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Abstract

A new bioinformatic methodology was developed founded on the Unsupervised Pattern Cognition Analysis of GRID-based
BioGPS descriptors (Global Positioning System in Biological Space). The procedure relies entirely on three-dimensional
structure analysis of enzymes and does not stem from sequence or structure alignment. The BioGPS descriptors account for
chemical, geometrical and physical-chemical features of enzymes and are able to describe comprehensively the active site
of enzymes in terms of ‘‘pre-organized environment’’ able to stabilize the transition state of a given reaction. The efficiency
of this new bioinformatic strategy was demonstrated by the consistent clustering of four different Ser hydrolases classes,
which are characterized by the same active site organization but able to catalyze different reactions. The method was
validated by considering, as a case study, the engineering of amidase activity into the scaffold of a lipase. The BioGPS tool
predicted correctly the properties of lipase variants, as demonstrated by the projection of mutants inside the BioGPS
‘‘roadmap’’.
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Introduction

Over the past decade, enzyme properties have been tailored

both through evolutionary approaches as well as by applying

computer-aided rational strategies [1–3]. Nevertheless, the recent

scientific advances in computational research offer an array of

tools that still have to express their full applicative potential. The

huge amount of available information, provided by the revolution

in life sciences, is far from being fully exploited. Although

structures and sequences are expansively made available through

databases, extracting complex information in a systematic way

remains a difficult task: faster and more effective strategies are

requested for discovering and developing new efficient enzymes for

practical and industrial applications [4]. More specifically, the

rational re-design of the active site of an enzyme necessitates of

effective computational strategies able to evaluate how structural

features are correlated to the ability of the protein to stabilize the

transition state of a given reaction. Hybrid and comprehensive

computational approaches are requested for exploring not only the

structural complexity of enzymes but also for disclosing further

factors that, by exerting their effect jointly, produce an optimized,

pre-organized reaction environment. Aiming to meet these

requirements, here we report on a novel computational method-

ology founded on the Unsupervised Pattern Cognition Analysis

(UPCA) [4] of GRID-based BioGPS descriptors (Global Position-

ing System in Biological Space). The method aims to include in the

analysis of enzyme active site the influence of physical-chemical

factors that determine the ‘‘pre-organized reaction environment’’,

in analogy to the effect exerted by solvents on in vitro chemical

reactions. Such analyses rely on the quantitative information

extracted by the BioGPS molecular descriptors, calculated using

the FLAP (Fingerprints for Ligands and Proteins) algorithm [5],

which has been already used successfully in the field of drug design

[6,7]. The complexity of the information conveyed by descriptors

is mastered by multivariate statistical analysis, more specifically by

the application of Unsupervised Pattern Cognition Analysis. More

importantly, the BioGPS-UPCA method relies neither on simple

sequence alignment nor on structure superimposition but rather it

involves the quantification of (macro)-molecular fingerprints, used

to generate de novo virtual structures. On that basis, and with a

modest computational cost, protein families or bunch of virtual

mutants are compared and clustered overcoming any bias related

to previous knowledge.
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The present methodology intends to fill the existing gap in the

field of computational methodologies, where the fundamental

knowledge of the multiple structural and electronic factors cannot

be correlated yet to catalytic properties, mostly because the effects

of variables are studied separately. During the last decades

Molecular Mechanics (MM) [8] and Quantum Mechanics (QM)

have been used for designing novel structural features inside the

protein scaffold [9–12] and the scientific literature reports some

remarkable successful examples, although produced through the

modification of a restricted number of structural or electronic

features [13]. Studies based on QM theory level are also reported

[14], where energies of the TS stabilized by the enzymes are

calculated with high accuracy but accounting only for a limited

section of the enzyme structure because of the high computational

cost of the approach.

Besides MM and QM methods, different bioinformatic meth-

odologies are also available but they compare mainly enzyme

sequences [15–17], as, for instance, the ProSAR approach (Protein

Sequence Activity Relationship) [18]. More in detail, the ProSAR

approach analyses the sequence-function relationship of enzymes

variants, taken from nature or generated in-vitro: the statistical

weight of each residue is analyzed and this output is exploited for

guiding the mutagenesis [18].

A more recent evolution of this approach is represented by the

3DM method, which allows retaining only part of the three-

dimensional structural information. However the method requires

a preliminary superimposition of structures so that afterwards

residues are renumbered and sequences are compared on a

different structural and conceptual basis [19].

In the present study, the efficacy of the BioGPS-UPCA method

was tested by considering, as a case study, the engineering of

amidase activity into the scaffold of lipase B from Candida
antarctica (CaLB) [20], the aim was to engineer promiscuous

amidase activity into the known and stable lipase scaffolds of

CaLB, thus widening the array of applications of biocatalysts at

industrial level.

The structure-based bioinformatic strategy started from the

comparison of the active sites of 42 Ser-hydrolases belonging to

four different classes: lipases, esterases, proteases and amidases.

The 3D-structures of the active sites were subjected to BioGPS-

UPCA procedure in order to understand why all enzymes of the

serine-hydrolases super-family share, apparently, similar catalytic

machineries but catalyze the hydrolysis of different chemical

groups, namely esters and amides.

