which are written at the ith mesh point,

the first, second and third derivatives are approximated by central

differences centered at ith mesh point. This scheme ensures that

the accuracy of O h2

 �

is preserved in the discretization.

Eqs. (31)–(33) are term recurrence relations in F , h and w. So, in

order to start the recursion, besides the values of F0, h0 and w0, the

values of F1, F2, h1 and w1 are also required. These values can be

obtained by Taylor series expansion near g~0 for F , h and w,

with initial assumptions for the dimensionless functions of F and h.

The values of F 0ð Þ, F ’ 0ð Þ, h 0ð Þ and w 0ð Þ are given as boundary

conditions in (19). The values of F ’’’ 0ð Þ, h’’ 0ð Þ and w’’ 0ð Þ can be

obtained directly from Eqs. (10)–(12) and using the initial

assumptions. After obtaining the values of F1, h1 and w1, at the

next cycle F2, h2 and w2 are obtained. The order indicated above

is followed for the subsequent cycles. The integration is carried out

until the values of F , h and w are obtained at all the mesh points.

The three asymptotic boundary conditions (13) and (14) must be

satisfied. Initial assumptions are found by applying a shooting

method along with the fourth order Runge–Kutta method so as to

fulfill the free boundary conditions at g~g? in (19). The guesses

can be improved by a suitable zero-finding algorithm, including

Newton’s method, Broyden’s, etc. [42,43].

Results and Discussion

A linear group of transformations is used to reduce the two

independent variables into one and reduce the governing

equations into a system of nonlinear ordinary differential

equations with associated boundary conditions. Equations (16)–

(18) with boundary conditions (19) were solved analytically using

the differential transform method and compared with numerical

results. Figure 2 shows the results of comparison and great

agreement is seen. Typically, the natural convection is negligible

when Riv0:1, forced convection is negligible when Riw10, and

neither is negligible when 0:1v Riv10. It is useful to note that

usually the forced convection is large relative to natural convection

except in the case of extremely low forced flow velocities. Here

Ri w 0 is chosen to have aiding buoyancy flow.

For Biot number smaller than 0.1 the heat conduction inside the

body is quicker than the heat convection away from its surface,

and temperature gradients are negligible inside of it. Having a Biot

number smaller than 0.1 labels a substance as thermally thin, and

temperature can be assumed to be constant throughout the

materials volume. The opposite is also true: A Biot number greater

than 0.1 (a ‘‘thermally thick’’ substance) indicates that one cannot

make this assumption, and more complicated heat transfer

equations for ‘‘transient heat conduction’’ will be required to

describe the time-varying and non-spatially-uniform temperature

field within the material body. In this research the case of cooling

of the plate Gr w 0 is assumed and also the value of 0.5 is chosen

for the Biot number and the thermal radiation number is equal to

1 in all diagrams as the control parameters.

In Tables 2–6 effects of some of the parameters on the Skin

friction factor, Cf �xx, local Nusselt number, Nu�xx, and local

Sherwood number, Sh�xx are shown. According to Table 2,

increasing the buoyancy ratio parameter, N, causes Re
1=2
�xx Cf �xx,

Re
{1=2
�xx Nu�xx and Re

{1=2
�xx Sh�xx to increase. N~bC(Cw{C?)=

bT (Tf {T?) represents the relative magnitude of species buoy-

ancy and thermal buoyancy forces. For N ~ 1 these two forces are

of the same magnitude. For Nw 0, the species buoyancy force is

dominant and vice versa for N v 1. The weaker contribution of

the thermal buoyancy force for N v 1 results in a depletion in the

local Nusselt number. The stronger contribution of the species

buoyancy force for N w 1 induces enhancement in the local

Sherwood number. The momentum field is coupled to the

concentration (species) field via the linear species buoyancy force,

Ri N w, in the momentum Eq. (16). The species field is coupled to

the momentum field via the nonlinear term, 3Scf w==4, in the

species diffusion Eq. (18). Both terms are assistive. The influence of

N on both species diffusion and momentum diffusion is therefore

very strong as observed in the very large magnitudes of skin

friction and local Sherwood number in Table 2.

