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Abstract

In this study combined heat and mass transfer by mixed convective flow along a moving vertical flat plate with
hydrodynamic slip and thermal convective boundary condition is investigated. Using similarity variables, the governing
nonlinear partial differential equations are converted into a system of coupled nonlinear ordinary differential equations. The
transformed equations are then solved using a semi-numerical/analytical method called the differential transform method
and results are compared with numerical results. Close agreement is found between the present method and the numerical
method. Effects of the controlling parameters, including convective heat transfer, magnetic field, buoyancy ratio,
hydrodynamic slip, mixed convective, Prandtl number and Schmidt number are investigated on the dimensionless velocity,
temperature and concentration profiles. In addition effects of different parameters on the skin friction factor, Crx, local
Nusselt number, Nuz, and local Sherwood number Si; are shown and explained through tables.
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Introduction

Nonlinear equations play an important role in applied
mathematics, physics and issues related to engineering due to
their role in describing many real world phenomena. The
importance of obtaining exact or approximate solutions of
nonlinear partial differential equations is still a big problem that
compels scientists and engineers to seek different methods for exact
or approximate solutions. A variety of numerical and analytical
methods have been developed to obtain accurate approximate and
analytic solutions for problems. Numerical methods give discon-
tinuous points of a curve and thus it is very time consuming to
obtain a complete curve of results. There are also some analytic
techniques for nonlinear equations. Some of these analytic
methods are Lyapunov’s artificial small parameter method [1],
o-expansion method [2], perturbation techniques [3,4], variational
iteration method (VIM) [5,6] and homotopy analysis method
(HAM) [7,8].

In recent years semi-numerical/analytical methods have
become popular in magnetofluid dynamics research as they
provide an alternative to purely numerical methods and require
significantly less computational resources. One such method, the
differential transform method (D'TM) was first introduced by Zhou
[9] in electrical circuit theory for solving both linear and nonlinear
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initial value problems. Developing this method for partial
differential equations and obtaining closed form series solutions
for linear and nonlinear initial value problems was carried out by
Chen and Ho [10] in 1999, and Ayaz [11] applied DTM to the
system of differential equations.

The significant advantage of the differential transform method
over numerical methods is that it does not require linearization or
discretization to be applied to nonlinear differential equations and
therefore is not affected by the related errors. Also, D'TM does not
require a perturbation parameter and also the validity is
independent of whether or not there exist small parameters in
the considered equation. This method has been adapted in recent
years and successfully applied to simulate many multi-physical
transport phenomena problems including magnetic liquid film
flows [12], mixed convection flow [13], micropolar convection
[14].

Magnetohydrodynamics (MHD) is concerned with the mutual
interaction of fluid flow and magnetic fields. The fluids being
investigated must be electrically conducting and non-magnetic,
which limits the fluids to liquid metals, hot ionized gases (plasmas)
and strong electrolytes. The use of an external magnetic field is a
very important issue in many industrial applications, especially as a
mechanism to control material construction. Some important
examples of magnetohydrodynamic flow of an electrically
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conducting fluid past a heated surface are MHD power
generators, plasma studies, petroleum industries, cooling of
nuclear reactors, the boundary- layer control in aerodynamics,
and crystal growth [15,16]. The goal of the thermal treatment is to
cool the material to a desirable temperature before spooling or
removing it. As the high temperature material emerges from a
furnace or a die, is exposed to the colder ambient, therefore
transient conduction process accompanied by surface heat loss is
mnitiated [17]. When high temperatures are encountered in the
application areas, the thermal radiation effect becomes very
important. High temperature plasmas, cooling of nuclear reactors,
liquid metal fluids, and power generation systems are some
important applications of radiative heat transfer from a surface
plate to conductive fluids. There have been some studies that
consider hydromagnetic radiative heat transfer flows. Spreiter and
Rizzi [18] studied solar wind radiative magnetohydrodynamics.
Nath et al. [19] obtained a set of similarity solutions for radiative-
MHD stellar point explosion dynamics using shooting methods.
Noor et al. [20] considered MHD free convection thermophoretic
flow over a radiate isothermal inclined plate with heat source/sink
effect.

Mixed convection flow and heat transfer over a continuously
moving surface is applicable to many industrial fields such as hot
rolling, paper production, wire drawing, glass fiber production,
aerodynamic extrusion of plastic sheets, the boundary-layer along
a liquid film, condensation process of metallic plate in a cooling
bath and glass, and also in polymer industries [21]. The flow over
a continuous material moving through a quiescent fluid is induced
by the movement of the solid material and also by thermal
buoyancy which will determine the momentum and thermal
transport processes [22]. The first study of the flow field due to a
surface moving with a constant velocity in a quiescent fluid was
undertaken by Sakiadis [23]. Since then, other researchers
investigated various aspects of mixed convection problems such
as heat and (or) mass transfer, suction/injection, thermal radiation,
MHD flow, porous media, slip flows, etc. [24,25].

In some situations such as the spreading of a liquid on a solid
substrate, corner flow and the extrusion of polymer melts from a
capillary tube, no slip conditions yield unrealistic behavior and
must be replaced by slip conditions especially in applications of
microfluidics and nanofluidics [26-28]. The difference between
the fluid velocity at the wall and the velocity of the wall itself is
directly proportional to the shear stress. The proportional factor is
called the slip length. The corresponding slip boundary condition