Unsupervised Pattern Cognition Analysis allowed for the

unbiased identification and quantification of differences among

hydrolases enzymes and, consequently, for their grouping inside

clusters. The method was finally validated by projecting structures

of CaLB mutants endowed with improved amidase activity into

the Ser-hydrolases domain and by observing their clustering

within the amidase area. Conversely, by analyzing and screening

the virtual mutants, the method allowed for the in-silico
monitoring of the effectiveness of a specific mutation strategy

towards a desired engineering direction.

Methods

Definition of the serine-hydrolases data set
A dataset of 42 serine hydrolases was chosen in order to have a

broad heterogeneity in terms of Ser hydrolases, also within the

same class. Crystal structures of all the dataset enzymes were

retrieved from the Protein Data Bank (PDB) [21] and prepro-

cessed by using the software PyMOL [22]: all molecules but the

proteins were deleted (i.e. water molecules, inhibitors, glycosyla-

tion residues, etc.). These 42 enzymes were separated into 4

enzyme classes considering their E.C. number: lipases (serine

hydrolases defined as triacylglycerol lipase; E.C. 3.1.1.3), esterases

(other carboxylic ester hydrolases but not triacylglycerol lipase;

E.C. 3.1.1), proteases (serine endopeptidase; E.C. 3.4.21) and

amidases (amino peptidase and other hydrolases acting on carbon-

nitrogen bonds other than peptide bonds; E.C. 3.4.11, E.C. 3.5.1,

E.C. 3.5.2).

Active site superimposition for preliminary visual
inspection

The preliminary visual inspection of the 42 Ser hydrolases was

performed by superimposing their structures, although the results

clearly show that a simple geometrical analysis is insufficient for

identifying the critical structural differences. Because of the low

homology inside the data set, structure superimposition was

performed by taking the catalytic machineries as a reference point.

Therefore, catalytic residues were aligned by superposing three

functionalities of each enzyme: the atom acting as the general base

during the catalysis (i.e. the Ne2 of His224 in CaLB) and the two

mainly conserved H-bond donors constituting the oxyanion hole

(i.e. the Na atoms of Thr40 and Gln106 in CaLB). The residues

considered for the superimposition and the relative catalytic Ser of

each enzyme are indicated in Table S1. Afterward, the

superimposition was performed by using an ad hoc Fortran script

based on the Horn algorithm [23]. It performs iterative Horn

superimposition, which runs with the objective of achieving a

further refinement of the alignment. In the present case 15

iterative superimposition runs were performed. Due to the intrinsic

stereochemistry of enzyme active sites, Ser hydrolases might have

specular catalytic machineries making the superimposition impos-

sible. Thus, in order to allow the catalytic machinery based

superimposition, a geometrical reflection operation was performed

when necessary by running an ad-hoc Python script that changes

the sign of the first coordinate value of each atom of the structure,

indeed, building up the enantiomeric enzyme structures; the

reflected structures are indicated in Table 1.

Calculation of alignment independent BioGPS
descriptors

The BioGPS (Global Positioning System in Biological Space)

procedure is based on the software FLAP [5] for calculating GRID

based molecular descriptors. FLAP uses a ‘‘Common Reference

Framework’’ for ligands and proteins, enabling ligand-based and

structure-based virtual screening, docking, and 3D-QSAR analy-

sis. BioGPS uses the same approach for comparing protein

binding sites. The BioGPS procedure is composed by two main

steps: the characterization of the protein active sites and then the

comparison by superposing them.

The 42 serine hydrolases listed in Table 1 were used for the

calculation of the BioGPS descriptors. Crystal structures of all the

dataset enzymes were retrieved from the Protein Data Bank (PDB)

[21] and preprocessed by using the software PyMOL [22]: all

molecules but the proteins were deleted (i.e. water molecules,

inhibitors, glycosylation residues, etc.). The original protein

structure coordinates (from the PDB) were used as inputs, without

any previous superimposition. First of all the active site of each

enzyme was automatically detected by the FLAPsite algorithm

[24]. In order to describe the active sites each active site was

mapped with the GRID force field [25] for evaluating the type and

the energy of non-bonded interactions and then generating the

pseudo-MIFs (Molecular Interaction Fields). Four different probes

were employed: H probe takes into account the active site shape;
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O probe that evaluates H-bond donor properties; N1 probe that

evaluates the H-bond acceptor capabilities; the DRY probe

accounting for hydrophobic interactions. The magnitude of the

interaction of the N1 and O probes includes, implicitly, also

information about the charge contribution, since these probes

have already a partial positive and negative charge respectively.

With the pseudo-MIF procedure, the mapped properties are

considered as electron-density like fields centered on each atom,

corresponding to specific probe types (i.e. the interaction energies

Table 1. Serine hydrolases considered in this work with details on enzyme classes.