In Table 3, increasing the mixed convective parameter is

observed to strongly increase skin friction and accelerate the

boundary-layer flow. Only Ri.0 is considered corresponding to

buoyancy-assisted flow. In the range 0:1 v Ri v 10 both free

(natural) and forced convection modes contribute. For Ri.10,

forced convection effects are negated and for Ri v 0:1 free

convection effects vanish. Evidently at low Ri values, buoyancy

has a lesser influence on the flow characteristics and skin friction is

found to be negative (flow reversal). With Ri exceeding unity any

flow reversal is eliminated and the flow is strongly accelerated.

Stronger buoyancy effects therefore act to stabilize the flow and

aid momentum development. This simultaneously encourages

more efficient diffusion of heat and species resulting in a marked

increase in heat and mass transfer rates (Re
1=2
�xx Cf �xx, Re

{1=2
�xx Nu�xx)

at the plate.

In Table 4 increasing the value of hydrodynamic slip

parameter, a, decreases Re
1=2
�xx Cf �xxbut weakly increases

Re
{1=2
�xx Nu�xx and Re

{1=2
�xx Sh�xx. Momentum slip is simulated in

the wall velocity boundary condition given in Eq. (19). Increasing

momentum slip causes a reduction in the penetration of the
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stagnant surface through the boundary-layer. This serves to

enhance momentum boundary-layer thickness since the flow is

decelerated with increasing slip so that skin friction is lowered.

Bi arises in the wall temperature gradient boundary condition in

Eq. (19). As Bi increases from v 0:1 (thermally thin case) to

w 0:1 (thermally thick case) the rate of thermal conduction heat

transfer inside the plate becomes dramatically lower than the heat

convection away from its surface, and temperature gradients are

increased at the plate. The influence on the flow is to accelerate it.

Skin friction is elevated and therefore momentum boundary-layer

thickness decreased. As shown in Table 5, an increase in the

value of Biot number, Bi, increases Re
1=2
�xx Cf �xx, Re

{1=2
�xx Nu�xx and

Re
{1=2
�xx Sh�xx.

Table 6 demonstrates that an increase in Schmidt number, Sc,

decreases both Re
1=2
�xx Cf �xx and Re

{1=2
�xx Nu�xx, whereas it increases

Re
{1=2
�xx Sh�xx. Schmidt number is the ratio of viscous diffusion to

molecular (species) diffusion. For Sc v 1, molecular diffusion rate

exceeds the momentum diffusion rate and vice versa for Sc w1.

Sub-unity values of Schmidt number will therefore result in a

deceleration in the flow (reduced skin friction), which will also

decrease thermal diffusion rates. Conversely mass transfer will be

accentuated in the regime with increasing Sc values.

In Fig. 2 results using different orders of DTM and DTM-Páde

are compared with those of the numerical method. Very good

agreement is observed for DTM-Páde and the numerical method.

In figures 3. a–3. f effects of different parameters are investigated

on the flow regime and the following results are observed:

N Fig. 3. a shows how the flow responds to change in the

magnetic field. Increasing magnetic interaction number M

from purely hydrodynamic case M~0 to higher values of M,

gives rise to a strong deceleration in the flow. Presence of a

magnetic field in an electrically conducting fluid introduces a

Lorentz force which acts against the flow in the case that

magnetic field is applied in the normal direction as considered

in the present problem. The described type of resistive force

tends to slow down the flow field.

N A positive rise in N induces an increase in the flow along the

plate as seen in Fig. 3. b.

N There is a clear decrease in the velocity values at the wall

accompanying a rise in Prandtl number because the flow is

decelerated. Fluids with higher Prandtl numbers will therefore

possess higher viscosities (and lower thermal conductivities)

which means that such fluids flow slower than lower Pr fluids

(Fig. 3. c). As a result the velocity will be decreased

substantially with increasing Prandtl number.

