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Abstract

The human histamine H4 receptor (hH4R), a member of the G-protein coupled receptors (GPCR) family, is an increasingly
attractive drug target. It plays a key role in many cell pathways and many hH4R ligands are studied for the treatment of
several inflammatory, allergic and autoimmune disorders, as well as for analgesic activity. Due to the challenging difficulties
in the experimental elucidation of hH4R structure, virtual screening campaigns are normally run on homology based
models. However, a wealth of information about the chemical properties of GPCR ligands has also accumulated over the last
few years and an appropriate combination of these ligand-based knowledge with structure-based molecular modeling
studies emerges as a promising strategy for computer-assisted drug design. Here, two chemoinformatics techniques, the
Intelligent Learning Engine (ILE) and Iterative Stochastic Elimination (ISE) approach, were used to index chemicals for their
hH4R bioactivity. An application of the prediction model on external test set composed of more than 160 hH4R antagonists
picked from the chEMBL database gave enrichment factor of 16.4. A virtual high throughput screening on ZINC database
was carried out, picking ,4000 chemicals highly indexed as H4R antagonists’ candidates. Next, a series of 3D models of
hH4R were generated by molecular modeling and molecular dynamics simulations performed in fully atomistic lipid
membranes. The efficacy of the hH4R 3D models in discrimination between actives and non-actives were checked and the
3D model with the best performance was chosen for further docking studies performed on the focused library. The output
of these docking studies was a consensus library of 11 highly active scored drug candidates. Our findings suggest that a
sequential combination of ligand-based chemoinformatics approaches with structure-based ones has the potential to
improve the success rate in discovering new biologically active GPCR drugs and increase the enrichment factors in a
synergistic manner.
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Introduction

G-protein coupled receptors (GPCRs) are the largest integral

membrane protein family in the human genome. They have a

typical structural topology consisting of seven transmembrane

helices (7TMH) connected by intracellular and extracellular loops,

with an extracellular N-terminal and an intracellular C-terminal

[1]. GPCRs derive their name from their ability to recruit and

regulate the activity of intracellular heterotrimeric G-proteins.

GPCRs are also known as seven-transmembrane domain (7TM),

heptahelical, serpentine and G protein-linked (GPLR) receptors.

Their main role is to transduce a signal across the cell membrane.

GPCRs are grouped into 6 classes (A-F) based on sequence

homology and functional similarity [2,3].

The H4 histamine - a physiological amine that regulates the

inflammatory response - receptor (H4R) belongs to class ‘‘A’’ of the

GPCRs. To date, four histamine receptors are known (H1R, H2R,

H3R and H4R) [4]. Human H4R (hH4R) is the most recently

discovered, over a decade ago on the basis of its high sequence

homology with the H3 receptor [5,6,7,8,9]. The discovery of this

fourth histamine receptor, and the evidence that it is expressed in

many cell types involved in allergic responses, suggested that

hH4R may play an important role in chemotaxis, allergy,

inflammation, autoimmune disorders and acts as a mediator

release in various types of immune cells [10]. Recent studies

suggest the hH4R as modulator in cancer, neuropathic pain,

vestibular disorders and type 2 diabetes. The hH4R is widely
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distributed, especially in organs associated with the immune

system [11,12]. It is preferentially expressed in intestinal tissue,

spleen, thymus, medullary cells, bone marrow and peripheral

hematopoietic cells, including eosinophils, basophils, mast cells, T

lymphocytes, leukocytes and dendritic cells [13,14]. These cell

types are primarily involved with the development and continu-

ation of allergic responses. Based on experiments using animal

models, hH4R antagonists show reasonable therapeutic potential

for treatment of allergy, inflammation, asthma and colitis

[15,16,17,18]. Much of the recent drug research in hH4R field

is focused on antagonists, mainly due to the prospective of new

pharmacotherapies for the treatment of inflammatory diseases.

hH4R characterization clearly indicates the potential of this

receptor as a novel drug target for treating allergy and

inflammation. Thus, more effective search for potent and selective

hH4R antagonists is in progress to explore the therapeutic

potential of such compounds [19]. Due to the lack of experimental

3D-structure ofhH4R, structure based virtual screening campaigns

demand highly accurate models.

Homology modeling is by now an established method [20,21]

and is expected to be successful for modeling of the GPCR super-

family. However, in their natural milieu GPCRs are embedded in

a membrane environment which is not reproduced in the normally

available homology modeling strategies. Up to date, the vast

majority of virtual screening campaigns of hH4R ligands used

homology models refined by energy minimization steps [22,23,24]

but it is still open to debate whether molecular dynamics may

significantly improve the quality of the constructed models of

hH4R in terms of enrichment factors.

As an alternative, ligand-based in silico techniques (including,

pharmacophore and chemo-informatic tools) are increasingly used

to distinguish active from inactive chemicals and search large

databases for novel bioactive products [25,26,27]. Chemo-

informatic tools which use optimization methods such as Genetic

Algorithms(GA) [28,29], Neural Networks(NN) [30,31], Monte

Carlo(MC), Simulated Annealing(SA) [32], k-nearest neighbor

(kNN) [33,34], Support Vector Machines(SVM) [35,36] or

Bayesian Classifiers and some of their combinations(MCSA)

[34,37,38,39,40], are many times considered to be more useful

than Molecular Docking, which is limited to targets with known

3D structures [41]. Molecular Docking often gives unacceptable

number of false positives and false negatives and is very time

consuming for screening large databases [42]. It is thought that a

combined approach of structure- and ligand-based virtual

screening methods would increase the chance of identifying

bioactive chemicals [43,44,45].