Enzyme class PDB code Source Substrate

Lipases 1CRL Candida rugosa triacylglycerol

1DTE Humicola lanuginosa triacylglycerol

1ETH Sus scrofa triacylglycerol

1EX9 Pseudomonas aeruginosa triacylglycerol

1GPL Cavia porcellus triacylglycerol

1K8Q Canis lupus familiaris triacylglycerol

1LPB Homo sapiens triacylglycerol

1TCA Candida antarctica triacylglycerol

2FX5 Pseudomonas mendocina triacylglycerol

2NW6 Burkholderia cepacia triacylglycerol

2W22 Geobacillus thermocatenulatus triacylglycerol

Esterases 1AUO Pseudomonas fluorescens broad specificity

1BS9 Penicillium purpurogenum xylanes acetates

*1C7J Bacillus subtilis p-nitrobenzyl esters

1CLE Candida cylindracea cholesterol esters

1JU3 Rhodococcus sp. cocaine

*1QOZ Tricoderma reesei xylanes acetates

1USW Aspergillus niger feroloyl-polysaccharide

2ACE Torpedo californica acetylcoline

*2H7C Homo sapiens CoA, palmitate and taurocholate

2WFL Rauvolfia serpentine polyneuridine aldehyde

*3KVN Pseudomonas aeruginosa rhamnolipids

Proteases *1GVK Sus scrofa Ala-|-Xaa

*1NPM Mus musclus Lys/Arg-|-Xaa

*1PPB Homo sapiens Arg-|-Gly fibrinogen

1QFM Sus scrofa Pro-|-Xaa (,30aa)

*1TAW Bos Taurus Lys/Arg-|-Xaa

*1TM1 Bacillus amyloliquefaciens uncharged P1

*1YU6 Bacillus licheniformis uncharged P1

2XE4 Leshmania major olygopeptides

*3F7O Peacelomyces lilacinus peptides

Amidases 1AZW Xantomonas campestris NH-Pro-|-Xaa

1GM9 Escherichia coli penicillin

1HL7 Microbacterium sp. c-lactam

*1M21 Stenotrophomonas maltophilia C terminal amide

*1MPL Streptomyces sp. L-Lys-D-Ala-|-D-Ala

1MU0 Thermoplasma acidophilum NH-Pro-|-Xaa

1QTR Serratia marcescens NH-Pro-|-Xaa

*3A2P Arthrobacter sp. 6-amino exanoate dimer

3K3W Alcaligens faecalis penicillin

*3K84 Rattus norvegicus fatty acid amide

3NWO Mycobacterium smegmatis NH-Pro-|-Xaa

PDB code of the crystal structures, the source and the natural substrate. References related to the crystal structures are available in Table S1. *Structures that were
geometrically reflected before superimposition.
doi:10.1371/journal.pone.0109354.t001
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coming from GRID N1 probe were centered on carbonyl oxygen

as H-bond acceptor).

First the algorithm reduces the complexity of the pseudo-MIFs

selecting a number of representative points using a weighted

energy-based and space-coverage function. Then generates all

possible combinations of four points; each combination is termed

‘‘quadruplet’’ (in mathematics, a tuple is a finite group of objects

and a quadruplet is written as 4-tuple, see Figure S1). Moreover,

the function includes the geometrical information into each

quadruplet. All possible quadruplets for each mapped active site

were generated and stored into a bio-fingerprint (bitstring) that

constitutes the Common Reference Framework. For catching

similarities and differences between two or more active sites, the

algorithm compares their Common Reference Frameworks using

an ‘‘all against all’’ approach where each enzyme active site is

compared with itself and with all the other enzyme active sites; the

algorithm searches for similar quadruplets and then overlaps the

corresponding 3D structures. At the end, the algorithm generates a

Figure 1. Superimposition of the 42 ser-hydrolases considered and listed in Table 1. All catalytic serines appear superposed at the center
of the picture. Arrows highlight the oxyanion hole and the residue responsible for acid-base catalysis.
doi:10.1371/journal.pone.0109354.g001

Figure 2. Schematic illustration of the generation of BioGPS molecular descriptors. (a) Starting from the GRID mapping of enzyme active
site the BioGPS algorithm identifies points used for generating quadruplets and a Common Reference Framework. (b) In order to compare two
cavities (active sites), the algorithm searches for similar quadruplets and then overlaps the corresponding 3D structures (all against all approach). At
the end a series of probe scores is generated.
doi:10.1371/journal.pone.0109354.g002
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set of Tanimoto scores [26] (BioGPS descriptors) represented by

square matrixes, namely a series of probe scores (one for each

original GRID probe) together with a global score. The

descriptors are calculated for a given superposition by directly

comparing the overlapping volumes of the pseudo-MIFs.

Unsupervised Pattern Cognition Analysis UPCA
Unsupervised Pattern Cognition Analysis (UPCA) is a well

established algorithmic platform used for performing systematic

analysis of data sets [4]. In this case, the algorithm implemented

for performing UPCA clustering is based on Principal Component

Analysis (PCA) which is a statistical method commonly used to

reduce the dimensionality of data. The UPCA algorithm converts

a set of correlated descriptors into a new set of linearly

independent variables (orthogonal transformation) called Principal

Components (PCs). Principal Components are simply a linear

combination of the original correlated variables. The first

Principal Component (PC1) is calculated in order to maximize

the variance of the object in the dataset. The following principal

components are calculated to maximize the variance in the data

that is not explained by the previous PC yet. UPCA can easily

detect clusters of different active sites for capturing and quantifying

differences between protein classes. The main advantage of this

approach is represented by the user-friendly visual inspection and

analysis of the data making the analysis of similarities and

differences very easy and understandable.

The set of Tanimoto scores [26] obtained from BioGPS

procedure (square matrixes) was used as input for the UPCA

algorithm. In particular five matrices were generated from BioGPS:

one for each GRID probe (H, N1, O, DRY) and one considering the

global score. In this way five UPCA clustering plot were obtained. By

using the global score matrix an overview of the similarities and

dissimilarities is achieved. Analyzing a single probe cluster plot,

differences in term of one specific non-bonded interaction are

highlighted (i.e. by using DRY probes scores matrix differences and

similarities in term of hydrophobic interactions are considered).