N According to Fig. 3. d, a strong mixed convective parameter

has a significant acceleration effect on the boundary-layer flow.

N Through changing the values of Pr and Sc, the thermal and

species diffusion regions change. As illustrated in Fig. 3. e, the

dimensionless stream function f gð Þ decreases as a result of

increasing Schmidt number.

N Fig. 3. f, results from comparing the flow in the presence of

slip and no slip boundary condition. The change in profiles for

different values of a is not so much. In fact a influences the

flow of the liquid past the moving plate and the amount of slip

1{f ’ 0ð Þ increases monotonically with a from the no-slip

Table 2. The Skin friction factor, Cf �xx, local Nusselt number, Nu�xx and local Sherwood number, Sh�xx for different values of the
buoyancy ratio parameter N, at Pr~0:72, M~0:2, Sc~0:2, Ri~1, Bi~0:5, R~1 and a~1.

N Re
1=2
�xx Cf �xx Re

{1=2
�xx Nu�xx Re

{1=2
�xx Sh�xx

0.1 20.123402 0.196943 0.220788

1.0 0.118811 0.221377 0.275433

5.0 0.860543 0.259651 0.378371

10.0 1.522606 0.279651 0.444757

50.0 4.644088 0.326977 0.662252

100.0 7.129046 0.346306 0.789132

doi:10.1371/journal.pone.0109404.t002

Table 3. The Skin friction factor, Cf �xx, local Nusselt number, Nu�xx and local Sherwood number, Sh�xx for different values of the mixed
convective parameter, Ri, with Pr~0:72, M~0:2, Sc~0:2, a~1, Bi~0:5, R~1 and N~ 1.

Ri Re
1=2
�xx Cf �xx Re

{1=2
�xx Nu�xx Re

{1=2
�xx Sh�xx

0.2 20.274494 0.202957 0.300044

0.5 20.083130 0.203855 0.237817

0.8 0.043656 0.215523 0.262461

1.0 0.118720 0.221333 0.275481

3.0 0.684401 0.251875 0.353565

5.0 1.101863 0.266782 0.398851

7.0 1.451164 0.276702 0.432251

9.0 1.758446 0.284122 0.459204

doi:10.1371/journal.pone.0109404.t003
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situation of a~0 and towards full slip as a??. In the limiting

case the frictional resistance between the cooling liquid and the

moving plate is eliminated, and the moving plate no longer

imposes any motion of the cooling liquid.

Figures 4. a–4. f show how heat transfer is influenced by

different parameters:

N The magnetic field increases the temperature of the fluid inside

the boundary-layer as a result of excess heating and

consequently decreases in the heat flux, as shown in Fig. 4. a.

N A positive rise in N causes the temperature to decrease as seen

in Fig. 4. b.

N Fig. 4. c. depicts the effects of the Prandtl number Pr on the

temperature profiles h gð Þ. Prandtl number shows the ratio of

momentum diffusivity to thermal diffusivity. The figure reveals

that an increase in the Prandtl number Pr, results in a decrease

in the temperature distribution at a particular point of the flow

region. The lowest temperatures correspond to the highest

value of Prandtl number. No temperature overshoot is

observed. The increase in the Prandtl number means a slow

rate of thermal diffusion. Larger Pr values imply a thinner

thermal boundary-layer thickness and more uniform temper-

ature distributions across the boundary-layer. Smaller Pr fluids

have higher thermal conductivities so that heat can diffuse

away from the vertical surface faster than for higher Pr fluids

(thicker boundary-layers).

N According to Fig. 4. d, temperature decreases by increasing

the value of the Richardson number.

N Temperature continuously increases with increasing Schmidt

number as depicted in Fig. 4. e.

N In Fig. 4. f. changing the slip parameter a does not affect

temperature profiles much.