Recently, some general purpose optimization algorithms for

screening multi dimensional spaces and detect global and local

minima [46,47] have been modified to solve chemoinformatics

problems and used to index chemicals for their molecular

bioactivity [48,49,50]. Iterative Stochastic Elimination (ISE) is

an efficient method for searching a combinatorial space in order to

detect the best set of solutions. Firstly it was applied for solving

bioinformatics problems such as positioning protons [51],

predicting side chains conformations [52] and searching confor-

mational space of cyclic peptides [53] and loops [54]. Later it was

adapted to solve other chemo-informatic problems such as

selecting a certain set of descriptors out of a large set and

optimizing the ranges of the descriptors to obtain the best solution

for differentiating between databases. The results of the optimi-

zation of descriptors and ranges is employed for indexing

chemicals according to their bioactivity and prioritizing molecules

in large databases [49,50]. The intelligent learning engine (ILE) is

a system normally employed for the setting up of prediction

models. Implementation of ILE enables to choose from a large

number of candidates those with the largest probability to have a

certain property, e.g. for a molecule to be a drug candidate for a

certain disease. The logic of ILE is application-independent and

can be used in a variety of fields. However, it has been applied so

far to solve problem in bioinformatic and cheminformatic fields

only. Intelligent Learning Engine (ILE) has been shown to

construct highly efficient prediction models for molecular activity

indexing [46,48].

In this study both these tools were applied to search the ZINC

database for the presence of potential hH4R ligands that were

collected in a focused set of compounds which were docked to an

optimized hH4R 3D model leading to a consensus library of

highly promising drug candidates. The hH4R 3D structure was

predicted by homology modeling using the crystal structure of

H1receptor as the template, then refined by energy minimization.

Next, all-atom Molecular Dynamics simulations of the membrane-

embedded hH4R structure were carried out in order to equilibrate

the whole system in an environment as similar as possible to its

physiological milieu. The reliability of the 3D models was

validated by docking studies which evaluated the ability of the

different models to separate active from inactive ligands.

Methods

Literature was surveyed to collect unique 78 hH4R antagonists

[16,55,56,57,58,59] with IC50 less than 10 mM (dataset in smile

format is presented in File S1). Nine thousands molecules were

selected randomly from the ZINC database to represent a set of

presumably inactive molecules at hH4R. This is justified since

prediction models used for virtual screening should cover the space

of properties of chemicals from the screened database. Using

decoys that are similar to the active compounds will not be

effective for constructing prediction models applicable for screen-

ing ZINC database with different properties’ space. For similarity

search we have used extended connectivity fingerprint (ECFP4)

with Tanimoto similarity score. The selected molecules from

ZINC are highly diverse and were examined for their structural

distance from known hH4R antagonists (Tanimoto index ,0.2). It

is worth to assign that structural distance is the highest Tanimoto

index in comparison to all known hH4R antagonists. The diversity

within the hH4R antagonists is shown in figure 1. It is worth to

assign that the diversity of learning sets could have high impact on

covered properties space and may affect the quality of the obtained

models of prediction. In our study, the diversity of the H4 receptor

antagonists is acceptable but not high enough to ensure high

quality models covering large properties space.

Two hundred thirty seven hH4R antagonists with IC50/KI less

than 10 mM were extracted from chEMBL database (dataset in

smile format is presented in File S2). They were compared to the

78 hH4R antagonists and identical ones were discarded. The

remaining 160 chemicals were used as an independent external

test set. Physico-chemical properties of all chemicals were

calculated using MOE 2D descriptors[MOE. (The Molecular

Operating Environment) Version 2009.10, Chemical Computing

Group Inc., 1010 Sherbrooke Street West, Suite 910, Montreal,

Canada H3A 2R7. http://www.chemcomp.com.]

The 2D descriptors are based on properties such as molecular

weight, total charge and charge distributions, H-bond donors/

acceptors, log P, solubility, types of atoms and so forth (http://

www.chemcomp.com/journal/descr.htm).

To assess the predictability of the proposed model, the data sets

of antagonists/non-actives has been split into 66.7% (52/6000

hH4R antagonists/non actives) for the training set and 33.3% (26/
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3000 hH4R antagonists/non actives) for the test set. The training

and test sets were generated by random picking. Two ligand-based

chemoinformatics techniques were utilized for virtual screening of

large chemical databases: The first one is the Intelligent Learning

Engine (ILE) which is a commercial software developed by RAND

Biotechnologies LTD. As described by the vendors it is a

prediction learning system, which enables selection from a large

number of items a small number of items with the highest

probability to possess a specific functionality. The input is a set of

actives/non-active compounds. The chemicals are encoded as a

binary vector comprising a plurality of binary descriptors. Each

descriptor characterizes a certain property of interest. A binary

descriptor may contain one or more binary digit, each digit being

1 or 0. The fragments were protonated according to the

anticipated protonation states under physiological conditions;

physico-chemical properties (2D descriptors) were calculated using

MOE software. Provided that the property is quantitative, a binary

descriptor comprising a string of binary integers is used to

represent a pertinent numeric ranges of a given property; e.g.

molecular weight can be described by ten binary integers, for

instance below 50, 50 to 100, etc. The scoring function is

Matthews’ Correlation Coefficient (MCC).The second method

used is the Iterative Stochastic Elimination algorithm (ISE) that

was adapted for molecular bioactivity indexing of chemicals, by

transforming the problem to a combinatorial one with variables,

values and interactions between different choices. It is based on

optimization of ranges for a set of descriptors and on an optimal

choice of sets of descriptors.