Figure 3. Unsupervised Pattern Cognition Analysis (UPCA) and
clustering of Ser hydrolases on the basis of BioGPS descriptors
(global score). The enzymes are labelled according to their PDB code.
Lipases are indicated in blue, esterases in green, amidases in red and
proteases in cyan.
doi:10.1371/journal.pone.0109354.g003

Table 2. CaLB mutants used for the validation of the BioGPS-UPCA model and taken from ref 20 and ref 39.

Mutant Mutation Improvement factor - IF (Relative amidase activity)

M1 G39A/W104F/L278A 6.3

M2 G39A/T103G/L278A 3.8

M3 G39A/T103G/W104F/L278A 11.2

M4 G39A 2.8

M5 G39A/L278A 3.3

M6 I189A 0.4

M7 T40A 0.4

M8 T103G 1.1

The amidase activities are expressed as improvement factor (IF) referred to CaLB wild type activity: IF = Amidase activity of mutant/Amidase activity of CaLB wild.
doi:10.1371/journal.pone.0109354.t002

Figure 4. Projection of CaLB mutants in the BioGPS-UPCA
model (global score). Improved mutants are highlighted as black
triangles whereas poor mutants are in pink. WT CaLB (1TCA) is indicated
by the blue arrow. The different classes of Ser hydrolases are reported in
different colors, as also described in Figure 3.
doi:10.1371/journal.pone.0109354.g004
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Figure 5. Unsupervised Pattern Cognition Analysis (UPCA) of
BioGPS descriptors generated by H probe (shape). The enzymes
are labelled according to their PDB code and colored as in figure 3.
Improved mutants are highlighted in black triangles and poor mutants
are in pink triangles.
doi:10.1371/journal.pone.0109354.g005

Figure 6. Comparison of 1GVK (protease) and 2W22 (lipase) active site shape. 1GVK and 2W22 are represented as green and magenta
cartoon respectively. Active site shapes are represented as wireframes: 1GVK active site shape in green while the active site shape of 2W22 is in
magenta.
doi:10.1371/journal.pone.0109354.g006

Figure 7. Unsupervised Pattern Cognition Analysis (UPCA) of
BioGPS descriptors generated by O probe (H-bond donor
capacity). The analyzed enzymes are labelled according to their PDB
code and colored as in figure 3. Improved mutants are highlighted in
black triangles whereas poor mutants are in pink triangles.
doi:10.1371/journal.pone.0109354.g007
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CaLB virtual mutants generation
The generation of the CaLB virtual mutants was performed in-

silico starting from the CaLB structure with the PDB code 1TCA.

Amino acids substitution was performed by the mutagenesis tool of

the software PyMOL. Each generated mutant was defined inside

the GROMOS 53a6 force field [27] and centered inside a cubic

system of 343 nm3; each system was solvated with explicit SPC

water, charges were equilibrated adding Na+ and Cl- ions.

Afterwards, each system was minimized using the GROMACS

software (version 4) [28] and computing 10000 step of steepest

descendent gradient. Thus, each minimized system was subjected

to a 500 ns of Molecular Dynamic (MD) simulation performed

with the software GROMACS (version 4) using an NPT ensemble

at 300 K keeping pressure and temperature constant (Berendsen

pressure and thermostat) [29], Particle Mesh Ewald (PME) [30]

algorithm was used for computing the electrostatic interactions.

The output of each MD simulation was carefully analyzed

performing a conformational sampling in order to select the

proper conformer for each enzyme structure, the sampling was

computed with the g_cluster tool of the software GROMACS. At

the end of this procedure, each selected conformer was processed

by using the software PyMOL: all molecules but the enzyme were

deleted (i.e. water molecules and ions).

Results

Engineering amidase activity into a lipase scaffold: the
rational

Different studies of the last decade have addressed the problem

of why proteases/amidases can hydrolyze amides efficiently

whereas esterases can not [13]. Lipases, esterases, proteases and

Figure 8. Comparison of 1GVK (protease) and 2W22 (lipase) active site H-bond donor pseudo-MIFs. The structures of 1GVK and 2W22
are represented in green and magenta cartoons respectively. 1GVK pseudo-MIFs are represented as green surfaces. 2W22 pseudo-MIFs are
represented as magenta surfaces.
doi:10.1371/journal.pone.0109354.g008

Figure 9. Unsupervised Pattern Cognition Analysis (UPCA) of
BioGPS descriptors generated by N1 probe (H-bond acceptor
capabilities). The analyzed enzymes are labelled according to their
PDB code and colored as in figure 3. Improved mutants are highlighted
as black triangles and poor mutants are pink triangles.
doi:10.1371/journal.pone.0109354.g009
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amidases are all members of the serine hydrolases superfamily,

which is characterized by a serine responsible for the nucleophilic

attack of the acyl groups of substrates [31]. The largest part of

serine hydrolases adopts an a/b-hydrolase folding and presents a

catalytic triad that comprises, besides the nucleophilic serine, two

residues responsible for acid/base catalysis [32]. They generally

correspond to His and Asp or Glu, although some Ser hydrolases

have only a catalytic dyad (Ser/Lys or Ser/His) [33,34]. These

enzymes are also characterized by a region responsible for the

stabilization of the oxyanion in the tetrahedral intermediate of the

hydrolytic reaction. This active site organization can be found

within all serine hydrolases, notwithstanding the extremely low

structural or sequence homology. It is, therefore, surprising that

esterases/lipases have undetectable or very low amidase activity, as

also previously reported in the case of wild type CaLB [20].

