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Abstract

Robust tissue patterning is crucial to many processes during development. The "French Flag" model of patterning, whereby
naı̈ve cells in a gradient of diffusible morphogen signal adopt different fates due to exposure to different amounts of
morphogen concentration, has been the most widely proposed model for tissue patterning. However, recently, using time-
lapse experiments, cell sorting has been found to be an alternative model for tissue patterning in the zebrafish neural tube.
But it remains unclear what the sorting mechanism is. In this article, we used computational modeling to show that two
mechanisms, chemotaxis and differential adhesion, are needed for robust cell sorting. We assessed the performance of each
of the two mechanisms by quantifying the fraction of correct sorting, the fraction of stable clusters formed after correct
sorting, the time needed to achieve correct sorting, and the size variations of the cells having different fates. We found that
chemotaxis and differential adhesion confer different advantages to the sorting process. Chemotaxis leads to high fraction
of correct sorting as individual cells will either migrate towards or away from the source depending on its cell type. However
after the cells have sorted correctly, there is no interaction among cells of the same type to stabilize the sorted boundaries,
leading to cell clusters that are unstable. On the other hand, differential adhesion results in low fraction of correct clusters
that are more stable. In the absence of morphogen gradient noise, a combination of both chemotaxis and differential
adhesion yields cell sorting that is both accurate and robust. However, in the presence of gradient noise, the simple
combination of chemotaxis and differential adhesion is insufficient for cell sorting; instead, chemotaxis coupled with
delayed differential adhesion is required to yield optimal sorting.
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Introduction

Patterning of tissues is an important process in the development

of multi-cellular organisms, necessary for the generation and

correct organization of diverse cell types from undifferentiated

progenitor cells. Tissue patterning functions both at the level of

organisms, for example in anterior-posterior and dorso-ventral

patterning to set up the correct body plan [1,2], and at the level of

organs, for example in the mouse limb [3]. Patterning of tissues by

instructive signaling gradients generates spatial domains of discrete

cell fates. The classic "French Flag" model relates the different cell

fates to an external morphogen [4]. In this model, naı̈ve cells

exposed to a gradient of diffusible signal will adopt different fates

as they experience different concentration of the signal. The

‘‘French Flag’’ model is appealing due to its relative simplicity.

However, two conditions have to be fulfilled for the model to work.

Firstly, the patterning morphogen has to be sufficiently precise to

produce distinct cell-fates at cell-type boundaries. Due to the

inherent stochasticity in molecular processes like production and

transport of morphogens, noise in the morphogen gradient is

expected [5,6]. A large number of strategies have been proposed to

explain how robustness can be achieved in the presence of a noisy

morphogen gradient. Most of these strategies suggest approaches

for better shaping the morphogen gradient [7,8,9,10] like self-

enhanced morphogen degradation and facilitated transport.

Others focus on better detection of the morphogen [11,12,13]

such as integration of signals from multiple morphogens and local

cell-to-cell signaling. The second condition is that the cells have to

maintain stable positions relative to the morphogen source to

receive a correct concentration of the signal over time. However,

this is unlikely as cell positions will possibly change due to cell

migration and division.

Interestingly, such cell movements that are supposedly detri-

mental to the ‘‘French Flag’’ model have recently been proposed

to be essential for an alternative model of tissue patterning [14]. In

this model, different cell fates are first specified randomly and

independently of cell position to produce a "salt and pepper"

mixture. Subsequently, the mixture of cell types sort to form

clusters of discrete cell fates. This model of patterning has been

observed in Dictyostelium where cells randomly differentiate into

prestalk or prespore cells that intermingle and then sort to form

discrete prestalk and prespore regions [15,16]. This model for

patterning has also been suggested in higher organisms such as the
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chick otic placode and primitive streak [17,18,19], zebrafish

pancreas [19] and mouse anterior head process notochord [20].

It has been difficult to validate the cell sorting model in these

organisms due to the difficulty in performing time-lapse experi-

ments to follow the precursor cells over time. However, recently,

using in toto imaging of the zebrafish neural tube, Xiong et al.
were able to dynamically follow neural tube development [21].

Contrary to the "French Flag" model, Xiong et al. found that

progenitors of different fates were initially spatially mixed. The

progenitors then moved and rearranged themselves into sharply

delineated domains. This result suggests a more general role for

the cell sorting model beyond simple organisms.

Although the cell sorting model has been proposed based on

experimental observations, it remains unclear what the sorting

mechanism is. Two different mechanisms, chemotaxis and

differential adhesion, have been proposed [21,22]. The role for

chemotaxis in branching morphogenesis is also well documented.

An example is the PTEN modulated chemotaxis in morphogenesis

of the developing kidney [23]. There are also evidences of cell

adhesion molecule playing important roles in sorting. Examples

include DdCaD-1, a cadA gene in Dictyostelium, whose deletion

led to aberrant prestalk and prespore cell sorting [24], and

protocadherin in zebra fish somite segmentation [25].

In the chemotaxis model, the cells will first adopt cell fates

completely independent of position and hence morphogen

concentration. These cells have different chemotactic response to

the morphogen gradient based of their fates. Cells of certain fates

will express certain proteins enabling them to migrate strongly

towards the morphogen gradient, whereas cells of other fates will

express other proteins which make them less strongly attracted or

even be repelled by the gradient. Thus, cells that are most strongly

attracted to the morphogen gradient will end up closest to the

morphogen source, followed by the cells that are less strongly

attracted and, finally, by cells that are repelled by the gradient,

leading to cell sorting.

The other model is differential adhesion following imperfect cell

fate specification to a noisy morphogen gradient [21,22]. In this

model, unlike in the chemotaxis model where cell fates are

specified independent of position, cells will experience a morpho-

gen gradient that biases the fates that they adopt. However, perfect

patterning does not occur due to noise in the gradient and as a

result, a fraction of the cells will be specified incorrectly. These

misspecified cells express different levels or types of surface

adhesion molecules from their correctly-specified neighbors. Given

a sufficient number of correctly specified progenitors, differential

adhesion could potentially lead to sorting of the misspecified cells.