Figures 5. a–5. f show how the concentration profiles vary

through changing different parameters entering into the problem.

N According to Fig. 5. a concentrations increase by increasing

the value of M.

N Concentration decreases by a positive rise in N as seen in

Fig. 5. b.

Table 4. The Skin friction factor, Cf �xx, local Nusselt number, Nu�xx and local Sherwood number, Sh�xx for different values of the
hydrodynamic slip parameter, a, with Pr~0:72, M~0:2, Sc~0:2, Ri~1, Bi~0:5, R~1 and N~ 1.

a Re
1=2
�xx Cf �xx Re

{1=2
�xx Nu�xx Re

{1=2
�xx Sh�xx

0.0 0.297625 0.218942 0.271244

0.2 0.229317 0.219876 0.272890

0.4 0.186188 0.220452 0.273911

0.6 0.156595 0.220841 0.274604

0.8 0.135608 0.221122 0.275104

1.0 0.118720 0.221333 0.275481

2.0 0.073893 0.221906 0.276507

4.0 0.042066 0.222307 0.277227

6.0 0.029397 0.222465 0.277512

8.0 0.022592 0.222550 0.277665

10.0 0.018345 0.222602 0.277760

doi:10.1371/journal.pone.0109404.t004

Table 5. The Skin friction factor, Cf �xx, local Nusselt number, Nu�xx and local Sherwood number, Sh�xx for different values of the Biot
number, Bi, with Pr~0:72, M~0:2, Sc~0:2, Ri~1, a~1, R~1 and N~ 1.

Bi Re
1=2
�xx Cf �xx Re

{1=2
�xx Nu�xx Re

{1=2
�xx Sh�xx

0.1 0.038440 0.079168 0.264176

0.2 0.069660 0.131835 0.268651

0.3 0.091037 0.169820 0.271656

0.4 0.106703 0.198650 0.273830

0.5 0.118721 0.221334 0.275482

0.6 0.128250 0.239673 0.276782

0.7 0.136001 0.254820 0.277833

0.8 0.142435 0.267549 0.278702

0.9 0.147865 0.278401 0.279432

1.0 0.152510 0.287765 0.280055

doi:10.1371/journal.pone.0109404.t005
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N Fig. 5. c shows the response of the dimensionless concentra-

tion function through the boundary-layer regime to Prandtl

number Pr.

N The dimensionless concentration function w gð Þ as shown in

Fig. 5. d is adversely affected through increasing the mixed

convective parameter Ri. According to Figs. 4. d. and 5. d.
both temperature and concentration profiles descend smoothly

from the maximum value at the wall to zero in the free stream.

Here the value of the buoyancy ratio parameter is unity,

N ~ 1 which indicates that the thermal and concentration

(species diffusion) buoyancy forces are of the same order of

magnitude.

N Fig. 5. e. indicates that concentration w gð Þ is reduced

continuously throughout the boundary-layer with increasing

the value of Sc. Schmidt number measures the relative

effectiveness of momentum and mass transport by diffusion.

Larger values of Sc are equivalent to reducing the chemical

molecular diffusivity i.e. less diffusion therefore takes place by

mass transport.

N Fig 5. f. shows that changing the value of the slip parameter a

has little influence on the concentration profiles.

Conclusions

In this study, combined heat and mass transfer of the flow along

a moving vertical flat plate with hydrodynamic slip and thermal

convective boundary condition was considered. In order to reduce

the two independent variables into one and hence to reduce the

governing equations into a system of nonlinear ordinary differen-

tial equations, a linear group of transformations was used. The

obtained equations were solved analytically using the differential

transform method. The results were verified by results taken from

the numerical method and excellent agreement was observed. The

effects of different parameters on the skin friction factor, Cf �xx, local

Nusselt number, Nu�xx, and local Sherwood number Sh�xx were

shown and explained through tables and also changes of

dimensionless flow and heat and mass transfer rates due to

changes in some parameters were analyzed and presented

graphically.