For further details on the application of ISE to obtain the best

ranges from a set of descriptors and for the optimization process,

see our previously reported studies [46,49,50]. In addition to

constructing a ‘‘best filter’’ for evaluating each single molecule’s

potential to be a bioactive or not, ISE also forms a large set of

‘‘efficient filters’’ that are alternatives to the optimal solution, each

of them being somewhat less successful than the optimal. The

efficiency of discrimination is increased in general by employing a

‘‘combined filters approach’’, which results in constructing the

MBI. It is based on the assumption that a ‘‘best bioactive

molecule’’ (i.e., one having more of the desired bioactive qualities)

would pass more of the ‘‘filters’’, while a ‘‘non-bioactive’’ would be

one which passes a minimal number of filters. This assumption is

the basis for constructing the MBI, which is composed of the

contribution of the number of filters passed by a molecule to that

molecule’s overall ‘‘bioactivity’’ quality.

MBI~
Xn

i~1
dAiPAi=PNAi{dNAiNNAi=NAið Þ

h i
=n ðIÞ

In equation 1, the molecular bioactivity index (MBI) for a

molecule is determined on the basis of a set of n filters and is

constructed from all 4 numbers in two pairs – positives (%A) and

false positives (which is 100 - %NA), as well as false negatives (100

- %A) and true negatives (%NA). The number of filters (n) could

range from few to hundreds. The value of the delta function dAi is

zero if the molecule is not active according to the currently

calculated filter i, and one if it is active according to the filter.

Similarly, the value of the delta function dNAi is one if it is not

active according to the currently calculated filter, and zero if it is

an active according to the filter. PAi is the percentage of active

molecules that are predicted to be ‘‘bioactives’’ according to filter i

(‘‘True positives’’), while PNAi is the percentage of false positives,

i.e., non-actives that are predicted to be bioactives according to

filter i. NAi is the percent of actives identified to be non-bioactives

according to the current filter (‘‘False negatives’’), and NNAi is the

percent of non-actives identified as such by the current filter, i.e.,

‘‘True negatives’’. The PAi/PNAi ratio, may be regarded as an

‘‘efficiency factor’’ of filter i for the bioactives, while the quotient

NAi/NNAi. is an ‘‘efficiency factor’’ for misidentifying non-

bioactives. In Figure 2 a flowchart sketching the combined

ligand-based and structure-based approach adopted is shown.

hH4R 3D model generation
The crystal structure of H1R (3RZE) was used as a template to

construct hH4R [60]. After removal of all atoms extraneous to the

receptor, dissimilar side chains were added by the SCWRL tool

Figure 1. Diversity within hH4R antagonists that were used for modeling (training and test sets).
doi:10.1371/journal.pone.0109340.g001
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[61]. The sequence of hH4R was retrieved from GenBank

(Q9H3N8) (http://www.uniprot.org/uniprot/). All missing resi-

dues were added manually. Side chains of Aspartic acid, Glutamic

acid, Arginine, Lysine and Histidine were considered to be

charged (non-opt model). The obtained model was then

minimized to relax the structure and remove steric bumps. The

minimizations were performed by 2000 steps of steepest descent

followed by 8000 step of conjugate gradient. Subsequently a short

equilibration (100 ps) has been performed into water environment,

adopting the same parameters adopted in the production runs.

During equilibration, the intracellular loop 3 (Y198-E294) folded

from a random coil to an a-helix conformation. To further

improve the quality of the hH4R structure, a third model, based

on the previously minimized structure, was assembled by inserting

the min-opt model into a 1,2-dioleoyl-sn-glycero-3-phosphatidyl-

choline (DOPC) lipid bilayer. The membrane-embedded receptor

was then equilibrated by running a series of fully atomistic MD

steps. Unfortunately, during the MD simulations, the structure of

the hH4R receptor collapsed, likely due to the lateral pressure

applied by the lipid bilayer. Therefore, we filled the binding site

with a known selective ligand (JNJ7777120), (see figure 3) which

was presumed to counterbalance the effects of the lipid bilayer.

The JNJ7777120 compound(chemical structure shown below) was

built and optimized using the software SYBYL-X 2.0 (http://

www.tripos.com). The JNJ7777120 parameters were determined

by ANTECHAMBER 1.27 [62] using the General Amber Force

Field (GAFF) [19]. Partial atomic charges were calculated using

theAM1- BCC method [63,64]. During all simulation of the

second model we restrained distances between JNJ7777120 and

hH4 amino acid E5.46 and D3.32 with a harmonic distance restrain.