The potential role of differential adhesion in the zebrafish neural

tube development is supported by the cadherin depletion

experiment [21] where perturbing cadherin-2, cdh-2, using

morpholino and a dominant-negative version of cdh2 leads to

more mixing of cell types. Differential adhesion has also been

found to mediate migration and pool sorting of postmitotic

neurons [26], and to coordinate cell migration in the intestinal

crypt [27].

In this article, we used computational modeling to study the

roles of the two mechanisms, namely chemotaxis and differential

adhesion, in cell sorting. In particular, we used the Cellular Potts

Model, CPM, [28,29,30] which has been widely used to study the

effects of chemotaxis and differential adhesion [31,32,33], tumor

growth [34] and signaling [35]. Related to our work, Jiang et al.
studied mound formation of Dictyostelium discoideum and

suggested possible cooperation between differential adhesion and

chemotaxis to bring about a tip containing only pre-stalk cells [31].

They found that differential adhesion aided in the sorting of pre-

stalk cells to the surface of the mound whereas chemotaxis

functioned in tip formation. Thus, differential adhesion alone can

lead to cell sorting without chemotaxis. Käfer et al. studied cell

sorting in the presence of both differential adhesion and

chemotaxis [32]. Their work aimed to provide a general

framework for understanding cell rearrangement not specific for

a particular biological context. They considered homogeneous

chemotactic response where two cell types responded similarly to

the chemotactic gradient. Finally, Zhang et al. studied in detail

how the choice of cell adhesion molecule binding affects cell

sorting [33]. They looked at the kinetics of cell sorting in the

context of gradual vs. sharp changes in the expression of cell-cell

adhesion molecules. They also discussed the role of interfacial

tension in determining the sharpness of the boundaries of the

sorted clusters. Their study helped connect signaling models at the

molecular level to cell sorting and tissue patterning at the tissue-

level.

Our model builds on these previous models [31,32,33] by

focusing on a specific biological system, which is that of tissue

patterning to generate sharply delineated regions of cell types. We

also considered the effects of noise in the morphogen gradient and

whether robust cell sorting can still occur. We also developed and

calculated from our model quantitative metrics such as the fraction

of correct sorting, fraction of stable sorting and sorting time very

carefully. These metrics relating to the stability of the clusters and

the time spent in sorting allowed us to study the robustness of

boundary maintenance and the developmental time frame, which

are pertinent issues when studying pattern formation.To do this,

first, we determined whether either of the mechanisms alone can

achieve cell sorting. For each model, we simulated multiple runs

for a range of chemotactic and differential adhesion parameters.

From the simulations, we assessed the performance of each

mechanism by quantifying the fraction of correct sorting, the

fraction of stable clusters after correct sorting, time taken for

correct sorting and the size variations of the cells having different

fates. Next, we determined cell sorting performance in the

presence of both chemotaxis and differential adhesion.

Our main finding is that chemotaxis and differential adhesion

confer different advantages to the sorting process. By incorporat-

ing both chemotaxis and differential adhesion into the model, we

found that optimal - robust and accurate - sorting requires a

combination of both chemotaxis and differential adhesion. In the

absence of morphogen gradient noise, a simple combination of the

two is able to achieve optimal sorting, whereas in the presence of

noise, chemotaxis coupled with delayed differential adhesion

response is required.

Materials and Methods

Model description
We used a two-dimensional lattice model based on the Cellular

Potts Model, CPM, to understand the role of chemotaxis and

differential adhesion in cell sorting. CPM is based on energy

minimization. At each step of the simulation, the new total energy

obtained by making a certain change to the system is computed

and compared with the previous total energy. If the step leads to a

decrease in the total energy, it will be accepted. Otherwise, the

step will be accepted based on a metric calculated from the

increase in total energy. In general, the smaller the increase in total

energy, the more likely for the step to be accepted.

In the model, each cell is assigned a unique cell identity: s x,yð Þ,
s x,yð Þ[ 1,2,3,:::::,nf g where n is the number of cells in the system

and x,yð Þ identifies a lattice site, x~ 1,2,::::::,nxf g and

y~ 1,2,::::::,ny

� �
, where nx and ny are the number of lattice

Mechanisms for Robust Cell Sorting

PLOS ONE | www.plosone.org 2 October 2014 | Volume 9 | Issue 10 | e109286



points in the x- and y- directions respectively. Each cell is made up

of several adjacent lattice sites that have the same cell identity.

Cells in the model can belong to different types, t, t[ 1,2,:::::,kf g,
where k is the number of different cell types.

The energy of the interactions among cells in the CPM can be

defined by the energy function

H~EszEczlEa, ð1Þ

where Es and Ec are the cell-type dependent surface energy and

chemical energy, respectively, and Ea is an area-dependent energy

term to maintain the area of the cells with l specifying the strength

of the area constraint. We will now explain each of the terms in the

energy function.

First, Ea is given by

Ea~
X

s
a sð Þ{At sð Þ
� �2

, ð2Þ

where t sð Þ is the cell type associated with the cell s, a sð Þ is the

current area of a cell s and At is the target area for cells of type t.

Having this area-dependent energy term allows the cells to be

maintained within a fixed range of sizes.

Next, Es is given by

Es~
X

x,yð Þ x0,y0ð Þneighbours
J t s x,yð Þð Þ,t0 s x0,y0ð Þð Þð Þ

1{ds x,yð Þ,s x0,y0ð Þ
� �

,

ð3Þ

Here, J t,t0ð Þ is the surface energy per unit contact area. It is

defined as a function of the cell types (t and t0) of the two surfaces

in contact. The Kronecker delta term ds x,yð Þ,s x0 ,y0ð Þ ensures that this

energy is zero within a cell. To implement differential adhesion,

J t,t0ð Þ for t=t0 will be larger than J t,t0ð Þ when t~t0. This will

energetically favor configurations where cells of the same types are

sorted together.

Finally, Ec characterizes the energy in response to extracellular

morphogen concentration, C xð Þ, of the chemotactic signaling

molecules. It is given by

Ec~{
X

s
mt sð ÞC xð Þ, ð4Þ

where mt sð Þ is the chemotactic potential of cell type t.