-
I % , where [ is the slip length [29]. For gaseous flow

is ‘u‘wall:

the slip condition of the velocity and the jump condition of
2—0,|0u 3u |oT

: 5 4p Tgus Ox

the temperature are |u and

2—ar 2k 20T
Twal= —— 7757
or k+1Proy
tangential momentum coefficient and the temperature accommo-
dation coeflicient [30]. Some relevant papers on slip flows are Kim
et al. [31], Martin and Boyd [32], Kuznetsov and Nield [33].
The above researchers restricted to either prescribed temper-
atures or heat flux at the wall or slip. The idea of using convective
boundary conditions which are the generalization of isothermal
and thermal slip boundary conditions was introduced by Aziz [34]
and was followed by Magyari [35] who found an exact solution of
Aziz’s [34] problem in a compact integral form and Ishak [36]
who extended the same problem for a permeable flat plate.
The goal of the present study is to develop similarity
transformations via one parameter linear group of transformations

wall =

gy

respectively where ¢, and o7 are the
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and the corresponding similarity solutions for mixed convection
flow of viscous incompressible fluid past a moving vertical flat plate
with thermal convective and hydrodynamic slip boundary
conditions and to solve the transformed coupled ordinary
differential equations using the differential transform method.
The effects of the Prandtl numberPr, the Schmidt number Sc, the
mixed convective parameter Ri, the buoyancy ratio parameter N,
the radiation parameter R, the magnetic field parameter M and
the slip parameter a on the flow, heat and mass transfer
characteristics are investigated numerically.

In section 2 the geometry of the flow along a moving vertical flat
plate under consideration in this problem is modeled with
hydrodynamic slip and thermal convective boundary condition
assumptions. The system with two independent variables is
reduced to one variable equations and a system of nonlinear
ordinary differential equations is obtained using a linear group of
transformations. Sections 3 and 4 provide methods of solution for
the governing equations of the problem, the differential transform
method and numerical solution, respectively. In section 5 physical
reasons are illustrated for the behavior of the graphs and tables of
the problem, and finally inferences are made and conclusions are
drawn.

Nomenclature

B magnetic field strength

C  concentration

C,, wall concentration

C,, ambient concentration

D diffusion coeflicient (m?/s)

f(n) dimensionless stream function

g acceleration due to gravity (m/s?)

hy  heat transfer coefficient (W/m?*K)

k  thermal conductivity (W/m.K)

L characteristic length (m)

N buoyancy ratio parameter

Nuiz  local Nusselt number

Pr Prandt number

p pressure (N/m?)

¢m wall mass flux (kg/s m?)

¢w wall heat flux (W/m?)

Ri  mixed convective parameter

Gry local Grashof number

Shx  local Sherwood number

T temperature inside boundary layer (K)
T,, wall temperature (K)

Ty ambient temperature (K)

velocity components along X — and y —axes (m/s)
Cartesian coordinates along and normal to the plate (m)

N

5
»y
Greek Symbols

o thermal diffusivity of the porous medium (m?/s)

pr  volumetric thermal expansion coefficient of the base (1/K)
e volumetric solutal expansion coefficient of the base (1/K)
i absolute viscosity of the base fluid (Ns/m?)

v kinematic viscosity of the fluid (m*/s)

o clectric conductivity

Y convective heat transfer parameter

@#(7) dimensionless concentration function

n  similarity variable

0(n) dimensionless temperature

p  fluid density (kg/m”)

Y stream function
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Mathematical Modeling

Figure 1 shows the geometry assumed in this study, along with
the rectangular coordinates, X and ), and the corresponding
velocity components, # and v (where 1 represents momentum, ii
represents thermal and concentration boundary-layers and in
general thermal and concentration boundary-layer thickness are
not the same). The temperature of the ambient fluid is T, the
unknown temperature of the plate is 7), and the left surface of the
plate is heated from a hot fluid of temperature Ty (>T) or is
cooled from a cooled fluid (T < T,) by the process of convection
which yields a heat transfer variable coeflicient A¢(X). It is also
assumed that the ambient fluid is of uniform concentration Co,,
the unknown concentration of the plate is C,,. A transverse
magnetic field with variable strength B(X)=By/ x!/2 is applied
parallel to the y axis, where By is the constant magnetic field [37].
Variable electric conductivity ¢ = 0g # 1s assumed, where gy 1is the
constant electric conductivity [37]. The magnetic Reynolds
number is assumed to be small and hence the induced magnetic
field can be neglected. Fluid properties are invariant except
density, which is assumed to vary only in those changes that drive
the flow (i.e., the Boussinesq approximation). Under the assump-
tion of boundary-layer approximations, the governing boundary-
layer equations in dimensional form are:

ou v
S = 1
ox 0y 0, m

ou _012 _
( 0x vﬁy)_ 2
2 )
+pghy (T—To)+pghe (C— )l — 250 32,

u
Mo

_or _oT (

. 166,73\ &°T
“oax TV 9

3pcyk

oc _oCc ¥ C
e 4V =D 4
"V P “)

subject to the boundary conditions:

x\1/2 on oT
=Url 7+ N ) —
U (L) T 0y k 0y
=h(x) [Ty—Ty], C=C, at y=0, (5)
u—-0, T-T7,, C-C, as y-—-owo,

where T is the temperature, C is the concentration, v is the
kinematic viscosity, k is the thermal conductivity, « is the thermal
diffusivity, D is the mass diffusivity of species of the fluid, 7 is the
volumetric thermal coefficient, B is the volumetric concentration
coefficient, g is the acceleration due to gravity, oy is the Stefan-
Boltzmann constant, k; is the Rosseland mean absorption
coefficient, o=k / p ¢p is the thermal diffusivity of the fluid, p is
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the density of the fluid, u is viscosity, si7(X) is the heat transfer
coefficient and N7 is the velocity slip factor.