Figure 2. Flowchart of the combined ligand- and structure-based based approaches to index hH4R bioactive ligands.
doi:10.1371/journal.pone.0109340.g002

Figure 3. Structure of JNJ-777120, selective ligand of hH4R.
doi:10.1371/journal.pone.0109340.g003
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Finally, in the third model, the compound JNJ7777120 was free to

move into the hH4R cavity.

All Molecular Dynamics simulations were carried out using

NAMD7 [65] software and the CHARMM27 force field [66]. All

hH4R models were embedded in DOPC lipid bilayer and solvated

with water. Next, NaCl counter ions were added up to an

estimated ionic strength of 0.15 mM. The final box was large

enough to contain all of the protein atoms at the end of simulation.

The size of the receptor/membrane/water system was

12561256150 Å with approximately 187000 atoms. TIP3P was

used as an explicit water model; the dielectric constant (e) is 1, and

non covalent interactions up to 1–4 are considered. Cut-off values

for non-bonded interactions (Coulomb and Van der Waals forces)

and for the switching function are 10 and 9 Å respectively.

Langeving dynamics were used throughout all simulations. The

SHAKE algorithm was used to fix the length of covalent hydrogen

bonds. In all simulations we adopted standard periodic boundary

conditions (PBC), and computed long-range interactions by the

Particle Edwald Mesh method. The time-step was fixed at 2 ps,

and the ‘rigid bond’ NAMD algorithm was used.

In the membrane system lipid tails were firstly energy-

minimised (protein, water, counter ions and phospholipidic head

were frozen during this minimization step) and gradually heated

up to 300 K. After lipid tails optimization, we fixed the whole

system with the exception of the receptor. Then the membrane-

embedded enzyme was energy-minimised (conjugate gradient) and

gradually heated up to 300 K and equilibrated for 400 ps. After

the minimization step productive MD runs were launched. The

following models of the hH4R were validated by docking studies: i)

the non-optimized 3D structure of the receptor derived from

homology modeling, ii) the same 3D structure optimized by

minimization steps and iii) a series of 3D structures optimized by

MD simulations. In this last case, the model with the ligand

JNJ7777120 inserted and restrained into the pocket (named MD-

opt model) provided the best results and was chosen for

comparison with the homology (non-opt model) and the energy-

minimized model (min-opt model). These models were tested for

their ability to separate active ligands (i.e. hH4R antagonists) from

a set of randomly selected inactive compounds. The docking

results were analyzed using a dedicated scoring function by an

automatic data processing script. The cavity volumes were

obtained with CAVER software [67]. Hence, a spherical probe

with a 1.4 Å diameter rolled inside the receptor, searching and

highlighting all the cavities into the active site of the protein.

Molecular Docking
The docking program Autodock [68] version 4.2 was managed

by a Perl automation script. The binding pocket was extracted

from the structure of the whole 7TM domain by taking a 19 Å

radius around the center of the histamine binding site, in order to

maintain reasonable CPU running time while keeping sufficient

docking accuracy. The docking grid was set to include the

extracted receptor domain, including the extra cellular loops and

was approximately (37635641) Å on the X, Y and Z axes

respectively. The genetic algorithm output size was set to 16

docked poses. The set of 78 active ligands indicated in the method

section was filtered for diversity using the Tanimoto similarity

measure [69] (S,0.7), which resulted in 46 diverse ligands

denoted the ‘‘active set’’. The set of random compounds was

extracted from the ZINC database of commercially available

compounds (http://zinc.docking.org/). The random compounds

were filtered to ensure diversity (S,0.2) and to obey Lipinsky rule

of five. Two random sets were used: one with 50 compounds, to

match the size of the active set and another one with 137

compounds. An independent validation set was further retrieved

from the chEMBL [70] database based on published KI and IC50

values. The set was filtered by diversity, both intra-wise (within set

similarity) and inter-wise (compared to the set of active compounds

already used). Filtering resulted in a set of 56 active compounds. In

parallel, a focused library of putative hH4R binders was computed

in-silico using a descriptor based approach (as described in the

chemoinformatic section above). The total size of the focused

library was 872 compounds rated highly by both ILE and ISE

based models. All compounds were protonated using a pH values

of 2.5 to maintain positively charged groups on Nitrogen atoms.

The docked poses were analyzed by two consecutive filters:

a) A filter based on the calculated electrostatic energy of the

docked pose. The motivation for using the electrostatic

energy relies on the fact that two binding site residues, D3.32

(TM3) and E5.46 (TM5), which are critically involved in

histamine binding, are both negatively charged in physiolog-

ical pH. Therefore, any interaction in the binding site must

have a strong electrostatic interaction between the ligand and

at least one of these residues. The electrostatic energies were

extracted automatically from the Autodock docking log files

using a script written in Perl. The exact thresholds of the filter

were defined separately for each inspected receptor model,

based on plotting and visual inspection of docking results.

Additionally, k-means clustering algorithm [71] was applied

to automatically find clusters based on electrostatic energy

and was found to be in a good agreement with the visual

inspection of the plots.

b) A conformation positional filter which relies on the calculated

distance between the heavy polar atoms of the ligand and the

carboxylic acid side chain group of the binding residues D3.32

and E5.46. The distance threshold was set to 4 Å. Any atom-

atom distance below the threshold was considered a putative

interaction between the ligand and the receptor binding

residue. Three conformational filter scores were defined: zero

(no interaction), one (possible interaction with just one of the

receptor reference residues) and two (possible interaction with

both receptor reference residues).