At the start of each simulation, cell fates are first assigned. The

fate assigned to a cell is based on a random number drawn for the

cell and the cell’s probability of adopting the various fates. In the

chemotaxis model, cells are assumed to take on cell fates

randomly, independent of position, and then sort depending on

their different chemotactic response. Hence, in this model, each

cell is assigned to have equal probability,
1

k
, for taking on each of

the possible kcell fates. On the other hand, in the differential

adhesion model, cell fate specification is dependent on position but

imprecise causing some cells to be specified incorrectly and have to

be sorted out to yield correct sorting.

We divide the grid equally into k regions along the x-direction

which is also the direction of the morphogen gradient. If cell fate

specification is perfect, all the cells in the first region will adopt fate

1, and all the cells in the second region will adopt fate 2 and so on.

For imperfect cell fate specification, we define, r, an error ratio

of specification, as

Pr t sp

� �
~p+q

� �

Pr t sp

� �
~p

� � ~rq, ð5Þ

where sp is a cell with its centroid in the p-th region and

spanning the (p2q)-th to the (p+q)-th region, and 0ƒrƒ1. In this

model, cells that are wrongly specified have the highest probability

of being specified to take on the cell fates of adjacent regions. For

r~0, cell fate specification is perfect and for r~1, the cells adopt

cell fates randomly. In the chemotaxis model, we use r~1. A small

value of r~0:025 will be used for the differential adhesion model

to introduce a small probability of error during cell fate

specification.

After cell fate specification, the Metropolis Monte Carlo method

is used to solve for the dynamics of the two-dimensional CPM

model. At each step, a lattice site x,yð Þ is chosen at random. Then,

a neighboring site x0,y0ð Þ from its four neighbors is selected

randomly. The value of s x,yð Þ will be updated to the value of

s x0,y0ð Þ with the Monte Carlo probability, p,

p s x,yð Þ?s0 x0,y0ð Þð Þ~f
exp ({DH=T), DHw0

1, DHƒ0
, ð6Þ

where DH is the energy change for the substitution and T is the

temperature that corresponds to the amplitude of cell membrane

fluctuations. Time is measured in terms of Monte Carlo time step

(MCS) with each time step defined to be the number of lattice

points in the array.

Model parameters
Our model consists of 100 cells on a nx~142 x ny~37 (x- and

y- directions) grid. The target area At sð Þ is set to be set to be 49

pixels, independent of cell type. Lattice points at the boundaries of

the grids are inaccessible to the cells. These points are included for

convenient calculation of Ea. Reflecting boundary conditions are

used. We set k~4 to have four types of cells. The constraint l is

set to 0.2 while T is set to 1.

The matrix J t,t0ð Þ characterizes the surface energy per unit

contact area among the four different types of cells. We set

J t,t0ð Þ~

1 1 1 1

1 1 1 1

1 1 1 1

1 1 1 1

0
BBB@

1
CCCAzj

0 1 2 3

1 0 1 2

2 1 0 1

3 2 1 0

0
BBB@

1
CCCA, ð7Þ

where j characterizes the strength of the differential adhesive-

ness among cells of different types. We assume that the differential

adhesiveness of the cells types vary with their distances apart after

correct sorting. For example, cells of type 2 are adjacent to cells of

types 1 and 3 hence they exhibit the same magnitude of differential

adhesiveness to both types of cells. On the other hand, cells of type

2 are further away from cell type 4, therefore the differential

adhesiveness between the two types is larger.

Mechanisms for Robust Cell Sorting
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The vector mt describes the chemotactic potential of the

different cell types,

mt~mo

{4

{2

1

2

0
BBB@

1
CCCA, ð8Þ

where mo characterizes the strength of the chemotactic response.

Here, cell types 3 and 4 are attracted to the gradient whereas cell

types 1 and 2 are repelled by the gradient.

For the chemotaxis model, simulations are run for 100000 MCS

whereas for the differential adhesion model, stimulations are run

for 200000 MCS, due to the longer time taken for sorting in the

differential adhesion model.

Quantification of sorting performance
For each run, Rw, where w~1,2,3,::: refers to each of the

individual runs, we determine the number of clusters after every

100 MCS to obtain the number of clusters as a function of time,

cw tð Þ. A cluster is defined as a connected group of cells of the same

type. A run is considered to yield correct sorting if it is able to yield

k~4 clusters at some point during the simulation.

This is given by

Rw~correct if min cw tð Þ~kð Þ: ð9Þ

Hence the fraction of correct runs, FC, is given by

Fc~

P
w Rw~correctP

w Rw

: ð10Þ

For each correct run, we determine the sorting time, ts, by

finding the minimum time where k clusters are observed,

ts~ min t,s:t:cw tð Þ~kð Þ: ð11Þ

A correct run is also considered stable if it maintains the k

cluster throughout the simulation till the end, tend .

Rw~stable if cw ts?tendð Þ~k: ð12Þ

We define the fraction of stable runs, Fs, as

Fs~

P
w Rw~stableP

w Rw~correct
: ð13Þ

The cell size variation among the cells of different fates is

characterized by first determining the mean size of cells with each

cell type, s, Es a sð ÞVt sð Þ~sð Þ:

Cell size variation is then defined as the ratio

std Esð Þ
E Esð Þ

, ð14Þ

where std and E are the standard deviation and mean

respectively.

Quantification of how initial number of clusters affects
sorting outcome

We examine how the initial number of clusters affects the

sorting outcome and sorting time for simulations incorporating

both chemotaxis and differential adhesion with a completely

random initial assignment of cell fates. We examine the results

separately for the various values of j and mo. For each set of j and

mo, we first divide the runs into two groups, namely those that lead

to correct sorting and those that lead to incorrect sorting. For

certain values of j and mo, all the runs lead to either correct or

incorrect sorting and hence do not have values for both groups

hence sorting outcome analysis cannot be perform for these sets of

j and mo.

To determine if the initial number of clusters for the two groups

are significantly different, we perform a 2-sample t-test for values

of j and mo where there are at least two runs in each group. To

determine whether there is a correlation between the initial cluster

number and sorting time, we perform a spearman correlation test

for values of j and mo with at least three runs leading to correct

sorting.

Morphogen generation
We consider the simplest model for morphogen gradient

generation, consisting of signaling molecule synthesis at one end

of the cell grid, x~142, and diffusion away from the source

towards x~0. In addition, there is spatially uniform degradation

by a first-order reaction. The steady-state solution to this model is

an exponential decay,

C xð Þ~C xsð Þ exp
xs{x

L

� �
, ð15Þ

with L~50, being a characteristic decay length of the diffusion,

xs~142 being the location of the source, and C xsð Þ~100.