In order to understand the structural and chemical basis of these

diverse catalytic properties, a series of 42 Ser hydrolases was

analyzed. The ultimate aim of this investigation was to gain

insights for driving the engineering of amidase activity into the

scaffold of lipase B from Candida antarctica (CaLB). This lipase is

widely employed in industry because of its thermal stability and

robustness, so that the introduction of amidase activity into a

CaLB scaffold would combine, synergistically, stability and

promiscuous specificity of certain industrial interest.

Preliminary geometrical comparison of active sites based
on superimposition

Ser hydrolases belonging to four different enzyme classes,

lipases, esterases, proteases and amidases, were considered. The

preliminary analysis and comparison of the 42 Ser hydrolase

enzymes was performed by superimposing their structure taking

the catalytic residues as a reference point. Enzyme structures were

obtained from the Protein Data Bank (PDB) [21] and they are

listed in Table 1 along with information on their biological source

and natural substrates. Further structural details about the residues

forming the catalytic apparatus of each enzyme, as well as the

Figure 10. Comparison of 1GVK (protease) and 2W22 (lipase) active site H-bond acceptor pseudo-MIFs. 1GVK and 2W22 are
represented as green and magenta cartoon respectively. 1GVK pseudo-MIFs are represented as green surfaces. 2W22 pseudo-MIFs are represented as
magenta surfaces.
doi:10.1371/journal.pone.0109354.g010

Figure 11. Unsupervised Pattern Cognition Analysis (UPCA) of
BioGPS descriptors generated by DRY probe (hydrophobicity).
The analyzed enzymes are labelled according to their PDB code and
colored as in figure 3. Improved mutants are highlighted in black
triangles and poor mutants are in pink triangles.
doi:10.1371/journal.pone.0109354.g011

BioGPS for Bioinformatic and Rational Enzyme Engineering
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references related to each crystal structure, are reported in Table

S1. It must be underlined that there are two possible geometrical

organizations of active sites of Serine hydrolases, the two of them

being specular. Consequently, for 15 enzymes (marked in Table 1)

their specular structures were constructed in order to allow the

superimposition.

The 42 structures were superposed taking three structural

elements as a reference: the atom acting as the general base during

the catalysis (i.e. the Ne2 of His224 in CaLB) and the two H-bond

donor residues that constitute the oxyanion hole (i.e. the Na atoms

of Thr40 and Gln106 in CaLB), which are largely conserved

within the Ser hydrolases superfamily (for further details see Table

S1). The outcome is illustrated in Figure 1, where it is evident how

all catalytic serines and the main structural components are well

superposed. Overall, the spatial arrangement of the residues

responsible for catalysis looks remarkably similar in all 42

enzymes. Conversely, we concluded that structural superimposi-

tion seems an inefficient route for revealing the structural

properties responsible for the altered mechanism of action or

different catalytic efficiency.

In order to explore novel investigation routes, we focused our

attention on theories that put emphasis on how the active site of

enzymes are tailored for stabilizing transition states mainly via

electrostatic interactions [35,36].

An analysis of enzyme active sites able to account for these

properties requires, however, appropriate molecular descriptors,

able to account also for physical-chemical properties of the active

sites, namely on the hydrophobic/hydrophilic balance and water

affinity, since they affect the nature and intensity of electrostatic

interactions. For this reason, the GRID based [25] BioGPS

molecular descriptors, calculated using the FLAP algorithm [5],

were used because they account for geometric and electronic as

well as for physical-chemical features of (macro)-molecules, so that

all factors are considered as a whole.

BioGPS molecular descriptors
The BioGPS procedure (Global Positioning System in Biolog-

ical Space) analyzes the protein cavities by means of the GRID

based pseudo-molecular interaction fields approach (pseudo-MIF)

[37] (Figure 2a), where interaction energies are computed between

a chemical probe and the amino acids of the active site. Before the

computation of the BioGPS descriptors, the active site of each

enzyme was automatically defined by means of the FLAPsite

algorithm [24] (Figure 2a) that avoids any manual and arbitrary

definition of the active sites while accelerating the operations. It

must be underlined that the original protein structure coordinates

were used as inputs, without any previous superimposition.

Four chemical probes were chosen for the GRID-mapping and

more specifically: the H probe, taking into account the active site

shape; O probe that evaluates mainly H-bond donor properties;

N1 probe that estimates mainly the H-bond acceptor capabilities;

the DRY probe, accounting for hydrophobic interactions. The

output of the GRID-mapping (Molecular Interaction Fields or

MIFs) corresponds to a ‘‘negative’’ picture of interactions that are

likely to occur inside the active site, thus contributing to the

stabilization of the transition state of a given reaction. The

procedure computes energetically favorable but also unfavorable

interactions and indicates the direction for engineering a desired

catalytic activity inside an enzyme scaffold by mimicking an

environment where specific residues supply the necessary interac-

tions.