2.1 Normalization
The following boundary-layer variables are introduced to
express Egs. (1)—(5) in dimensionless form:

X yRel/?
:75y:y s

L L ©)
u—j y= vL _ T_TOO ¢_ C_Cm
Uy wReV T T -T, " C,—C.°

where Re=UpL/v is the Reynolds number based on the
characteristic length L and characteristic velocity Up. The stream

oW o

function ¥ defined as u= —,v= — —— is substituted into Egs.
oy Ox

(2)-(5) to reduce the number of equations and number of

dependent variables. Therefore the following three dimensionless

equations are obtained:

) 2 3 A 2
Do DT ripsves Y (Y <o @)

0y dxdy ox oy 9y oy
oy o0 oy a0 20

apop  opop\ ¢
54___$5>8y

Here Pr=v /o is the Prandtl number, Sc=v /D is the Schmidt
number, N=B(C,—Cy)/ Br(Ty—Ty) is the buoyancy ratio
parameter, M =0 B3 / p is the magnetic field parameter,
R=160,T3 /3kik is the radiation parameter, Gr=
gPr(Ty—T,) L /v* is the Grashof number, Ri=Gr/Re? is
the mixed convective parameter [38], Ri>0 is for aiding
buoyancy flow and Ri<0 is for opposing buoyancy flow and
Ri=0 is for purely forced convective flow in which buoyancy
effects are not present.

The boundary conditions take the following form:

D
<

NV Re2N (x)v &y Y _

oy L oy’ ox

00 Lhy(x)

— 1-0 =lat y=0

5~ kRe 7 (1=0), ¢=1at y=0, (10)

A

0——>0, 0-0, >0 as y—oo.
dy

2.2 Application of Linear Group Analysis and Similarity
Equations

The transport Eqs. (7)<(10) form a highly coupled nonlinear
boundary value problem. Numerical solutions of these equations
are complicated and time consuming. In this section the linear
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Figure 1. Flow configuration and coordinate system for an assisting flow (a) fixed plate, (b) moving plate.

doi:10.1371/journal.pone.0109404.g001

group of transformations is imposed on the problem to combine
the two independent variables (x,y) into a single independent
variable 1 (similarity variable) and reduce Egs. (7)—(10) into
ordinary differential equations with corresponding boundary
conditions. For this purpose all independent and dependent
variables are scaled as:

X=x AN, Y =y A2, =y AT,

(11)
O =0A4%," = A*S ,hy" = hy A% ,N,* = N; A7,
where 4, o;(i=1,2,...,6,7) are constants, the values of ¢; should
be chosen such that the form of the Egs. (7)—(10) is invariant under
the transformations. Eqs. (7)—(10) will be invariant if «; are related
by

oy =40y, a3 =30, 04 = os=0,06=—0, ar=0. (12)
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It is clear from Egs. (11) and (12) that

s

Y y

XA T 1A (13)

This combination of variables is invariant under this group of
transformations and consequently, is an absolute invariant which
are functions having the same form before and after the
transformation. This functional form is denoted using

= (14)

where # is the similarity independent variable. By the same
argument, other absolute invariants are

v= x4 (n),0=0(n), o= (n),
hy=x""4(hy) o Ny =x"4 (N1,
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where f(n), 0(1) and ¢(n) are the dimensionless velocity,
temperature, concentration function, (hf)o is the constant heat
transfer coefficient, (N), is the constant hydrodynamic slip factor.

Substituting Egs. (14) and (15) into Egs. (7)-(9), the following
ordinary differential equations are obtained

f//r_,’_%(3ff”_2f’2—4Mf’2)+R10+ R1N¢=07 (16)

3Pr

(1+R)0"+ =~ f 0/'=0, (17)

b+ 22 ri=0. (18)

subject to the boundary conditions

J(0)=0,1"(0)=1+af"(0), (19)
0'(0) = = Bi[1-0(0)] .p(0)=1, f"(c0) = (c0) =h(0) =0,

where primes denote differentiation with respect to #. Here

= (y), L/k Ra'/? is the Biot number and a= (Ny)pvRe!/?/ L
is the hydrodynamic slip parameter. Nondimensionalizing proce-
dure is explained in detail in Appendix A.

2.3 Quantities of Engineering Interest

The physical parameters of interest in the present problem are
the skin friction factor Cyg, local Nusselt number Nuz and local
Sherwood number Shz which may be determined, respectively by
the following expressions:

i (5)
TET P20 \0y)

X 0T X e 20)
X 0 X
v (1) e (2]
AT\ 03/, “AC\ 03/,
Using Egs. (6), (14), (15), we have from Eq. (20)
1/2 Cfx f //(0)
(21)
Re; /% Nus=—0'(0), Rey'* She=— ¢'(0),
where Rey= U X/v is the local Reynolds number.

The Differential Transform Method

DTM is employed to obtain semi-analytical/numerical solu-
tions to the well-posed two-point boundary value problem defined
by Egs. (16)—(18) and conditions (19). D'TM is an extremely strong
technique in finding solutions to magnetohydrodynamic and
complex material flow problems. It has also been used very
effectively in conjunction with Padé approximants. Rashidi et al.
[39] studied transient magnetohydrodynamic flow, heat transfer
and entropy generation from a spinning disk using DTM- Padé.
To provide a summary of the method, the transformation of the
k™ derivative of a function in one variable is considered which is
defined as:
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PO 35| @)

where f (1) is the original function and F(k) is the transformed
function. The differential inverse transform of F(k) is

d*f(n )}
n=ngy

Fn=3"F ) —no). (23)

The concept of the differential transform is derived from a
Taylor series expansion and in actual applications the function

f(n) is expressed by a finite series as follows:

ZF (n—mo)". (24)

The value of m is decided by convergence of the series
coeflicients. The fundamental mathematical operations performed
by DTM are listed in Table 1. Taking differential transforms of
Egs. (16)—(18), the following transformed equations are obtained:

(k+1)(k+2)(k+3)Flk+3]=

(zk:( —3/M)(k—r+1)(k—r+2)F[r|Flk—r+2] > (5)
: +(05+M)(k—r+1)(r+1)Fr+1]Flk—r+1]
—Ri®[k]—Ri N ®[k]),

(k+2)(k+1)Olk+2]=
k

(1/(1+R>)(Z

(26)
— (3/4)Pr(k—r+ ) F[Ok—r+ 1]),
r=0

(k+2)(k+1)Dk+2]=

k (27)
> (= (3/4)Sc(k—r+1)F[r]®[k—r+1]),
r=0

where F(k), ®(k) and ®(k) are the differential transform of (1),
0(n) and ¢(n), respectively, and the transformed boundary

conditions are:

F[0]=0,F[1]=a, F[2]=8, (28)
0[0]=7, 0[1] =5, (29)
®0]=1, ®[1]=e, (30)

where o, 5, y, 0 and € are constants which are computed from the
boundary conditions.