Noisy morphogen generation
In the last section of the paper, noise is introduced into the

morphogen gradient to explore the sorting process in the presence

of noise.

To introduce noise into the morphogen gradient, we add an

extra term into the reaction-diffusion equation governing mor-

phogen concentration,

LC x,yð Þ
Lt

~Dx

L2C x,yð Þ
Lx2

zDy

L2C x,yð Þ
Ly2

{kdC x,yð ÞzgDW : ð16Þ

Here, Dx and Dy are the diffusion coefficients in the x and y

direction respectively, kd is the rate of degradation of the

morphogen, DW is Gaussian noise of mean 0 and variance 1,

and g characterizes the magnitude of noise in the system. We

assume that Dx and Dy are equal, and choose Dx and kd such that
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Dx~kdL2: ð17Þ

To solve equation (16), we use the implicit Euler scheme and set

the following boundary conditions:

C 142,yð Þ~100

C 0,yð Þ~C 1,yð Þ

C x,0ð Þ~C x,1ð Þ

C x,37ð Þ~C x,36ð Þ: ð18:1��18:4Þ

For each run, we first let the morphogen gradient evolved from

the deterministic noiseless gradient for 50000 steps before starting

the cell sorting process. After that, we update the noisy gradient at

every MCS.

Quantification of sorting time for temporal control of
differential adhesion

For runs with temporal control of differential adhesion, j~0 for

the first 500 MCS and j~1:5 in the subsequent 1500 MCS. In this

case, a run is considered to yield correct sorting if it is able to yield

k~4 clusters after the first 500 MCS during the simulation. This is

to take into account that even if a run is able to yield k~4 clusters

during the first 500 MCS, the 4 clusters will be unstable and likely

to dissociate in the presence of noise.

Hence for these runs,

Rw~correct if min cw tð Þ~kð Þ

for 500 MCS vtv2000 MCS:
ð19Þ

The sorting time, ts , is

ts~ min t,s:t:cw tð Þ~kð Þ for 500 MCS ,t ,2000 MCS. (20)

Results

Chemotaxis leads to correct but unstable sorting
First, we explored the dynamics of chemotaxis and determined

if this mechanism can lead to correct sorting of the cells into four

regions of differing magnitude of the chemotactic response. We set

r~1, corresponding to a completely random initial assignment of

cell fates (Fig. 1a, top). (Recall that r~0 corresponds to perfect cell

fate specification while r~1 corresponds to the cells adopt cell

fates randomly.) After this assignment, each cell would respond to

a deterministic gradient with the chemotactic response depending

on its fate. To examine how the sorting progresses with time, we

quantified the number of clusters at each time point. At the start of

the stimulation, the number of clusters was high, owing to the

random assignment of cell fates. As time progressed, the cells

sorted out according to their differences in chemotactic potential.

This led to a steady decrease in the number of clusters. Correct

sorting was eventually achieved when the number of clusters

obtained is equal to the number of cell types (Fig. 1a). To study the

sorting response to different chemotactic potential, we varied the

magnitude of chemotactic strength, mo, and plotted the number of

clusters for different values of mo (Fig. 1b). We found that although

the fraction of correct sorting, Fc, is 1, independent of mo as shown

in Fig. 1c, increasing mo led to a decrease in the sorting time, ts, as

shown in Fig. 1b and 1d. Furthermore, the standard deviation for

ts from different independent runs is small. This demonstrates that

the chemotaxis model is a reliable mechanism for achieving

correct sorting.

However, when we examined the temporal trace of the number

of clusters more closely, as in the inset of Fig. 1b, we observed that

the correct clusters obtained were not stable as spontaneous

dissociation of the correct cluster occurred intermittently. This

usually happened when one cell at the edge of a cluster dissociated

from the cluster and mixed with cells from another cluster for a

brief period of time. This is detrimental to development as clear

boundaries among the different types of cells will not be properly

maintained. To characterize the stability of the sorting, we

quantified the fraction of stable runs, Fs, as the fraction of correct

runs that maintains the correct number of clusters throughout the

simulation. As observed in Fig. 1c, none of the runs for mo ,1.5

are stable and about 20% of the runs for mo = 1.5 are stable. This

showed that, with larger values of mo, the four clusters can be

stably maintained. We quantified the lifetime of the correct

clusters between their intermittent breakup (Fig. S1 in File S1) and

found that the lifetime of the clusters increases with mo. This was

consistent with the higher fraction of stable runs at higher values of

mo However we found that the size variations among the four types

of cells increased with mo (Fig. 1d). This is largely due to the fact

that at high values of mo, mo§1:25, the effect of the gradient on

cells of types 3 and 4 tend to be stronger, causing them to become

"squeezed" as they approached the morphogen source (Fig. 1e).

This is similar to the size-based segregation of cells observed in

other cell sorting simulations [32].

In summary, low magnitude of the chemotactic response mo

leads to slower sorting, more uniform size of the different cell types

and higher spontaneous dissociation, whereas high mo leads to

faster sorting, greater variation in cell sizes and lower spontaneous

dissociation (Fig. 1e). Hence an intermediate level of mo can

balance the trade-off between size variation and spontaneous

dissociation.

In the above chemotaxis model, some cells were repelled

whereas others were attracted to the morphogen. We repeated the

analysis to determine if sorting can occur if the different types of

cells responded in the same way to the morphogen but with

different magnitudes for both attractive and repulsive responses.

As shown in Fig. S2a and S2c in File S1, purely attractive or

repulsive responses can lead to a high fraction of correct sorting,

Fc. Similar to the results before, the fraction of stable runs, Fs, is

low. Furthermore, the responses of sorting time, ts, and size

variation to increasing mo remain unchanged. (Fig. S2b,d in File

S1).