Results and Discussion

Ligand-based chemoinformatics models
Figure 4 shows the distribution plots of several physico-chemical

properties of the set of 78 hH4R antagonists. Figure 4A shows that

the mean molecular weight is just above 200 Da. All the

antagonists contain more than one nitrogen (Figure 4E) and have

functional groups that could be able to form strong specific

interactions like hydrogen bonds and electrostatic interactions

[72,73,74] (Figure 4F &4G).

Interesting complementarities can be found between the

properties of hH4R antagonists and their receptor binding pocket.

The antagonists contain at least one positively charged groups,

preferably two (Figure 4B). In the hH4R binding pocket, these

features are complementary to two negatively charged residues,

namely Asp94 in helix III (D3.32) and Glu182 in helix V (E5.46),

known to be important for the interaction of high affinity ligands.

As well, many hH4R antagonists can bind the receptor with a high

ligand-lipophilic efficiency (this affinity is diminished with logP).

This also explains the logP distribution of hH4R antagonists

(Figure 4C). We have found that hH4R antagonists are drug-like,

100% obey Lipinski rule of 5. Drug-like, according to the Lipinski

rule of 5, states that orally bio available molecules are more likely

Indexing Chemicals for Their hH4R Antagonism
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Figure 4. Distribution plots of several physico-chemical properties of the set of 78 hH4R antagonists: Molecular weight distribution
(A), Total charge (B), Log P values (C), Number of aromatic atoms (D), number of nitrogen atoms (E), Number of H-bond donors
[lip_don] (F), Number of H-bond acceptors [lip_acc] (G).
doi:10.1371/journal.pone.0109340.g004
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to have H-bond donors #5, H-bond acceptors #10, molecular

weight #500 and log P#5. As well, all hH4R antagonists collected

from literature were found to obey the rules of Oprea for lead-

likeness. Oprea rules for lead-likeness states that lead molecules are

more likely to have molecular weight #450, log P ranges between

23.5 and 4.5, rings #4, non-terminal single bonds #10, hydrogen

bond donors #5 and hydrogen bond acceptors #8. They were

derived by an analysis of 96 drugs and leads from which they were

derived. The ISE based model generated forty eight unique filters.

The MCC of the filters range between 0.6 and 0.87. One of the

filters is 3-rules based model which states thathH4R antagonists

compared to ZINC drug-like chemicals are more likely to have:

total charge equal +1; 3 #N atoms #7; fractional negative VDW

surface area #0.42. More than 87% and less than 5% of the hH4R

antagonists and ZINC drug-like chemicals respectively obey the

three rules-based model described before. The MCC of this filter

alone is 0.82. The combined ligand-based approaches (ISE & ILE)

produced highly efficient model for indexing chemicals for their

hH4R antagonism (see figure 5). More than 80% of the actives

were captured at the top scored screened set (figure 5b).

Generating a reliable 3D models of hH4 for drug

discovery. The set-up of an equilibrated hH4R structure in a

membrane environment is a necessary prerequisite for subsequent

docking calculations. During the equilibration MD runs (36 ns) the

structural integrity of the receptor was monitored by analyzing the

evolution of its secondary structure versus time (see Figure 6 panel

A). The seven helices of the trans-membrane domain are almost

unaltered over the whole simulation. On the contrary, residues

spanning from 200 to 290, belonging to flexible domain of the

receptor, exhibit a highly dynamic equilibrium between helical,

random coil and turn structural motifs. Residues 35, 75, 110, 150

and 330 remain unstructured.

As mentioned before, MD runs on the minimized hH4R model

resulted in a different size of the binding cavity, as reported in

table 1 and 2 likely due to the lateral pressure applied by the lipid

bilayer. To prevent the crumple of the binding pocket we inserted

into the binding pocket a known ligand of the hH4R receptor

(JNJ7777120). The presence of the ligand does not alter the

secondary structure content of hH4R as reported in figure 6 panel

B, and C. Only small differences may be observed when the

position of the ligand is restrained; in particular residues near D3.32

lose partially their helicity. The RMSD of hH4R without ligand

(Figure 7, panel A) reaches a value of 2 Å at about 10 ns and then

fluctuates at 11 Å with very small oscillations indicating that the

structure is equilibrated.

A similar behavior is also observed in the presence of the

restrained ligand, with constant RMSD values of 1.8 Å observed

at about 10 ns. Conversely, the RMSD values of the hH4R model

simulated in the presence of unrestrained ligand reaches a constant

value of about 1.7 Å after 8 ns. These results ensure that all

structures are fully equilibrated by MD runs.

Figure 5. Enrichment plot (a) and Enrichment plot of the highest indexed 1% chemicals (b).
doi:10.1371/journal.pone.0109340.g005

Figure 6. Time evolution of hH4R secondary structure content during equilibration in the absence (panel A) and in the presence
(panel B) of the ligand JNJ7777120. Panel C reports the time evolution of the secondary structure of hH4R in the presence of the ligand
restrained as described in the methods section. Color codes are: red/helix, green/coils and blue/turns.
doi:10.1371/journal.pone.0109340.g006
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In order to produce a suitable 3D structure for docking

calculations we averaged all the MD frames over last 100 ps, and

minimized the obtained structures. As previously reported, the

residues D3.32 and E5.46 are critically involved in histamine binding

[75,76]. Therefore their conformations may indicate if the overall

protein structures could be used for reliable docking calculations.