APPENDIX A

The governing boundary-layer equations in dimensional form

are:

L �uu
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subject to the boundary conditions:

�vv~0,�uu~UwzUslip~U0
x

L

� �1=2

zN1u
L �uu

L �yy
, { k

L T

L �yy

~hf �xxð Þ Tf {Tw

� 	
, C~Cw at �yy~0,

�uu?0, T?T?, C?C? as �yy??:

ða5Þ

Using the following boundary-layer variables:

x~
�xx

L
, y~
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L
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v~
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the following equations are obtained for Eqs. (a2)–(a4):
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Table 6. The Skin friction factor, Cf �xx, local Nusselt number, Nu�xx and local Sherwood number, Sh�xx for different values of the
Schmidt number, Sc, with Pr~0:72, M~0:2, a~1, Ri~1, Bi~0:5, R~1 and N~ 1.

Sc Re
1=2
�xx Cf �xx Re

{1=2
�xx Nu�xx Re

{1=2
�xx Sh�xx

0.22 0.114704 0.220421 0.289944

0.30 0.101054 0.217298 0.342816

0.60 0.068403 0.210346 0.498874

0.66 0.063793 0.209485 0.525015

0.78 0.055692 0.208058 0.573872

doi:10.1371/journal.pone.0109404.t006
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After simplifying the equations and dividing Eq. (a7) by

r U2
0

�
L, Eq. (a8) by U0 a Tf {T?


 ��
L u, Eq. (a9) by

U0 Cw{C?ð Þ=L, and using the definitions for Re~U0 L=u,

Ri~Gr
�

Re2, Gr~gbT Tf {T?

 �

L3
�
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?=3 k1k, Pr~u =a, and

Sc~u=D following equations are obtained:
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The stream function y defined as u~Ly=Ly, v~{Ly=Lx is

substituted into Eqs. (a10)–(a12) to reduce the number of

equations and number of dependent variables, therefore the

following three dimensionless equations are obtained:
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The boundary conditions take the following form:
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All independent and dependent variables are scaled as:

x�~x Aa1 , y�~y Aa2 , y�~y Aa3 ,

h�~h Aa4 , w�~w Aa5 , hf
�~ hf Aa6 ,N1

�~ N1 Aa7 ,
ða17Þ

where A, ai (i~1,2,:::,6,7) are constants. The values of ai should

be chosen such that the form of the Eqs. (a13)–(a15) is invariant

under the transformations by substituting the above variables:
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Figure 3. a. Variation of the dimensionless stream function for various values of magnetic field parameter M versus g when
a~1, Pr~0:72, Sc~0:2, Ri~1 and N~ 1. b. Variation of the dimensionless stream function for various values of buoyancy ration parameter N
versus g when a~1, Pr~0:72, Ri~1, M~0:2 and Sc~0:2. c. Variation of the dimensionless stream function for various values of Prandtl number
Pr versus g when a~1, M~0:2, Sc~0:2, Ri~1 and N~ 1. d. Variation of the dimensionless stream function for various values of mixed convective
parameter Ri versus g when a~1, Pr~0:72, Sc~0:2, M~0:2 and N~ 1. e. Variation of the dimensionless stream function for various values of
Schmidt number Sc versus g when a~1, Pr~0:72, Ri~1, M~0:2 and N~ 1. f. Variation of the dimensionless stream function for various values of
first order slip parameters a versus g when Pr~0:72, M~0:2, Sc~0:2, Ri~1 and N~ 1.
doi:10.1371/journal.pone.0109404.g003
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Obviously Eqs. (a18)–(a20) will be invariant if ai are related by

a1~4a2, a3~3a2, a4 ~ a5~ 0, a6~{a2, a7~a2: ða22Þ

Using the similarity independent variable g~
yffiffiffi
x4
p and other

absolute invariants such as dimensionless velocity, temperature,

concentration function as follows:

y~ x3=4f gð Þ, h~ h gð Þ,

w~ w gð Þ, hf ~x{1=4 hf


 �
0
, N1~x1=4 N1ð Þ0,

ða23Þ

the following equations are obtained:

x2=4f ’ gð Þ
� � 1

2
x{2=4f ’ gð Þ{ y

4
x{3=4f ’’ gð Þ

� �
{

3

4
x{1=4f gð Þ{ y

4
x{2=4f ’ gð Þ

� �
x1=4f ’’ gð Þ
� �

{f ’’’ gð Þ{Ri hzNw½ �z M

x
x2=4f ’ gð Þ
� �2

~0,

ða24Þ

Pr
x2=4f ’ gð Þ

 �

{ y
4

x{5=4h’ gð Þ

 �

{ 3
4

x{1=4f gð Þ{ y
4

x{2=4f ’ gð Þ

 �

x{1=4h’ gð Þ

 �

" #
{

(1zR) x{2=4h’’ gð Þ
� �

~0,

ða25Þ

Sc
x2=4f ’ gð Þ

 �

{ y
4

x{5=4w’ gð Þ

 �

{ 3
4

x{1=4f gð Þ{ y
4

x{2=4f ’ gð Þ

 �

x{1=4w’ gð Þ

 �

" #
{

x{2=4w’’ gð Þ~0:

ða26Þ

After simplifying the above equations, Eqs. (16)–(18) are

obtained.

APPENDIX B

Suppose that a power series
X?
i~0

aix
i is given, which represents a

function f xð Þ, such that:

f xð Þ~
X?
i~0

aix
i: ðb1Þ

The Páde approximant is a rational fraction and the notation

for such a Padé approximant is:

L=M½ �~ PL xð Þ
QM xð Þ , ðb2Þ

where PL xð Þ is a polynomial of degree at most L and QM xð Þ is a

polynomial of degree at most M. Therefore:

f xð Þ~a0za1xza2x2za3x3za4x4z � � � , ðb3Þ

PL xð Þ~p0zp1xzp2x2zp3x3z:::zpLxL, ðb4Þ

QM xð Þ~q0zq1xzq2x2zq3x3z:::zqMxM , ðb5Þ

where in Eq. (b2) there are Lz1 numerator coefficients and

Mz1 denominator coefficients. Since the numerator and

denominator can be multiplied by a constant and L=M½ � left

unchanged, the following normalization condition is imposed

QM 0ð Þ~1: ðb6Þ

So there are Lz1 independent numerator coefficients and M

independent denominator coefficients, which make LzMz1
unknown coefficients in all. This number suggests that normally

the L=M½ � ought to fit the power series Eq. (b1) through the orders

1,x,x2,:::,xLzM . Based on conditions given in [44,45], L=M½ �
approximation is uniquely determined. In the notation of formal

power series:

X?
i~0

aix
i~

p0zp1xzp2x2zp3x3z:::zpLxL

q0zq1xzq2x2zq3x3z:::zqMxM
zO xLzMz1


 �
:

ðb7Þ

By cross-multiplying Eq. (b7), one obtains:

q0zq1xzq2x2zq3x3z:::zqMxM

 �
| a0za1xza2x2za3x3za4x4z:::

 �

~p0zp1xzp2x2zp3x3z:::zpLxLzO xLzMz1

 �

:

ðb8Þ

Figure 4. a. Variation of the dimensionless temperature for various values of magnetic field parameter M versus g when
a~1, Pr~0:72, Sc~0:2, Ri~1 and N~ 1. b. Variation of the dimensionless temperature for various values of buoyancy ration parameter N versus
g when a~1, Pr~0:72, Ri~1, M~0:2 and Sc~0:2. c. Variation of the dimensionless temperature for various values of Prandtl numberPr versus g
when a~1, M~0:2, Sc~0:2, Ri~1 and N~ 1. d. Variation of dimensionless temperature for various values of mixed convective parameter Ri
versus g when a~1, Pr~0:72, Sc~0:2, M~0:2 and N~ 1. e.-Variation of the dimensionless temperature for various values of Schmidt number Sc
versus g when a~1, Pr~0:72, Ri~1, M~0:2 and N~ 1. f. Variation of the dimensionless temperature for various values of first order slip
parameters a versus g when Pr~0:72, M~0:2, Sc~0:2, Ri~1 and N~ 1.
doi:10.1371/journal.pone.0109404.g004
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From Eq. (b8) the following set of linear equations is obtained

a0~p0,

a1za0q1~p1,

a2za1q1za0q2~p2,

..

.

aLzaL{1q1z � � �za0qL~pL,

8>>>>>>><
>>>>>>>:

ðb9Þ

and

aLz1zaLq1z � � �zaL{Mz1qM~0,

aLz2zaLz1q1z � � �zaL{Mz2qM~0,

..

.

aLzMzaLzM{1q1z � � �zaLqM~0,

8>>>><
>>>>:

ðb10Þ

where an~0 for nv0 and qj~0 for jwM. Equations (b9) and

(b10) can be solved directly provided they are non-singular.

L=M½ �~

aL{mz1 aL{Mz2 . . . aLz1

..

. ..
.

P
..
.

aL aLz1 . . . aLzMPL
j~M

aj{M xj
PL

j~M{1

aj{Mz1xj . . .
PL
j~0

ajx
j

�������������

�������������
aL{Mz1 aL{Mz2 . . . aLz1

..

. ..
.

P
..
.

aL aLz1 . . . aLzM

xM xM{1 . . . 1

����������

����������

:ðb11Þ

If the lower index on a sum exceeds the upper, the sum is

replaced by zero. Alternate forms are:

L=M½ �~
XL{M

j~0

ajx
jzxL{Mz1wT

L=MW{1
L=MwL=M

~
XLzn

j~0

ajx
jzxLznz1wT

(LzM)=MW{1
L=Mw(Lzn)=M ,

ðb12Þ

for

WL=M~

aL{Mz1{xaL{Mz2 . . . aL{xaLz1

..

.
P

..

.

aL{xaLz1 . . . aLzMz1{xaLzM

2
664

3
775,ðb13Þ

wL=M~

aL{Mz1

aL{Mz2

..

.

aL

2
66664

3
77775: ðb14Þ

The construction of L=M½ � approximants involves only

algebraic operations [44,45]. Each choice of L, degree of the

numerator and M, degree of the denominator, leads to an

approximant. How to direct the choice in order to obtain the best

approximant is the major difficulty in applying the technique,

which necessitates the need for a criterion for the choice

depending on the shape of the solution. A criterion which has

worked well here is the choice of L=M½ � approximants such that

L~M . The approximants are constructed using MATHEMA-
TICA software.
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Padé approximant for solving MHD flow in a laminar liquid film from a

horizontal stretching surface. Math Prob Engin 1–14.
13. Rashidi MM, Laraqi N, Sadri SM (2010) A novel analytical solution of mixed

convection about an inclined flat plate embedded in a porous medium using the
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system: DTM-Padé semi-numerical simulation. Int J Energy Tech 5(18): 1–14.

40. Broyden CG (1965) A class of methods for solving non-linear simultaneous

equations. Math Comput 19: 577–593.

41. Broyden CG (2000) On the discovery of the ‘‘good Broyden method’’. Math

Prog Ser B 87: 209–213.

42. Keller HB (1992) Numerical methods for two-point boundary value problems

Dover Publishing Inc. New York

43. Ascher UM, Mattheij RMM, Russell RD (1995) Numerical solution of boundary

value problems for ordinary differential equations SIAM Philadelphia.

44. Baker GA, Graves-Morris P (1981) Encyclopedia of mathematics and its
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