To rule out boundary effects and test for the generality of our

conclusions, we repeated the analysis on a larger grid, nx~212 x

ny~51, with 210 cells, as compared to the current grid with 100

cells, keeping all the other variables constant. Consistent with the

current model with fewer cells, high fraction of correct sorting, Fc

was attained whereas fraction of stable runs, Fs, was low. (Fig. S3a

in File S1) As expected, the sorting time, ts, increased with the

increased number of cells. Furthermore, the size variation also

increased as the cells in the larger grid experienced a larger range

of the chemotactic gradient as the characteristic decay length of

diffusion and the concentration of the morphogen at the source

Mechanisms for Robust Cell Sorting
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were kept constant (Fig. S3b in File S1). Since the results from

grids of different sizes are qualitatively similar, we conclude that

our results are independent of cell number.

Differential adhesion leads to low occurrence of correct
and stable sorting

Next, we studied the dynamics of differential adhesion and

determined if this mechanism can sort misspecified cells into their

correct compartments. In this model, a noisy morphogen gradient

patterns the cells to take on different cell fates. Due to noise in the

gradient, a fraction of the cells will not be specified correctly.

Hence, unlike the chemotaxis model with r~1 leading to a

random initial assignment of cell fates, we set a low value of

r~0:025. This low value of r allows most of the cells to adopt the

correct fates and a small number of cells to be misspecified

(Fig. 2a, top). Since there are 100 cells, this value of r leads to

approximately 2–3 misspecified cells.

We examined the sorting behavior for different values of the

magnitude of differential adhesion, j, and quantified the fraction of

runs where misspecified cells were sorted correctly. The initial

number of clusters is low as most of cells are specified correctly

(Fig. 2a). We simulated 30 runs for different values value of jand

quantified the fractions of correct and stable runs, Fc and Fs,

respectively. Many runs did not lead to correct sorting. Indeed, we

found that differential adhesion is unable to achieve 100% correct

sorting for the range of j investigated (Fig. 2b). But interestingly,

Fs is much higher than that for the chemotaxis model, reaching 1

for high values of j. For j = 4, none of the runs led to correct

Figure 1. Chemotaxis model leads to high fraction of correct sorting but low level of stable sorting. 10 runs were performed for each
value of mo. (a) The cell grid at start (top), middle (middle) and end of a run (last). The number of clusters, c, is shown to the left of the grid. Cell
boundaries are in dark blue. The morphogen source is located along the rightmost lattice points (x = 142) and diffuses to form a gradient in the x-th
(horizontal) direction. The different cell types are colored in light blue (type 1), green (type 2), orange (type 3) and red (type 4). (b) Plot of number of
clusters with time for different values of magnitude of chemotactic strength, mo . The number of clusters decreases steadily with time. (Inset) Zoom-in
plot of number of clusters between t = 50,000 and 70,000 MCS. (c) Bar graphs of fraction of correct and stable sorting, Fc (blue) and Fs (red),
respectively, for different values of mo . For mo ,1.5, none of the runs led to stable sorting. (d) Bar graphs for sorting time, ts, (green) and size variation
(black) for different values of mo. Error bars show the standard errors. (e) Summary of findings for low and high mo.
doi:10.1371/journal.pone.0109286.g001
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sorting. Thus, runs that are correctly sorted, though rare, are

almost always stable.

We quantified the sorting time, ts, and found no clear

relationship between ts and j (Fig. 2c). Furthermore, ts is much

longer (, 60000 MCS as compared to , 10000 MCS) and has a

much larger variation than that of the chemotaxis model. These

results suggested that, unlike chemotaxis, sorting by differential

adhesion is slower and more stochastic. We also characterized the

cell size variation among the different cell types and observed low

variations (Fig. 2c). This is consistent with the absence of any force

biasing the sizes of the different cell types.

In the above model, differential adhesion of the cells types vary

with their distances apart after correct sorting as captured by

equation (7). This is more stringent than a model whereby cells

‘‘dislike’’ cells of all other types equally. To test this model, we used

a different matrix J t,t0ð Þ as shown in Fig. S4a in File S1. We

compared Fc for the two different models for j = 0.25, 1.0 and 4.0

and observed that the stringent model achieved higher fraction of

correct sorting as compared to the second model (Fig. S4b in File

S1). We examined the runs from the second model and realized

that if a cell cannot discriminate among unlike cells, it is likely to

be sorted to the boundaries between two different cell types as this

is a local minimum in the energy function (Fig. S4c in File S1).

Hence a simple model where cells dislike cells of all other types

equally leads to poorer sorting.

In differential adhesion model, cell speed affects correct
sorting

As shown in Fig. 2b, the fraction of correct runs, Fc, decreases

with the magnitude of differential adhesion, j. This result was

unexpected as, intuitively, one would think that increasing the

magnitude of differential adhesion among the different types of

cells would lead to better sorting. To make sense of this

unexpected result, we examined the sorting process more closely.

During the sorting process, a misspecified cell will move among

the cells that are specified correctly (Fig. 3a, top). This movement

is random with no preferred direction as the misspecified cell is

homogenously surrounded by correctly-specified cells. During this

random movement, the misspecified cell may reach the boundaries

of different clusters, thus coming into contact with cells of its own

type (Fig. 3a, second from bottom) and moving into the cluster

consisting of cells of its type (Fig. 3a, bottom).

Since the process of sorting involves the random motion of the

misspecifed cell, the speeds of the misspecified cell will be an

important determinant of whether correct sorting occurs. As the

speed of the misspecified cell decreases, it has a lower probability

of reaching the boundary. We estimated the speeds of correctly-

specified and misspecified cells by calculating the absolute

difference between their centriods at every 100 MCS. We found

that the speed of correctly-specified cells is always higher than that

of misspecified cells (Fig. 3b). This is expected as cells of the same

type will intermingle more readily. Unlike the speed of correctly-

specified cells which remained relatively constant, the speed of

misspecified cells rapidly decreased with j (Fig. 3b). This showed

that the speed of cells decreased as its differential adhesion

strength, j, with its neighbor increased, leading to a lower fraction

of correct sorting, Fc. This was expected as the higher the value of

j was, the more energetically costly it would be to deform the cell.

This would lead to a much lower acceptance rate for simulations

that change the cell edge at the boundaries of the misspecifed cells.

This directly contribute to reduced effective movement of the

misspecifed cells, causing their speeds to decreased with j.