Here Pade approximants are applied to the problem to increase
the convergence of a given series. As shown in Fig. 2, without
using the Pade approximant, the different orders of the DTM
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Table 1. Operations for DTM.
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Transformed function

Original function

F(k)=G(k) £ H(k)
F(k)=2G(k), /.is a constant

F(k)=(k+1)(k+2)
Ak +1r)Glk+7)

Fy=Y""  GOHE-

Fy= 3" (k=r+ 1) GOH(k—r+1)

Fy= 3" (k—r+ Dk —r+ G H(k—r+2)

S()=g(n) £ h(n)

S)=2gmn)
_d'g(n)

f)= ar

S )=g(n) h(n)

— o D)
S)=g(n) an

d*h(n)

Sn=gn) ar

doi:10.1371/journal.pone.0109404.t001

solution, cannot satisty the boundary conditions at infinity.
Therefore, it is necessary to use DTM-Pade to provide an effective
way to handle boundary value problems with boundary conditions
at infinity. See Appendix B for a description of the Pade

approximant method.

Numerical Solution

The system of nonlinear differential equations (16)—(18) is solved
under the boundary conditions (19). The initial boundary
conditions for /" and 0 in (19) are unknown in comparison with
the case of no-slip and no jump condition of the temperature
boundary conditions. Hence, the solution of the system cannot

6 Y
- Y
= Y numerical
= 1 ———o—— DTM[10]
5 b= —<¢— DTMPade[5,5]
= ——v—— DTM[50]
= . u DTM Pade [ 26, 24 |
4 b=
~ :
= 3=
N
o =
2 =
1 =
. . | | . |
0 4 6 8 10

Figure 2. The analytical solution of f(y) obtained by DTM, DTM-Padé and numerical method for a=1, Pr=0.72, Sc=0.2,

Ri=1,M=02and N= 1.
doi:10.1371/journal.pone.0109404.g002
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proceed numerically using any standard integration routine. Here,
following [40-41], a second order numerical technique is adopted.
This technique combines the features of the finite difference
method and the shooting method and is accurate because it uses
central differences.

The semi-infinite integration domain n €[0,00) is replaced by a
finite domain 7 €[0,1,,) and 7, should be chosen sufficiently large
so that the numerical solution closely approximates the terminal
boundary conditions (19). Here a large enough finite value has
been substituted for 7., the numerical infinity, to ensure that the
solutions are not affected by imposing the asymptotic conditions at
a finite distance. The value of #,, has been kept invariant during
the run of the program.

Now a mesh is defined by ;=ih (i=0,1,...,n), with & being the
mesh size, and Egs. (16)-(18) are discretized using central
difference approximations for the derivatives, the following
equations are obtained at the " mesh point:

Fiyo=2F; +2F —F 5 1 Fi\=2F;+F;
S (HH L)
e +4(3 2
(31)
Fioi—F 1\’ Fipi—Fiq\ . .
o T} gy (T Ri0;+Ri N ¢, =0
(Zh) (2h + Ri0;+Ri N ¢, =0,

(I1+R)

0i+1—20;+0;_1  3Pr Oi11—0i—1
h? 4

Gis1—20i+¢i1  3Sc (i~ _
] (A R

Note that Egs. (16)—(18), which are written at the i mesh point,
the first, second and third derivatives are approximated by central
differences centered at i mesh point. This scheme ensures that
the accuracy of O(hz) is preserved in the discretization.

Egs. (31)~(33) are term recurrence relations in F, 0 and ¢. So, in
order to start the recursion, besides the values of Fy, 0y and ¢, the
values of Fy, F», 01 and ¢, are also required. These values can be
obtained by Taylor series expansion near 7=0 for F, 0 and ¢,
with initial assumptions for the dimensionless functions of F and 6.

The values of F(0), F'(0), 6(0) and ¢(0) are given as boundary
conditions in (19). The values of F"’(0), 6”(0) and ¢"(0) can be
obtained directly from Egqs. (10)+(12) and using the initial
assumptions. After obtaining the values of Fi, 0; and ¢, at the
next cycle F», 0 and ¢, are obtained. The order indicated above
1s followed for the subsequent cycles. The integration is carried out
until the values of F, 0 and ¢ are obtained at all the mesh points.

The three asymptotic boundary conditions (13) and (14) must be
satisfied. Initial assumptions are found by applying a shooting
method along with the fourth order Runge—Kutta method so as to
fulfill the free boundary conditions at =1, in (19). The guesses
can be improved by a suitable zero-finding algorithm, including
Newton’s method, Broyden’s, etc. [42,43].

Results and Discussion

A linear group of transformations is used to reduce the two
independent variables into one and reduce the governing
equations into a system of nonlinear ordinary differential
equations with associated boundary conditions. Equations (16)-
(18) with boundary conditions (19) were solved analytically using
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the differential transform method and compared with numerical
results. Figure 2 shows the results of comparison and great
agreement is seen. Typically, the natural convection is negligible
when Ri<0.1, forced convection is negligible when Ri> 10, and
neither is negligible when 0.1 < Ri<10. It is useful to note that
usually the forced convection is large relative to natural convection
except in the case of extremely low forced flow velocities. Here
Ri > 0 is chosen to have aiding buoyancy flow.