The BioGPS algorithm condenses the information contained in

the GRID-pseudoMIFs into a common reference framework of

four-point fingerprints called ‘‘quadruplets’’ (see Figure S1). From

the mathematic point of view, a ‘‘tuple’’ corresponds to a finite

Figure 12. Comparison of 1GVK (protease) and 2W22 (lipase) active site hydrophobic pseudo-MIFs. 1GVK and 2W22 are represented as
green and magenta cartoon respectively. 1GVK pseudo-MIFs are represented as green surfaces. 2W22 pseudo-MIFs are represented in magenta.
doi:10.1371/journal.pone.0109354.g012
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group of objects, so that a quadruplet is written as 4-tuple. The

algorithm uses a weighted energy function that allows overcoming

the differences in absolute value between electrostatic and

hydrophobic interactions. The BioGPS algorithm generates all

possible quadruplets inside the active sites and the function

includes the geometrical information into each quadruplet.

Information, contained in the quadruplets and mathematically

associated to bitstrings, or better bio-fingerprints (Figure S1), were

finally compared within a Common Reference Framework with

the ultimate aim of disclosing similarities and differences between

two or more cavities (active sites). More in detail, the algorithm

searches for similar quadruplets with an ‘‘all against all’’ approach

and then the corresponding 3D structure are overlapped aligning

their corresponding quadruplets. The all against all approach

compares each enzyme active site with itself and with all the other

protein active sites. The output is represented by different square

matrixes which represent the BioGPS descriptors, namely a series

of probe scores (one for each original GRID probe) together with a

global score (Figure 2b).

The information contained in the BioGPS descriptors was then

statistically analyzed by means of Unsupervised Pattern Cognition

Analysis (UPCA) [4]. Ser hydrolases were sorted and grouped into

clusters and it is evident that for each class of Ser hydrolases the

structural properties explained by the BioGPS descriptors are

correlated with catalytic functions (e.g. amidase catalytic activity).

Moreover, the multivariate statistical analysis allows also for the

‘‘unfolding’’ of the information contained in the BioGPS

descriptors, thus providing rational and quantitative guidelines

for engineering promiscuous amidase activity into lipase scaffolds,

as described in the following paragraphs.

Discussion

Unsupervised Pattern Cognition Analysis (UPCA)
Clustering methods are based on the application of machine

learning techniques to identify inherent patterns in a data set [4].

More specifically, in the present work Unsupervised Pattern

Cognition Analysis (UPCA) was applied to perform unbiased

grouping of the enzymes on the basis of the similarity matrixes

coming from the BioGPS descriptors (Figure 3). The global score

of the Pattern Cognition Analysis groups the objects on the firsts

two Principal Components (PCs), namely the latent variables,

which explain 23% of the whole variance (PC1 = 14%;

PC2 = 9%). PC3 explains only 4% of the variance, so that two

PC appears sufficient to explain the differences among active sites,

whereas the remaining 77% of variance has to be considered as

noise or diversity that is not explained by this model. It is

important to underline that UPCA is not a regression analysis,

therefore it just analyzes the already existent correlation of

variables without searching for the maximum correlation.

Therefore, the remaining 77% of variance is most probably

ascribable to heterogeneous substrate specificity, which appears as

a predominant cause of variability inside Ser-hydrolase superfam-

ily.

Figure 3 demonstrates that the BioGPS-UPCA procedure

groups proteases, lipases and amidases into clearly distinct clusters

whereas esterases appear as a rather heterogeneous class of

hydrolases. It is important to note that the enzymes used in the

data set (Table 1) are listed and classified according to their

annotated E.C. number. Although this classification is sometimes

object of debate among enzymologist community because of the

lack of quality control, it is consistent with the objective of the

present investigation. In fact, all enzymes are classified on the basis

of their main catalytic activities, although some of them are well

known for their promiscuity. As an example, 1GM9 (penicillin G

amidase) is also employed in biocatalysis for its ability to catalyze

the aminolysis and hydrolysis - although not the synthesis – of

phenylacetic acid esters [38,39] That experimental evidence is

reflected by the localization of 1GM9 within the amidase area but

at the interface with the esterase group.

Notably, proteases are grouped in a region clearly distinct from

amidases, although the two classes are very much related.

Therefore, BioGPS descriptors are able to explain the differences,

as well as shared features, of the four hydrolases classes, in spite of

the heterogeneous substrate specificity represented within each

class.

Interestingly, 1CRL (lipase from Candida rugosa) is located

near 1CLE (Cholesterol esterase from Candida cylindracea). These

two enzymes are different in terms of reaction and substrate

selectivity but they have a sequence homology higher than 40%

[40] (enzyme clustering based on RMSD sequence backbone

structure similarity is available in Figure S2).

Two proteases (1QMF and 2XE4) result as outliers and their

behavior has been analyzed in detail by studying the scores coming

from the O probe (see section below O probe (H-bond donor

properties)).

Test and validation of BioGPS-UPCA: global score
The reliability of the BioGPS-UPCA approach and its potential

application to in silico enzyme design and screening was verified

by ‘‘projecting’’ CaLB mutants into the UPCA domain. The

structures of eight CaLB mutants, engineered with the aim of

introducing promiscuous amidase activity, were taken from the

literature [20,41] and processed for the extraction of the BioGPS

descriptors. The UPCA analysis located the mutants according to

their new structural properties, which are significantly correlated

to their experimentally determined amidase activities (hydrolysis of

N-benzyl-2-chloroacetamide) expressed as improvement factor

referred to CaLB wild type [20] (Table 2). It must be underlined

that the wild type CaLB has a poor amidase activity, especially on

the considered substrate (specific activity of CaLB wild

type = 1.2760.1661022 mmol/mg/h) and the improvement fac-

tor is defined as the ratio between the specific activity of each

mutant and the specific activity of the wild type CaLB [20].