The random motion of a cell among cells of another type is

different from the situation when a cell is in contact with cells of

both the same and different types. In the latter case, we will expect

a higher value of j to facilitate the integration of the cell into the

region of cells having the same fate. To test this hypothesis, we

performed another set of stimulations with a smaller number of

cells. In this simulation, there were only 16 cells, arranged in a 4

by 4 manner. 7 of the cells are of type 1 and the remaining 9 are of

type 2. With this initial setup, we determined the average time in

100 runs needed for the cell marked with the arrow (Fig. 3c, inset)

to cross the boundary highlighted by the orange dotted line for

different values of j. As expected, this time decreases with j
(Fig. 3c).This shows that when a cell is in contact with cells of the

same and different types, having a larger j increases its adhesion

with cells of the same type and speeds up its integration with cells

of the same type. This integration time, of the order of 500 MCS,

is much shorter than ts, of the order of 80,000 MCS (Fig. 2d).

Intermediate levels of chemotactic and differential
adhesion responses yield high fraction of correct and
stable sorting with low cell size variations

We have observed two different sorting outcomes based on the

chemotaxis and differential adhesion models. We found that

chemotaxis is better for achieving correct clustering whereas

differential adhesion is better for stabilization of the correct

clusters. Their different advantages suggest that some optimal

Figure 2. Differential adhesion model leads to low fraction of correct sorting but high fraction of stable sorting. 30 runs were
performed for each value of j. (a) The cell grid at start (top), middle (middle) and end of a run (last). The number of clusters, c, is shown to the left of
the grid. The parameter r~0:025 is used to mimic a low cell fate specification rate. (b) Bar graphs of fraction of correct and stable sorting, Fc (blue)
and Fs (red), respectively, for different values of magnitude of differential adhesion, j. For j = 4, none of the runs lead to correct sorting. (c) Bar
graphs for sorting time, ts, (green) and size variation (black) for different values of j. Error bars show the standard errors.
doi:10.1371/journal.pone.0109286.g002
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combination of the two mechanisms may exist to attain both

correct and stable sorting.

To test this hypothesis, we determined the sorting response

when the cells exhibit both chemotaxis and differential adhesion.

Cells were initialized with r~1, corresponding to a completely

random initial assignment of cell fates. We plotted the fraction of

correct sorting, Fc, for different values of magnitude of chemo-

tactic response, mo, and magnitude of differential adhesion, j
(Fig. 4a). We found that chemotaxis alone leads to a high fraction

of correct sorting similar to results shown in Fig. 1c. On the other

hand, differential adhesion alone is unable to lead to correct

sorting. This is expected as the stimulation is started from a

random configuration. Interestingly, for a fixed value of mo,

increasing the value of j generally leads to a decrease in the

fraction of correct sorting, Fc (Fig. 4a). This suggests that there is a

"tug-of-war" between the chemotactic force of individual cells and

the collective adhesion exerted by cells of the same type. To study

this effect, we examined the cell arrangement for runs that did not

lead to correct sorting (Fig. 4d). Most of the sorting errors

occurred at the edge furthest away from the morphogen gradient

where the gradient is most gradual. At intermediate values of j, we

often observed one or two mis-sorted cells stuck at the edge

(Fig. 4d, top). This happened as the gradual chemotactic gradient

at this edge was insufficient for the cell to overcome the stronger

repelling force exerted by neighboring cells due to differential

adhesion. At high values of j, we observed higher number of cells

being mis-sorted (Fig. 4d, bottom). These mis-sorted cells formed

stable clusters with other mis-sorted cells of the same type. In this

case, the adhesion of a cluster of cells of the same type impedes

migration of the individual cells towards the morphogen source.

Next, we examined the fraction of stable sorting, Fs. Certain

combinations of j and mo are unable to lead to correct sorting and

hence, Fs cannot be computed for these values. These combina-

tions are shown in black in Fig. 4b. For the remaining

combinations where correct sorting was achieved, we computed

Fs. As shown in Fig. 4b, high Fs is achieved when the value of j is

non-zero, showing that introducing a small amount of differential

adhesion can improve the stability of the clusters significantly.

Next, we determined the fraction of correct and stable runs by

computing the product of Fc and Fs. As shown in Fig. 4c, the

highest fraction of correct and stable runs is observed for

intermediate values of j and intermediate and high values of mo.

This is the regime whereby differential adhesion is low enough not

to impede the migration of individual cells during the sorting

process but is sufficient in combination with intermediate values of

mo to maintain stability of the clusters after correct sorting has

occurred.

Figure 3. Speed of misspecified cells decreases with magnitude of differential adhesion, j. (a) The cell grid as time progresses (top to
bottom). (b) Bar graphs showing the speeds of correctly specified (blue) and incorrectly specified cells (red) for different values of j. (c) Bar graph of
the merging time for different values of j. (Inset) Cell grid showing the initial configuration of the cells. The average time taken for the centroid of the
misspecified to cross the boundary (dotted line in orange) is measured for 100 runs. Error bars show the standard errors.
doi:10.1371/journal.pone.0109286.g003
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We determined the sorting time, ts, and the size variations of the

cells for these runs with both chemotaxis and differential adhesion.

We found that ts decreased with moand increased with j (Fig. 4e).

This agrees with the observations above that higher chemotactic

response leads to higher migration speed of individual cells

whereas differential adhesion leads to adhesion of cells of similar

cell fate thus impeding migration of individual cells. We found that

size variation is a function solely of mo and does not depend on j

(Fig. 4f). We concluded that intermediate values of j and mo are

optimal for achieving high fraction of correct and stable sorting

with low cell size variations.

As shown in Fig. 4d and discussed above, mis-sorted cells could

form stable clusters with other mis-sorted cells of the same type,

thus impeding migration towards the morphogen source. This

observation suggests that the initial arrangement of cells may play

an important role in affecting the sorting outcome. Hence, we

determined if the initial number of clusters would affect the sorting

outcome and sorting time for the various values of j and mo. Since

each simulation was initialized independently, the initial number

of clusters could take on different values. Indeed, we observed that

the initial cluster number ranged from 37 to 60 in our simulations.