For Biot number smaller than 0.1 the heat conduction inside the
body is quicker than the heat convection away from its surface,
and temperature gradients are negligible inside of it. Having a Biot
number smaller than 0.1 labels a substance as thermally thin, and
temperature can be assumed to be constant throughout the
materials volume. The opposite is also true: A Biot number greater
than 0.1 (a “thermally thick” substance) indicates that one cannot
make this assumption, and more complicated heat transfer
equations for ‘“‘transient heat conduction” will be required to
describe the time-varying and non-spatially-uniform temperature
field within the material body. In this research the case of cooling
of the plate Gr > 0 is assumed and also the value of 0.5 is chosen
for the Biot number and the thermal radiation number is equal to
1 in all diagrams as the control parameters.

In Tables 2—6 cffects of some of the parameters on the Skin
friction factor, Crz, local Nusselt number, Nug, and local
Sherwood number, Shxy are shown. According to Table 2,

. . . 1/2
increasing the buoyancy ratio parameter, N, causes Rex/ Crx,

Re)—:l/2 Nusz and Re)—(_l/2 Shz to increase. N=p-(Cy,—Cy)/
Br(Ty — T, ) represents the relative magnitude of species buoy-
ancy and thermal buoyancy forces. For N = 1 these two forces are
of the same magnitude. For N> 0, the species buoyancy force is
dominant and vice versa for N < 1. The weaker contribution of
the thermal buoyancy force for N < 1 results in a depletion in the
local Nusselt number. The stronger contribution of the species
buoyancy force for N > 1 induces enhancement in the local
Sherwood number. The momentum field is coupled to the
concentration (species) field via the linear species buoyancy force,
Ri N ¢, in the momentum Eq. (16). The species field is coupled to

the momentum field via the nonlinear term, 3Scf¢/ /4, in the
species diffusion Eq. (18). Both terms are assistive. The influence of
N on both species diffusion and momentum diffusion is therefore
very strong as observed in the very large magnitudes of skin
friction and local Sherwood number in Table 2.

In Table 3, increasing the mixed convective parameter is
observed to strongly increase skin friction and accelerate the
boundary-layer flow. Only Ri>0 is considered corresponding to
buoyancy-assisted flow. In the range 0.1 < Ri < 10 both free
(natural) and forced convection modes contribute. For Ri>10,
forced convection effects are negated and for Ri < 0.1 free
convection effects vanish. Evidently at low Ri values, buoyancy
has a lesser influence on the flow characteristics and skin friction is
found to be negative (flow reversal). With Ri exceeding unity any
flow reversal is eliminated and the flow is strongly accelerated.
Stronger buoyancy effects therefore act to stabilize the flow and
aid momentum development. This simultaneously encourages
more efficient diffusion of heat and species resulting in a marked

increase in heat and mass transfer rates (Re)l—c/2 Crx, Re)—zl/2 Nus)
at the plate.

In Table 4 increasing the value of hydrodynamic slip
parameter, a, decreases Re}/2 Cyxbut  weakly  increases
Re)—c_l/2 Nuy and Re)—c_l/2 Shyx. Momentum slip is simulated in
the wall velocity boundary condition given in Eq. (19). Increasing
momentum slip causes a reduction in the penetration of the
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Table 2. The Skin friction factor, Cyy, local Nusselt number, Nu; and local Sherwood number, Shy. for different values of the
buoyancy ratio parameter N, at Pr=0.72, M =0.2, Sc=0.2, Ri=1, Bi=0.5, R=1 and a=1.

N ReY? Cpe Re; '* Nuy Re; '/* Sh;
0.1 —0.123402 0.196943 0.220788
1.0 0.118811 0.221377 0.275433
5.0 0.860543 0259651 0378371
100 1.522606 0279651 0444757
50.0 4644088 0326977 0.662252
1000 7129046 0346306 0789132

doi:10.1371/journal.pone.0109404.t002

stagnant surface through the boundary-layer. This serves to ® Fig. 3. a shows how the flow responds to change in the
enhance momentum boundary-layer thickness since the flow is magnetic field. Increasing magnetic interaction number M
decelerated with increasing slip so that skin friction is lowered. from purely hydrodynamic case M =0 to higher values of M,
Bi arises in the wall temperature gradient boundary condition in gives rise to a strong deceleration in the flow. Presence of a
Eq. (19). As Bi increases from < 0.1 (thermally thin case) to magnetic field in an electrically conducting fluid introduces a
> 0.1 (thermally thick case) the rate of thermal conduction heat Lorentz force which acts against the flow in the case that
transfer inside the plate becomes dramatically lower than the heat magnetic field is applied in the normal direction as considered
convection away from its surface, and temperature gradients are in the present problem. The described type of resistive force
increased at the plate. The influence on the flow is to accelerate it. tends to slow down the flow field.
Skin friction is elevated and therefore momentum boundary-layer e A positive rise in N induces an increase in the flow along the
thickness decreased. As shown in Table 5, an increase in the plate as scen in Fig. 3. b.
value of Biot number, Bi, increases Re)l’c/z Crx, Rey V2N ux and ® There is a clear decrease in the velocity values at the wall
Regl/ 2 Shs. accompanying a rise in Prandtl number because the flow is
Table 6 demonstrates that an increase in Schmidt number, Sc, decelerated. Fluids with higher Prandtl numbers will therefore

possess higher viscosities (and lower thermal conductivities)

—12 . . . . . which means that such fluids flow slower than lower Pr fluids
e %. Schmidt number is the ratio of viscous diffusion to . . PR
Re, Shs. Schmid b h f diff (Fig. 3. ¢). As a result the velocity will be decreased

molecular (species) diffusion. For S¢ < 1, molecular diffusion rate substantially with increasing Prandt number.
exceeds the momentum diffusion rate and vice versa for Sc > 1.
Sub-unity values of Schmidt number will therefore result in a
deceleration in the flow (reduced skin friction), which will also
decrease thermal diffusion rates. Conversely mass transfer will be
accentuated in the regime with increasing Sc values.