Table 2. Conformational binding pocket analysis of the four constructed models.

Homology model (model before
minimization & MD)

MD Model 1 of hH4R with
restrained ligand

MD Model of hH4R with
unrestrained ligand

MD Model of hH4R
without ligand

Cavity volume (A3) 304 658 500 550

doi:10.1371/journal.pone.0109340.t002

Table 1. Amino acids involved in the binding pocket of the four models here studied.

Homology model Equilibrated model with UnRestrained ligand with Restrained ligand

94 ASP 91 LEU 90 TRP 94 ASP

95 TYR 94 ASP 94 ASP 95 TYR

98 CYS 95 TYR 95 TYR 96 LEU

99 THR 96 LEU 96 LEU 98 CYS

147 ASN 98 CYS 98 CYS 99 THR

168 PHE 99 THR 99 THR 147 ASN

169 PHE 146 VAL 100 ALA 150 MET

182 GLU 147 ASN 103 TYR 158 LYS

316 TRP 150 MET 143 ALA 160 GLU

319 TYR 166 PRO 146 VAL 161 GLY

168 PHE 147 ASN 162 SER

174 ILE 168 PHE 163 GLU

175 LEU 175 LEU 164 CYS

178 THR 178 THR 165 GLU

179 SER 179 SER 166 PRO

182 GLU 182 GLU 168 PHE

183 PHE 183 PHE 169 PHE

319 TYR 319 TYR 174 ILE

320 SER 320 SER 175 LEU

321 LEU 323 THR 178 THR

323 THR 344 PHE 179 SER

324 ILE 347 GLN 182 GLU

327 SER 183 PHE

347 GLN 319 TYR

320 SER

321 LEU

322 PHE

323 THR

324 ILE

326 LEU

327 SER

330 SER

331 SER

333 THR

334 GLY

335 PRO

340 TYR

We evidenced in bold, amino acids common to all four active sites.
doi:10.1371/journal.pone.0109340.t001
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In figure 8, the MD-optimized structures of hH4R indicating both

amino acids are represented. It is shown that both amino acids

point toward the inner core of the receptor, indicating that all the

simulated structures, albeit with subtle conformational changes,

adopt conformations that are suitable for docking studies.

Moreover the pose of JNJ7777120 ligand into the active site of

our model is in accordance with previous reported results

[72,77,78]. Our findings show that at least one atom of the ligand

JNJ7777120 is located at distance #3 Å respect to D3.32 (Asp94),

E5.46 (Glu182), L5.40 (Leu175), Y6.51 (Tyr319) and W6.48 (Trp316),

as reported in figure 8.

A comparison of the four models adopted here is also reported

in figure 9. The position of the D3.32 residue is similar in the

equilibrated and in the unrestrained ligand model. Conversely, in

the ligand restrained model it appears to be shifted, likely due to

the above mentioned helicity loosening. The conformation of

D3.32 in the homology model, albeit close to the red and blue

structures, points to a rather different direction.

The conformation of the E5.46 residue is similar in all the four

structures, but, in the ligand restrained model, E5.46 is translated

respect to the other models. Moreover, the E5.46 residue in the

homology model, points to a different direction if compared to the

other three structures. These diversities in the active site geometry

reflect also a different cavity size. Furthermore, all residues that

form the binding site in the homology model are included, also, in

the active pocket of the three other models studied, with the

exception of the TRP 316 and PHE 169 (see Table 1). Altogether,

these data suggests that a different choice of the structural model

may imply significant differences in the cavity volume of the active

site and, in turn, in its supposed ability to accommodate

antagonists. Table 2 reports the active site cavity volumes of the

Figure 8. Cartoon representations of the hH4R models with
unrestrained ligand JNJ7777120 at the center of the figure
(orange lines). Residues involved in H4 binding, with JNJ7777120 are
evidenced as sticks.
doi:10.1371/journal.pone.0109340.g008

Figure 9. Cartoon representations of the four hH4R models
here studied: i) homology model (yellow), equilibrated model
(blue), with restrained ligand (green), with unrestrained ligand
(red). Residues Asp94 (D3.32) and Glu82 (E5.46) are evidenced
as sticks.
doi:10.1371/journal.pone.0109340.g009

Figure 7. RMSD for backbone atoms of hH4R in membrane environment (panel A); with restrained ligand (panel B) and with
unrestrained ligand (panel C). RMSD has been calculated considering starting frame as reference.
doi:10.1371/journal.pone.0109340.g007
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four models examined in this study: it is evidenced that the

structure equilibrated after MD simulations performed in the

presence of a restrained ligand shows the largest cavity size

(658 Å3), and therefore, it is conceivable that it could represent the

most reliable model to be used for further docking studies.

Docking & Scoring
After constructing the efficient ligands-based model, we need to

select the best hH4R model to be used for docking purposes by a

proper scoring procedure. Three different 3D models have been

checked by docking studies:

N Homology based model without optimizations (aka ‘‘homology

model’’).

N Homology based model obtained after energy minimization

only (aka ‘‘min-opt model’’).

N Homology based model obtained after molecular dynamics

(MD)and minimization (aka ‘‘MD-opt model’’).