For our system of 100 cells, this would correspond to cell clusters

of about one to three cells. To determine if initial cluster size could

lead to differences in sorting outcomes, we performed a 2-sample

t-test to determine if initial number of clusters for runs that led to

correct sorting and those that led to incorrect sorting are

significantly different for each values of j and mo. From the p-

values shown in Table S1a in File S1, we concluded that no

significant differences in initial cluster numbers were observed

between runs that led to correct sorting and those that did not.

Next, we determined whether there was a correlation between

initials cluster number and sorting time by performing a spearman

correlation test between the two variables. From the p-values

shown in Table S1b in File S1, we concluded that no significant

correlation was observed. The lack of influence of initial number

of clusters on the sorting outcome is likely due to the small size of

the clusters.

Chemotactic response combined with later activation of
differential adhesion response yield high fraction of
correct and stable sorting in presence of morphogen
noise

We found that intermediate values of j and mo are optimal for

achieving high fraction of correct and stable sorting in the absence

of gradient noise. In this section, we explore the behavior of the

system when noise was introduced into the morphogen gradient.

We introduced different amount of fluctuations, characterized by

the parameter g, into the gradient. As shown in Fig. 5a (inset), the

amount of variation in the gradient increases with g. We

quantified the absolute value of the fractional deviation of the

gradient from the deterministic gradient for the various values of g
and found that we were in the range of fractional deviation

between 0.025 to 0.2 (Fig. 5a). One of the few known careful

measurements of morphogen noise, performed in Drosophila

Figure 4. Intermediate levels of magnitudes of chemotactic response, mo, and differential adhesion, j, lead to correct and stable
sorting with low cell size variations. 10 runs were performed for each value of mo and j. (a–c) Fraction of correct sorting, Fc (a), stable sorting, Fs

(b) and fraction of runs that lead to both correct and stable sorting (c) for different combinations of mo and j. (d) Cell grid obtained for intermediate
(top) and high j(last). For intermediate j, a few cells are sorted incorrectly. At high j, a larger number of cells are mis-sorted. These mis-sorted cells
formed stable clusters with cells of the same fate. (e) Sorting time, ts , for different combinations of mo and j. (Combinations of mo andj with Fc = 0 are
shown in black) (b) Cell size variation for different combinations of mo and j. Size variation increases with mo but does not depend on j.
doi:10.1371/journal.pone.0109286.g004
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embryo for the Bicoid morphogen, yielded a fractional deviation

of 0.1 which falls within the range of our study [36].

Using the optimal values of j = 0.25 and mo = 0.75 found in the

previous section, we ran the stimulation for different values of g.

We determined the fraction of correct runs, Fc, and found that it

decreases with increasing g (Fig. 5b). This is expected as

performance of cell sorting would deteriorate with increasing

fluctuations in the gradient. We also found that although high Fc is

achieved, the fraction of stable runs, Fs is low (Fig. 5b). This is

likely due to spontaneous dissociation of correct clusters when

exposed to gradient noise at the cell-type boundaries. Previously,

we had shown that in the absence of gradient noise, differential

adhesion response of j = 0.25 is able to prevent spontaneous

dissociation from occurring (Fig. 4c). This suggests that higher

values of j is needed to prevent spontaneous dissociation in the

presence of noise.

We repeated the same analysis keeping mo constant while

increasing j. We found that although the fraction of stable runs,

Fs, has increased, the fraction of correct runs, Fc decreases

(Fig. 5c). This result is similar to that discussed before whereby

high differential adhesion leads to adhesion of cells of similar cell

fate thus impeding correct migration of individual cells at the

Figure 5. Chemotaxis coupled with delayed differential adhesion response yields optimal sorting in presence of noise. (a) Fractional
noise in the morphogen gradient for different values of g. (Inset) Representative traces of morphogen concentration, C xð Þ, along x for different
values of g. (b) Bar graphs of fraction of correct and stable sorting, Fc (blue) and Fs(red), respectively, for different values of g at mo = 0.75 and j =
0.25. 10 runs were performed for each value of g. (c) Bar graphs of fraction of correct and stable sorting, Fc (blue) and Fs (red), respectively, for
different values of jat mo = 0.25 and g = 10. 10 runs were performed for each value of j. (d) Bar graphs of fraction of correct and stable sorting, Fc

(blue) and Fs(red) respectively, for different values of g at mo = 0.75 and j = 0 for the first 500 MCS, followed by mo = 0.75 and j = 1.5 for the
subsequent 2000 MCS. 10 runs were performed for each value of g. (e) Illustration for the chemotaxis coupled with delayed differential adhesion
response model.
doi:10.1371/journal.pone.0109286.g005
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initial stages of cell sorting (Fig. 4a). In the absence of noise, there

is a range of values for j and mo that is finely-tuned to satisfy the

requirements for both correct sorting and stable cluster formation

(Fig. 4c). In the presence of noise, it becomes more challenging to

balance the forces of chemotaxis and differential adhesion to

satisfy these requirements. Furthermore, values of j and mo that

yielded optimal sorting in the absence of noise do not do so now in

the presence of noise. This suggests that a different strategy has to

be adopted in the presence of noise.

Examining our computational model, we found that attaining

correct and stable sorting requires two steps, migration and

maintenance. In the migration step, cells sort out into their

respective regions. In the maintenance step, cells have to "stick"

tightly to like cells and not spontaneously dissociate from them.

Viewing cell sorting as a two-step process allows us to think about

the contributions of chemotaxis and differential adhesion at each

step. In the first step, chemotaxis will be more important than

differential adhesion as it acts as a systematic force to bias cells

with different responses towards different ends of the tissue. Indeed

if differential adhesion is too high, it may even impede the first step

due to formation of stable clusters that do not sort correctly

(Fig. 4d). In the second step, differential adhesion plays a more

important role as it acts as a "glue" to keep cells of the same type

together hence maintaining the clusters and preventing mixing.

Hence we think a model with chemotaxis coupled with delayed

differential adhesion response would lead to both high fraction of

stable runs, Fs, and high fraction of correct runs, Fc.

To test the dynamical model, we stimulated cell sorting process

for j = 0 and mo = 0.75 for 500 MCS, followed by j = 1.5 and

mo = 0.75 for the next 1500 MCS. We found that temporal control

of j leads to high, Fs and Fc for a range of g (Fig. 5d). This showed

that temporal control of j is an effective strategy leading to correct

and stable cell sorting in the presence of noise.