1/2 —1/2 .
decreases both Re)—c/ Crx and Re; / Nuy, whereas it increases

® According to Fig. 3. d, a strong mixed convective parameter
has a significant acceleration effect on the boundary-layer flow.
® Through changing the values of Pr and Se, the thermal and
species diffusion regions change. As illustrated in Fig. 3. e, the

In Fig. 2 results using different orders of DTM and DTM-Péade dimensionless stream function (1) decreases as a result of
are compared with those of the numerical method. Very good increasing Schmidt number.
agreement is observed for DTM-Pade and the numerical method. e Fig. 3. f, results from comparing the flow in the presence of
In figures 3. a—3. feffects of different parameters are investigated slip and no slip boundary condition. The change in profiles for
on the flow regime and the following results are observed: different values of a is not so much. In fact a influences the

flow of the liquid past the moving plate and the amount of slip
1—£"(0) increases monotonically with @ from the no-slip

Table 3. The Skin friction factor, Crx, local Nusselt number, Nus and local Sherwood number, Sty for different values of the mixed
convective parameter, Ri, with Pr=0.72, M =0.2, Sc=0.2, a=1, Bi=0.5, R=1and N= 1.

Ri Rel? Cys Re; "/* Nuy Re; '/* Sh
0.2 —0.274494 0.202957 0.300044
0.5 —0.083130 0.203855 0.237817
0.8 0.043656 0.215523 0.262461
1.0 0.118720 0.221333 0.275481
3.0 0.684401 0.251875 0.353565
50 1.101863 0.266782 0.398851
7.0 1.451164 0.276702 0.432251
2.0 1758446 0.284122 0.459204
doi:10.1371/journal.pone.0109404.t003
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Table 4. The Skin friction factor, Cyy, local Nusselt number, Nu; and local Sherwood number, Shy. for different values of the
hydrodynamic slip parameter, a, with Pr=0.72, M'=0.2, Sc=0.2, Ri=1, Bi=0.5, R=1and N= 1.

a Re,l—c/2 Crx Re,—:l/2 Nuy Re,—:l/2 Sh;
0.0 0.297625 0.218942 0.271244
0.2 0.229317 0.219876 0.272890
0.4 0.186188 0.220452 0.273911
0.6 0.156595 0.220841 0.274604
0.8 0.135608 0.221122 0.275104
1.0 0.118720 0.221333 0.275481
2.0 0.073893 0.221906 0.276507
40 0.042066 0.222307 0.277227
6.0 0.029397 0.222465 0.277512
8.0 0.022592 0.222550 0.277665
10.0 0.018345 0.222602 0.277760
doi:10.1371/journal.pone.0109404.t004

situation of =0 and towards full slip as a— 0. In the limiting
case the frictional resistance between the cooling liquid and the
moving plate is eliminated, and the moving plate no longer
imposes any motion of the cooling liquid.

Figures 4. a—4. f show how heat transfer is influenced by
different parameters:

® The magnetic field increases the temperature of the fluid inside
the boundary-layer as a result of excess heating and
consequently decreases in the heat flux, as shown in Fig. 4. a.

® A positive rise in N causes the temperature to decrease as seen

thermal boundary-layer thickness and more uniform temper-
ature distributions across the boundary-layer. Smaller Pr fluids
have higher thermal conductivities so that heat can diffuse
away from the vertical surface faster than for higher Pr fluids
(thicker boundary-layers).

According to Fig. 4. d, temperature decreases by increasing
the value of the Richardson number.

Temperature continuously increases with increasing Schmidt
number as depicted in Fig. 4. e.

In Fig. 4. f. changing the slip parameter a does not affect
temperature profiles much.

in Fig. 4. b.

e Fig. 4. c. depicts the effects of the Prandtl number Pr on the
temperature profiles 0(n). Prandtl number shows the ratio of
momentum diffusivity to thermal diffusivity. The figure reveals
that an increase in the Prandtl number Pr results in a decrease
in the temperature distribution at a particular point of the flow
region. The lowest temperatures correspond to the highest
value of Prandtl number. No temperature overshoot is
observed. The increase in the Prandtl number means a slow
rate of thermal diffusion. Larger Pr values imply a thinner

Figures 5. a—5. f show how the concentration profiles vary
through changing different parameters entering into the problem.

® According to Fig. 5. a concentrations increase by increasing
the value of M.

® Concentration decreases by a positive rise in N as seen in
Fig. 5. b.

Table 5. The Skin friction factor, C;, local Nusselt number, Nuz and local Sherwood number, Sh;. for different values of the Biot
number, Bi, with Pr=0.72, M =0.2, Sc=0.2, Ri=1,a=1, R=1and N= 1.

Bi Re!? Cys Re;"/? Nuy Re; /2 Sh;
0.1 0.038440 0.079168 0.264176
0.2 0.069660 0.131835 0.268651
03 0.091037 0.169820 0.271656
04 0.106703 0.198650 0.273830
05 0.118721 0.221334 0.275482
0.6 0.128250 0.239673 0.276782
0.7 0.136001 0.254820 0.277833
08 0.142435 0.267549 0.278702
0.9 0.147865 0.278401 0.279432
1.0 0.152510 0.287765 0.280055
doi:10.1371/journal.pone.0109404.t005
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Table 6. The Skin friction factor, Cyy, local Nusselt number, Nu; and local Sherwood number, Shy. for different values of the
Schmidt number, Sc¢, with Pr=0.72, M =0.2, a=1, Ri=1, Bi=0.5, R=1and N= 1.

Sc Rey ¢ rx

Re

x

12

Nug Re; '/* Sh;

0.22 0.114704
0.30
0.60
0.66

0.78

0.101054
0.068403
0.063793
0.055692

0.220421

0.21
0.21

0.209485
0.208058

0.289944
7298
0346

0.342816
0.498874
0.525015
0.573872

doi:10.1371/journal.pone.0109404.t006

® Fig. 5. c shows the response of the dimensionless concentra-
tion function through the boundary-layer regime to Prandtl
number Pr.