The models of these mutants were in-silico generated using as a

template the structure of the wild type CaLB 1TCA. The

mutations were introduced by the mutagenesis tool of the software

PyMOL [22], mutants structures were defined into GROMOS

53a6 force field [27], minimized with a steepest descendent

algorithm and relaxed by 500 ns of Molecular Dynamic (MD)

simulation performed with the software GROMACS [28]. Each

MD trajectory was carefully evaluated by performing a confor-

mational sampling analysis. Particular attention was given to this

procedure in order to select the most representative mutant

conformer.

Interestingly, CaLB mutants that have an improved amidase

activity (M1-5, black triangles in Figure 4) shift significantly

towards the amidase cluster whereas poor mutants (M6-8, pink

triangles in Figure 4) remain close to the WT position inside the

lipase cluster. Results indicate that BioGPS-UPCA procedure is

effective in extracting relevant information from the 3D enzyme

structures and, more importantly, such information is correlated to

the ability of the active site to stabilize the transition state for the

hydrolysis of the amide bond, This first application of BioGPS-

PCA to bioinformatic analysis opens new perspectives towards the

in-silico screening of virtual mutants potentially endowed with

activities of interest.
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A better understanding of the factors that determine the

localization of a given enzyme structure inside a defined cluster

can be achieved by analyzing the BioGPS descriptors resulting

from each different probe score (one for each original GRID

probe). This detailed analysis provides guidelines for driving

rational strategies for mutagenesis.

H probe (active site shape)
The active sites of all 42 enzymes were mapped by means of the

H probe, which mainly describes the volume and the shape of the

chemical target. The bio-fingerprints, calculated by the BioGPS

algorithm, were used for the alignment and comparison of the

active sites. Figure 5 shows clearly that the shape probe alone is

not able to classify the different Ser hydrolases. All Ser hydrolases

appears overlapped, although lipases are grouped on the right side

of PCA domain. The two outliers in Figure 5 correspond to an

amidases with a narrow active site access (1HL7, amidase from

Micobacterium sp.) and an esterase with a very superficial active

site (3KVN, esterase from Pseudomonas aeruginosa).

Figure 6 illustrates the wireframes corresponding to the active

site volumes of protease from Sus scrofa (1GV6) and lipase from

Geobacillus thermocatenulatus (2W22). The example indicates a

significant similarity, despite the fact the two hydrolases belong to

different classes.

O probe (H-bond donor properties)
The UPCA analysis of the BioGPS descriptors generated by the

O probe identifies the four Ser hydrolases classes (Figure 7),

although amidases (red) and esterases (green) appears mostly

overlapped. The fact that peptidases and lipases are clearly

separated along the first PC suggests that the ability of the enzymes

to donate H-bonds increases moving to the left. The interpretation

of the second PC is more complex and it might be related to the

geometrical distribution of the H-bond donor species inside the

active sites.

Proteases appear, once again, as the most distinct and

discriminated class, although there are two outliers falling into

the amidase cluster (1QMF and 2XE4). Consequently, their

structural differences are not explained by the PC because they

present specific features, which are not shared by the protease

class. For instance, 1QMF (protease from Sus scrofa) is the only

protease of the data set able to hydrolyze peptides in correspon-

dence of Pro residues [42]. Enzyme 2XE4 is a protease from

Leshmania major and it catalyzes the hydrolysis of much shorter

olygopeptides as compared to the other proteases of the data set.

Moreover, these two proteases present a Tyr residue in the

oxyanion hole (Y473 and Y496 for 1QMF and 2XE4 respectively),

where the oxygen of the OH group of Tyr stabilizes the

tetrahedral intermediate acting as a H-bond acceptor, thus

replacing the function of the amide nitrogen present in all the

other structures.

Interestingly, lipase from Humicola lanuginosa (1DTE), lipase

from Candida rugosa (1CRL) and lipase from Candida Antarctica
(CaLB, 1TCA), are localized closer to the amidase cluster as

compared to other lipases. Therefore, according to the H-bond

donor properties, CaLB appears as suitable scaffolds for introduc-

ing promiscuous amidase activity. Indeed, CaLB it has been

always considered as a non conventional lipase since it does not

display interfacial activation and accepts short chain fatty acids

and Figure 7 highlights how it is structurally recognized as

member of the esterase cluster [43].

Figure 7 shows how the CaLB mutants endowed with higher

amidase activity (M1–M5) fall within the amidase region,

indicating that mutations were effective in modifying the H-bond

donor capacity in the direction of improving amidase activity.

Poorly active mutants remain close to the WT position, suggesting

no significant variations in terms of H-bond donor capacity.

It must be underlined that the effect of the mutations cannot be

interpreted simply by comparing the structural properties of each

single residue, since the phenotype is the result of a complex array

of physical-chemical, geometrical and electronic variations and

interactions. As an example, in M4 Gly39 is replaced by an Ala, a

residue that, in principle, does not provide extra H-bond donor

groups. However, such mutation can rather modify the geomet-

rical organization of the active site and its ability to establish H-

bonds.