Discussion

We studied two mechanisms, chemotaxis and differential

adhesion, to determine which led to better cell sorting. We first

studied cell sorting in the absence of morphogen noise. We found

that chemotaxis and differential adhesion conferred differing

advantages to the sorting process; chemotaxis led to correct but

unstable sorting, whereas differential adhesion resulted in low

fraction of correct sorting which were very stable. The different

outcomes of the chemotaxis and differential adhesion models led

us to consider a model incorporating both mechanisms. We found

that, in the absence of morphogen gradient noise, intermediate

levels of the magnitude of chemotactic response, mo, and the

magnitude of differential adhesion, j, led to correct and stable

sorting with low cell size variations. Next, we examined sorting in

the presence of gradient noise and found that in the presence of

morphogen gradient noise, chemotaxis coupled with delayed

differential adhesion response can lead to optimal sorting.

There are other past computational work that studied the effects

of combining chemotaxis and different adhesion [31,32,33]. Jiang

et al. studied mound formation of Dictyostelium discoideum and

suggested possible cooperation between differential adhesion and

chemotaxis to bring about a tip containing only pre-stalk cells [31].

They found that differential adhesion aided in the sorting of pre-

stalk cells to the surface of the mound whereas chemotaxis

functioned in tip formation. Their finding that differential

adhesion alone led to cell sorting differed from ours where both

differential adhesion and chemotaxis were needed. This difference

is likely due to the different geometries of mound formation versus

sorting in a cell sheet. In mound formation, cells in the interior

form more connections with other cells as they are completely

surrounded by cells. On the other hand, cells on the surface of the

mound form less cellular connections as they are also in contact

with the surrounding. Since formation of more adhesive interac-

tions are favored in order to minimize total energy of the system,

the more adhesive cell type will form a cluster inside the less

adhesive cell type. This leads to sorting of the less adhesive pre-

stalk cells to the surface of the mould. This is different from sorting

in a sheet where there is a-priori no difference between the left and

right sides unless a chemotactic gradient is included. It would also

be interesting to explore the time scale and stability of the sorting

process in Dictyostelium discoideum.

Käfer et al. studied cell sorting in the presence of both

differential adhesion and chemotaxis [32]. Their work aimed to

provide a general framework for understanding cell rearrangement

not specific for a particular biological context. Unlike our model,

they considered homogeneous chemotactic response where both

cell types responded similarly to the chemotactic gradient.

Similarly, they also found that cell sorting occurs much faster

with chemotaxis and observed a size-based segregation of the cells.

Furthermore, they found that cells could move against the

direction of chemotaxis. This was similar to our observation that

even when a cell was attracted to the morphogen, it could move

against the direction of chemotaxis as it was being pushed away by

other types of cells experiencing greater attraction to the

morphogen (Fig. S2 in File S1). Lastly, Käfer et al. concluded

that during cell sorting, increasingly larger clusters of cells were

formed and these clusters could change the local neighbourhood of

individual cells thus affecting sorting outcome. This was similar to

what we observed in Fig. 4d where big clusters that were formed

during sorting impeded the sorting process and affected the final

outcome. Our present work differs from this work as follows. In

Kafer et al., the cells were always randomly distributed initially

whereas in our model with differential adhesion alone, we started

with an initial system of only a few misspecified cells. We initialized

our system this way as our differential adhesion model is one

which allowed for cell sorting followed by imperfect cell fate

specification to a noisy morphogen gradient. Hence, we were able

to show that even if most of the cells were patterned correctly

initially, differential adhesion is still not robust enough to drive the

few misspecified cells out to the correct region. Also, because of

our specific biological context of tissue patterning in mind, we can

quantify metrics like fraction of correct sorting, fraction of stable

sorting and sorting time very carefully, whereas these metrics are

either not determined nor emphasized in Kafer et al. We placed a

lot of emphasis on these quantities relating to stability of the

clusters and time spent in sorting because robustness of boundary

maintenance and developmental time frame are pertinent issues

when studying pattern formation.

Finally, Zhang et al. studied in detail how the choice of cell

adhesion molecule binding affects cell sorting [33]. Their study

helped connect signaling models at the molecular level to cell

sorting and tissue patterning at the tissue-level.

Unlike our results in the absence of morphogen gradient, a

complicated dynamical interplay of chemotaxis and delayed

differential adhesion is required for cell sorting in the presence

of noise. We propose that cells first express molecules involved in

chemotaxis, followed by surface molecules involved in differential

adhesion for effective control for cell sorting. Dynamic gene

expression has been observed in development and we foresee that

future time-lap microscopy experiments following the expression
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of molecular players will yield greater insight into the sorting

process. Future work is also needed to identify the molecular

players involved in execution of these differential adhesion and

chemotactic response. Differential adhesion can be mediated by

having the cell types expressing different or different combinations

of surface molecules. Possible candidates include cadherins and

photocadherins which have been found to be expressed in

conserved domains along the dorsoventral axis in the spinal cord

of chicken embryo [37].

In Dictyostelium and mammalian cells, activation of PI3 kinase

(PI3K) and the downstream Akt have been found to be responsible

for the coordinated regulation of the actin cytoskeleton leading to

chemotaxis [38]. It will be interesting to determine if these

pathways are also involved in the chemotactic response and they

can be activated differently to generate different chemotactic

responses in the different cell types. The identity of the the

morphogen for chemotaxis is currently unclear. In the zebrafish

neutral tube, Xiong et al. found that Sonic hedgehog is not

required for sorting, suggesting that noncanonical Sonic hedgehog

or other molecules like Wnt may be responsible for cell sorting

[21].

Currently, experiments to identify proteins functional in sorting,

usually involved single protein knockout. Our work suggests that

knockout of two proteins, one involved in differential adhesion and

another in chemotaxis, may be required to observe a more severe

phenotype.

Here, we studied mechanisms for cell sorting to yield sharply

delineated domains of cell types. Recently, works on striped

pattern formation in zebra fish and hair placode morphogenesis

also suggested the importance of cell migration in formation of

these other kinds of patterns [39,40]. These experiments show that

there is an increasing need to view patterning as a dynamical

process in space. Future work incorporating signaling with cell

sorting models will be useful in understanding other patterning

processes.
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