The dimensionless concentration function ¢(1) as shown in
Fig. 5. d is adversely affected through increasing the mixed
convective parameter Ri. According to Figs. 4. d. and 5. d.
both temperature and concentration profiles descend smoothly
from the maximum value at the wall to zero in the free stream.
Here the value of the buoyancy ratio parameter is unity,
N =1 which indicates that the thermal and concentration
(species diffusion) buoyancy forces are of the same order of
magnitude.

Fig. 5. e. indicates that concentration ¢(1) is reduced
continuously throughout the boundary-layer with increasing
the value of Sec. Schmidt number measures the relative
effectiveness of momentum and mass transport by diffusion.
Larger values of Sc are equivalent to reducing the chemical
molecular diffusivity i.e. less diffusion therefore takes place by
mass transport.

Fig 5. f. shows that changing the value of the slip parameter a
has little influence on the concentration profiles.

Conclusions

In this study, combined heat and mass transfer of the flow along
a moving vertical flat plate with hydrodynamic slip and thermal
convective boundary condition was considered. In order to reduce
the two independent variables into one and hence to reduce the
governing equations into a system of nonlinear ordinary differen-
tial equations, a linear group of transformations was used. The
obtained equations were solved analytically using the differential
transform method. The results were verified by results taken from
the numerical method and excellent agreement was observed. The
effects of different parameters on the skin friction factor, Cr, local
Nusselt number, Nug, and local Sherwood number Sh; were
shown and explained through tables and also changes of
dimensionless flow and heat and mass transfer rates due to
changes in some parameters were analyzed and presented
graphically.

APPENDIX A

The governing boundary-layer equations in dimensional form
are:

du 0v
—+—=0, (al)
ox 0y

PLOS ONE | www.plosone.org

10

) (a2)

2
ua—;‘ﬂpgﬁr (T—T,)+pghc (C—C.)]—

)

2
a0B; 2

b}

*T
o2

16 O']T;

3pcyk (a3)

subject to the boundary conditions:

1/ ou

oy’

T
kT

2
+N
10 6)}

v=0,a=U,+ Ugip="Up (%>

=h/(x) [Ty —T,]. C=C, at y=0,

uw—-0, T-T,, C->C, as y—oo.

Using the following boundary-layer variables:

X yRe!?

- L V= L >
VL T-T, C-Cy

V= 2 = 2 = 2
vRel/2 Tr—T, C,—Cy

X

Sl

the following equations are obtained for Eqs. (a2)—(a4):

vRe!/?
L

o(ully)
0(xL)

o(ulyy)

v g <RilL/2>

qu

0

(a7)
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Figure 3. a. Variation of the dimensionless stream function for various values of magnetic field parameter M versus ; when
a=1, Pr=0.72, Sc=0.2, Ri=1 and N = 1. b. Variation of the dimensionless stream function for various values of buoyancy ration parameter N
versus 7 when a=1, Pr=0.72, Ri=1, M =0.2 and Sc=0.2. c. Variation of the dimensionless stream function for various values of Prandtl number
Prversus nwhena=1, M=0.2, Sc=0.2, Ri=1and N = 1.d. Variation of the dimensionless stream function for various values of mixed convective
parameter Ri versus 7 when a=1, Pr=0.72, Sc=0.2, M=0.2 and N = 1. e. Variation of the dimensionless stream function for various values of
Schmidt number Sc versus 7 when a=1, Pr=0.72, Ri=1, M =0.2and N = 1.f. Variation of the dimensionless stream function for various values of
first order slip parameters a versus 7 when Pr=0.72, M =0.2, Sc=0.2, Ri=1and N= 1.

doi:10.1371/journal.pone.0109404.g003

(T =T.)0+T.) | oR&P (T~ T.)0+T..)
qu
0(xL) L 5( yL )
Rel/2
(a8)
16 01 T3 d o((Ty—Tx)0+T.)
“\" 300k L L ’
rol o)\ o)
Ua((cw—cw)mcw) vRe26((Cy—C)p+Cop)
o a(xL) "L a( L )
Rel/2
(a9)
J I(Cv=Co)p+Cx)
=b L L
G\ o)
After simplifying the equations and dividing Eq. (a7) by
pU(%/L, Eq. (a8) by Uoot(Tf—Tw)/Ll), Eq. (@9) by

Uy(Cy—Cy)/L, and using the definitions for Re= Uy L/v,
Ri=Gr/Re*, Gr=gPpr(Ty—T,)L*/v*, N=Bc(Cy—Cs)/
Pr(Tr—Tx), M =0y Bj /p, R=160, T3 /3kik, Pr=v/a, and

Sc=v/D following equations are obtained:

u  ou  u M 2
ua +V5— -5 —Ri [6+N{N =0, (alO)
T 0T a0
¢ oc ¢

The stream function ¥ defined as u=0y/dy, v=—0y/0x is
substituted into Egs. (alO)<(al2) to reduce the number of
equations and number of dependent variables, therefore the
following three dimensionless equations are obtained:

WYy WPy Py 0'//
Eéxﬁy — 33 — W —Ri [9+N¢]+ — =) =0,al3)
o0 oo o0
Pr <6y o 6y) (1+R) 37 =0, (al4)
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Sc (%% - ?’i %) (;zyqﬁ (al5)
The boundary conditions take the following form:
2y RINCUEY 4 00
L 0yr’ ox O dy
—ifif;’g(l—a), $=1at y=0, (al6)
667 -0, 60, ¢—>0 as y—oo.
All independent and dependent variables are scaled as:
X=X AN,y =y A2, = A, @)