As already pointed out, a comparison of the three MD

optimized models (i.e. equilibrated model in the absence of ligand,

with restrained ligand and with unrestrained ligand) have shown

that the MD model optimized with a restrained ligand (MD-opt

model) exhibited the best binding pocket accessibility in docking

simulations. Therefore it is used for further docking studies as a

representative of the three MD optimized models (atomic

coordinates are presented in File S3).

The docking test set (see methods) was docked into the extracted

TM receptor domain of each model and the results of computed

docked energies are presented in Figure 10, which shows a distinct

gradient of energies and a clear separation into three groups,

visible around 21.1 and 24 Kcal/mol, detected by unsupervised

K-means clustering. These electrostatic energy values were next

used as two separate filtering categories to compute the TP/FP

enrichment factors and compare between the different models.

Additional filtering by conformation positional closeness to the key

binding site residues has resulted in a meaningful enrichment of

active ligands compared to the non-active random set. Since the

same compounds were docked into the receptor domain using

exactly the same simulation conditions, the percentage of docked

poses with closeness to both catalytic residues inside the binding

pocket (i.e. distance score = 2) indicates that there is a difference in

binding site accessibility between the different models: the best

overall binding pocket accessibility is observed in the min-opt

model, but in terms of TP/FP enrichment it is slightly inferior to

the homology model but better than the MD-opt model. Adding

the computed docked electrostatic energy as a filter and using just

the lowest energy cluster as a filtering threshold improves

considerably the enrichment factors in all models, but with price

of increased false negative rates: 16 out of 46 (,35%) active

compounds passed our filters in the non-opt model, 13 (,28%) in

the min-opt model and just 8 (,17%) in the MD-opt model.

Considering both clusters (i.e. all poses in the lowest and second

lowest electrostatic energy clusters) and a geometrical distance

score = 2, generally leads to lower false negative rates. Since our

preliminary tests have shown the two filters (calculated electrostatic

energy and geometric distance scores), to be practically orthog-

onal, they can be combined in a useful way without a redundancy

in the scoring model.

Docking results of the three different models are shown in

table 3. Two electrostatic energy thresholds were set to values of 2

1.1 Kcal/mol and 24 Kcal/mol as previously found by the K-

Figure 10. Computed electrostatic energy (EE) of the test set compounds docking simulations across three model versions (namely:
the homology model, min-opt and MD-opt models). For the sake of clarity, only the best docked pose was kept for each
compound, to maintain clarity. Open circles denote compounds with known binding activity (i.e. our positive control group). Closed circles
denote random compounds (i.e. non-binders, negative control group). Colors denote group membership by K-means clustering. The plots show a
distinct separation between two compound groups around 21.1 Kcal/mol and yet another one around 24 Kcal/mol. This pattern is observed across
the model versions, with slightly lower EE values visible in the optimized models.
doi:10.1371/journal.pone.0109340.g010
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means clustering. The conformation distance score reflects

geometric ‘‘closeness’’ and possible interaction with two negatively

charged binding site residues. Two groups were compared: active

ligands and a random set compound set (containing 46 and 50

compounds respectively). The enrichment factor is the ratio

between the active and random compounds left following each

filtering step. Two sets of chemicals were used to validate the

hH4R model by external test sets: one including a new set of

ligands with known activity, extracted from the chEMBL database

and containing 56 ligands (aka ‘‘chembl verification set’’) and the

set of candidates derived from the chemoinformatics indexing

which contains 872 diverse targeted binders (aka ‘‘focused set’’).

Both sets were compared to a set of 137 random compounds

extracted from ZINC and regarded as a negative control set in this

procedure. All sets were docked using the same protocol and

processed the same way. Their performance results are described

below.

chEMBL verification set
An initial inspection of the docking results has shown that very

few docked poses (about 1% of the poses, compared with roughly

16% of poses in the previous test set evaluation) had low enough

calculated electrostatic energy to be classed in the lowest energy

cluster, defined previously using the test set as lower than 2

3.16 Kcal/mol. Therefore the alternative scoring strategy of using

the two lowest electrostatic energy clusters and the geometrical

closeness score was used. The random sample set of non-binders

was randomly sampled in a 20-fold sub-sampling procedure and

each sub set was compared in turn to the set of active ligands.

The mean amount of compounds passing the filters over all

sub-sets was then used for calculating the enrichment factors. The

results of filtering to retain active ligands are presented in

Table 4.

The focused library
An initial inspection of the docking results has shown that

relatively few docked poses had low enough calculated electrostatic

energy to be classed in the lowest energy cluster (about 4% of the

docked poses).Therefore the alternative scoring strategy of using

the two lowest energy clusters and a filtering based on geometrical

closeness was used. A 100-fold random sub-sampling of the

focused library compound space was done in order to have

comparable amount of docked poses in each evaluation pass, so

that exactly 137 docked compounds were compared at each

iteration. The results of these iterated enrichment evaluations are

presented in Table 4. The mean values of the sub-sampled groups

were used to calculate an enrichment factor relative to the random

compound set. Some of the best scoring hits are presented in

Figure 11 (binding modes & energies of 11 hits are presented in

File S4). The ligand binding pose of one of the top candidates is

shown in figure 12.