Figure 8 reports the pseudo-MIFs of a protease (1GVK) and a

lipase (2W22). The superimposition was driven by the alignment

of the corresponding quadruplets, so that the extension and

position of the pseudo-MIFs provide a visual description of

differences between the two enzymes in terms of ability to donate

H bonds.

N1 probe (H-bond acceptor properties)
The UPCA analysis of the BioGPS descriptors generated by the

N1 probe is observable in Figure 9.

As in the previous case, proteases and lipases are completely

separated on the basis of their ability to establish H-bonds (first

PC). It is noteworthy that amidases and esterases have distinct H

bond acceptor properties, whereas in the case of O probe the two

classes resulted overlapped. This indicates that engineering

amidase activity into esterases requires the improving of H bond

acceptor ability of the active sites. Lipase from Candida rugosa
(1CRL) behaves, again, as an outlier: it clearly localized within

esterase area but it falls far from the amidase cluster.

Mutants M1, M3, M4 and M5 move significantly towards

esterases and amidases whereas the low active mutants M7 and

M8 remain close to the WT. It must be noted that also M2

remains close to WT, although it is a good mutant (IF = 3.8) and

this indicates how the combination of different factors, accounted

by different probes, determines the global improvement of the

amidase activity. Figure 10 reports the comparison between

protease 1GVK and lipase 2W22 in terms of their ability to

accept H-bonds.

DRY probe (hydrophobicity)
The UPCA analysis of the BioGPS descriptors generated by the

DRY (Figure 11) highlight, as expected, the distinct hydrophobic

nature of the active sites of lipases, as they accept fatty acids and

triglycerides. Interestingly, the active site of lipase from Candida
rugosa (1CRL) appears far less hydrophobic, and this observation

confirms that CRL is endowed with uncommon structural features

as compared to the clustered lipases.

The comparison of the active sites of protease 1GVK and lipase

2W22 reported in Figure 12 makes evident the extended

hydrophobicity of the lipase active site.

The projection of mutants in the UPCA domain (Figure 11)

indicates that the positive mutations introduced in the improved

mutants M1, M3, M4 and M5 clearly induce a decrease of

hydrophobicity in the active sites. Once again, this variation of

properties cannot be ascribed to a single structural element or

residue, but rather it comes from the complex combination of

different factors that cannot be analyzed singularly.

Conclusions

A computational methodology was developed based on the

Unsupervised Pattern Cognition Analysis (UPCA) of GRID-based
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BioGPS descriptors (Global Positioning System in Biological

Space) that allows for the clustering of enzymes and mutants

through the 3D-structural bioinformatic analysis and comparison

of their active sites. As compared to classical bioinformatic

analysis, the BioGPS-UPCA method does not rely on simple

sequence alignment or pre-alignment of protein structures.

The method was validated by considering its ability to predict

the effect of mutation in CaLB variants produced with the aim of

engineering amidase activity into a lipase scaffold. The efficiency

of this new structure-based bioinformatic strategy was demon-

strated by the consistent grouping of four different Ser hydrolase

classes inside distinct clusters and areas. These results indicate that,

notwithstanding all enzymes considered are characterized by the

same active site organization, the BioGPS-UPCA method

recognized the structural elements that make hydrolases able to

catalyze different reactions. More importantly, the BioGPS-UPCA

model predicted correctly the properties of lipase mutants

endowed with improved amidase activity. The projection of

mutants endowed with novel catalytic properties into the UPCA

domain demonstrates that the new structural features introduced

into the lipase scaffold are correlated with the catalytic properties

of the enzymes. The results support the predominant role of

electrostatic interactions in the stabilization of the transition states

of reactions here considered [36].

The BioGPS-UPCA methodology allows also for the ‘‘unfold-

ing’’ of the information contained in the BioGPS descriptors.

Structural, physical-chemical and electrostatic factors, which are

shared by a specific enzyme class, were analyzed in detail, thus

providing guidelines for rational engineering strategies. Further-

more, the clustering of the different Ser hydrolases classes

(Figure 3) is based on an ensemble of different physical-chemical

and electrostatic properties and a comprehensive analysis can be

performed only by considering all these factors and their

interactions at the same time. Indeed, when each property is

considered at a time, the clustering is not so evident, because only

a partial analysis is provided. Nevertheless, the information

coming from each single probe can be exploited for guiding the

insertion of a specific property inside an active site by protein

engineering.

In conclusion, BioGPS descriptors are effective in accounting

for geometric, electronic and physical-chemical factors and open

new perspectives for 3D-phylogenetic analysis and unbiased in-
silico screening of virtual mutants. The method groups enzymes on

the bases of similarities and differences but also provides focused

insights for guiding the rational re-design of specific physical-

chemical and electrostatic properties into their active sites.

Therefore, BioGPS-UPCA approach represents an actual tool

for translating the massive amount of databases information into

valuable and usable knowledge.

Supporting Information

Figure S1 Quadruplets definition according to BioGPS algo-

rithm; each quadruplet is defined as a bitstring as indicated at the

bottom of the picture.

(TIF)

Figure S2 Dataset clustering based on RMSD multidimensional

scaling. Each structure is projected according to RMSD structure

similarity (referred to the same structure and to all the other

enzymes). The RMSD was calculated by superposing the

backbone atoms of each enzyme structure.

(TIF)

Table S1 Ser hydrolases analyzed, for each crystal structure the

residues used for the catalytic machinery based superimposition

are indicated.
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