0" =0A4%, " =p A%, hy* = hy A6, N\* = N; A7

where A4, 0; (i=1,2,...,6,7) are constants. The values of o; should
be chosen such that the form of the Eqs. (al3)—(al)) is invariant
under the transformations by substituting the above variables:
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Figure 4. a. Variation of the dimensionless temperature for various values of magnetic field parameter M versus ;; when
a=1, Pr=0.72, Sc=0.2, Ri=1and N = 1. b. Variation of the dimensionless temperature for various values of buoyancy ration parameter N versus
nwhen a=1, Pr=0.72, Ri=1, M =0.2 and Sc=0.2. c. Variation of the dimensionless temperature for various values of Prandtl numberPr versus n
when a=1, M=0.2, Sc=0.2, Ri=1 and N = 1. d. Variation of dimensionless temperature for various values of mixed convective parameter Ri
versus n when a=1, Pr=0.72, S¢=0.2, M =0.2 and N = 1. e-Variation of the dimensionless temperature for various values of Schmidt number Sc¢
versus 7 when a=1, Pr=0.72, Ri=1, M=0.2 and N= 1. f. Variation of the dimensionless temperature for various values of first order slip

parameters a versus 17 when Pr=0.72, M =0.2, Sc=
doi:10.1371/journal.pone.0109404.g004

Obviously Egs. (a18)—-(a20) will be invariant if o; are related by

o =40, 03 =30, 0y = 05= 0,006 = —0tr, 017 =001. (a22)

y

—= and other
x

absolute invariants such as dimensionless velocity, temperature,
concentration function as follows:

Using the similarity independent variable 1=

= x4 (n),0=0(n),

(a23)
o= (). hy=x""*(hr)o. Nr=x"(N1),,
the following equations are obtained:
(7o) (354700 = 5wy ) -
( XA =2 g )( Vi) a24)
2
1)~ R0+ N9+ () =0,
[ ) (= x50 ) } .
— @XM ) = 524 () (x40 () (a25)
(1R (x40 () ) =0,
SC[(XZ/‘?f/(n))(—%X5/4¢’(n)) }_
G )= ) ) | (a26)
x4 (n) =
After simplifying the above equations, Eqs. (16)—(18) are
obtained.
APPENDIX B
Suppose that a power series zx: a;x' is given, which represents a
i=0

function f(x), such that:

Jfx)= (b1)

o0
E a;x".
i=0
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0.2, Ri=land N= 1.

The Pade approximant is a rational fraction and the notation
for such a Padé approximant is:

[L/M]= (b2)

where Pr(x) is a polynomial of degree at most L and Q/(x) is a
polynomial of degree at most M. Therefore:

f(x)=ao+a1x+a2x2+a3x3+a4x4+ . (b3)
PL(x)=po+p1x+p2x +p3x’ +.tprxt,  (b4)
Ou(X)=qo+q1x+@2x* +q3x° + ..+ qux™,  (b5)

where in Eq. (b2) there are L+1 numerator coefficients and
M+1 denommator coeficients. Since the numerator and
denominator can be multiplied by a constant and [L/M] left
unchanged, the following normalization condition is imposed

Ou(0)=1. (b6)

So there are L+ 1 independent numerator coefficients and M
independent denominator coeflicients, which make L+ M +1
unknown coefficients in all. This number suggests that normally
the [L/M] ought to fit the power series Eq. (b1) through the orders
1,x,x%,....x5*M Based on conditions given in [44,45], [L/M]
approximation is uniquely determined. In the notation of formal
power series:

i=0

(b7)
Po+PIX+pax’ +p3xX . 4 prxt 0(xL+M+1)
qo+q1X+ x> + g3+ .+ g xM '
By cross-multiplying Eq. (b7), one obtains:
(q0+q1x+q2x* + 3 + ...+ g x™)
X (a0+a1x+a2x2+a3x3+a4x4+...) (b8)

=po +P1X+P2x2 -I-Psx3 +.4prxt+ 0(xL+M+1)'
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Figure 5. a. Variation of the dimensionless concentration function for various values of magnetic field parameter M versus  when
a=1, Pr=0.72, Sc=0.2, Ri=1 and N= 1. b. Variation of the dimensionless concentration function for various values of buoyancy ration
parameter N versus  when a=1, Pr=0.72, Ri=1, M =0.2 and Sc=0.2. c. Variation of the dimensionless concentration function for various values
of Prandtl number Pr versus  when a=1, M =0.2, Sc=0.2, Ri=1and N = 1. d. Variation of the dimensionless concentration function for various
values of mixed convective parameter Ri versus n when a=1, Pr=0.72, Sc=0.2, M=0.2 and N= 1. e. Variation of the dimensionless
concentration function for various values of Schmidt number Sc versus n when a=1, Pr=0.72, Ri=1, M=0.2 and N= 1. f. Variation of the
dimensionless concentration function for various values of first order slip parameters a versus n when Pr=0.72, M =0.2, Sc=0.2, Ri=1and N= 1.

doi:10.1371/journal.pone.0109404.g005

From Eq. (b8) the following set of linear equations is obtained

ao =po,
ay+aoq1=pi,
a+arqr +aoq2=p2, (b9)

artar—1q1+ --- +aoqr=pr,

and

apt1+arqi+ - +ar_y+19u =0,

api2+api1qi+ - Far_y2qm =0,
(b10)

ap+m+aryy—191+ - +argu =0,

where a,=0 for n<0 and ¢;=0 for j> M. Equations (b9) and
(b10) can be solved directly provided they are non-singular.

ar—m+1 arp—m+2 ceedr4
ar ar+1 ar+m
2 a4 Y gm¥ > @Y
LM =" Ui =01 b1
ar—mM+1 dp—m+2 ---  Adr4+1
ar ar+1 ar+um
xM xM-1 1

If the lower index on a sum exceeds the upper, the sum is
replaced by zero. Alternate forms are:

LM
[L/M]= Z aix +xE Ml W
=0
Lin (b12)
= Z a,-xj—l—xL*”“w(TLJrM)/M WE/}\,[W(LJrn)/M,
=0
for
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