Docking results and enrichment factors for the chEMBL hH4R

antagonists and the focused library data sets are depicted in

table 4. Percents represent the fraction of total docked compounds

which passed each filter. For enrichment calculations sub-sampling

was used and the mean enrichment factors of the sampled groups

are given. Table 4 evidences that our combined ligand-based and

structural approach is able to increase the hit rate in virtual high-

Table 4. Docking results and enrichment factors for the chEMBL hH4R antagonists (external data set) and the focused library data
sets.

Filtering Method: Data set: Verification Set Focused Library

chEMBL Ligands Random Set Focused Set Random Set

Two EE clusters+Distance score = {1,2} Compounds Passed (%) 62.9 4.3 24.1 4.4

Enrichment factor 14.6 5.5

Two EE clusters+Distance score = 2 Compounds Passed (%) 14.8 0.9 7.7 0.7

Enrichment factor 16.4 11

Percent represents the fraction of total docked compounds which passed each filter. For enrichment calculations sub-sampling was used and the mean enrichment
factors of the sampled groups are given.
doi:10.1371/journal.pone.0109340.t004

Table 3. The docking results of the three models are shown here.

Homology model Min-opt model MD-opt model

Distance score = 1 67% 84% 91%

Distance score = 2 38% 44% 16%

Enrichment (lowest EE cluster+distance score = 2) 16 (85%) 13 (87%) 4 (89%)

Enrichment (two EE clusters+distance score = 2) 3.3 (33%) 2.5 (16%) 2.3 (18%)

Two electrostatic energy thresholds were set to values of 21.1 Kcal/mol and 24 Kcal/mol as previously found by the K-means clustering. The conformation distance
score reflects geometric closeness and possible interactions with the negatively charged binding site residues (D3.32and E5.46. Two groups were compared: active ligands
and a random, set (containing 46 actives and 50 non-active compounds respectively). The enrichment factor is the ratio between the active and random compounds left
following each filtering step. Percent in brackets denote the false negative rate for each model and configuration.
Homology model = H4 receptor model before minimization & MD.
Min-opt model = H4 receptor model after minimization only.
MD-opt model = H4 receptor model after minimization and MD.
Distance score = 1 means closeness to one of the following residues Asp-92 and Glu-182, while distance score = 2 means closeness to both residues.
doi:10.1371/journal.pone.0109340.t003
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Figure 11. Consensus library of 11 candidates with top score.
doi:10.1371/journal.pone.0109340.g011
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throughput screening. In particular, ligand-based approaches

allow screening large databases of chemicals in a highly fast and

efficient way, reducing the number of potential candidates from

millions of candidates to several thousands. The enrichment factor

is 11 for the focused library compared to 16.4 of the external test

set. About 7.7% of the chemicals in the focused library will pass

both energy/positional filters and constitute the fraction of highly

indexed potential candidates.

Conclusions

The human histamine H4 receptor is an increasingly attractive

drug target due to its relevance for the treatment of several

inflammatory, allergic and autoimmune disorders, as well as for

analgesic activity. There is still unmet need for discovery of hH4R

antagonists and applying computerized techniques for virtual

screening of large chemical databases could make the discovery

process more efficient (shorten time and lower costs). In this paper

a combined ligand-based and structure-based approach for

indexing chemicals for their hH4R antagonism is reported. Firstly,

two ligand-based chemoinformatics techniques, the Intelligent

Learning Engine (ILE) and Iterative Stochastic Elimination

approach (ISE), were utilized to screen the ZINC database and

to pick ,4000 chemicals highly indexed as H4R antagonists’

candidates. Next, different hH4R structural homology models

were made and their capability in differentiating between active

and non-active H4R antagonists were examined by docking a

validation set (extracted from the chEMBL database). For ranking

the ligands and docked poses, a part of the AutoDock4 energy and

particularly the electrostatic term, the filter of the ability to interact

with D3.32 (TM3) and E5.46 (TM5) via hydrogen bonding/

electrostatic interaction was taken into consideration. Among all

the investigated models, a 3D hH4R structure modeled by

extensive Molecular Dynamics simulation performed in a DOPC

lipid membrane has been selected as the most efficient one. This

last model was then chosen to screen the previously focused library

obtained by applying the ligand-based approaches. A consensus

library made of 11 drug candidates is finally reported and

proposed as novel lead compounds. Our results suggest that a

sequential combination of the ligands-based chemoinformatics

techniques (ISE&ILE) with molecular modeling techniques has the

potential to improve the success rate in discovering new

biologically active compounds and increase the enrichment factors

in a synergistic manner.

Supporting Information

File S1 ‘S1_H4_active_literature_ligands_smi.xls’ including

hH4R antagonists’ dataset collected from literature.

(XLS)

File S2 ‘S2_hH4R_antagonists_diverse_from chEMBL.xls’ in-

cluding hH4R binders extracted from chEMBL.

(XLS)

File S3 ‘S3_hH4R_model used for docking.pdb’ including the

coordinates of the hH4R model used for docking purposes.

(PDB)

File S4 ‘S4_binding modes and energies.doc’ including binding

modes and energies of the 11 bioactive candidates.

(DOC)

Figure 12. One of the binding poses of one of the top scored candidates. It interacts with both residues, D3.32 and E5.46 of the H4 receptor
binding pocket, via salt bridge interactions.
doi:10.1371/journal.pone.0109340.g012
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