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Abstract

Mouse embryo imaging is conventionally carried out on ex vivo embryos excised from the amniotic sac, omitting vital
structures and abnormalities external to the body. Here, we present an in amnio MR imaging methodology in which the
mouse embryo is retained in the amniotic sac and demonstrate how important embryonic structures can be visualised in 3D
with high spatial resolution (100 mm/px). To illustrate the utility of in amnio imaging, we subsequently apply the technique
to examine abnormal mouse embryos with abdominal wall defects. Mouse embryos at E17.5 were imaged and compared,
including three normal phenotype embryos, an abnormal embryo with a clear exomphalos defect, and one with a
suspected gastroschisis phenotype. Embryos were excised from the mother ensuring the amnion remained intact and
stereo microscopy was performed. Embryos were next embedded in agarose for 3D, high resolution MRI on a 9.4T scanner.
Identification of the abnormal embryo phenotypes was not possible using stereo microscopy or conventional ex vivo MRI.
Using in amnio MRI, we determined that the abnormal embryos had an exomphalos phenotype with varying severities. In
amnio MRI is ideally suited to investigate the complex relationship between embryo and amnion, together with screening
for other abnormalities located outside of the mouse embryo, providing a valuable complement to histology and existing
imaging methods available to the phenotyping community.
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Introduction

Mice are widely used as research models for investigating

development and disease as the murine genome can be readily

manipulated to create phenotypes analogous to human conditions.

Large-scale international programmes are underway to generate

knockout mice for each of the approximate 23,000 protein-

encoding genes in the mouse genome [1]. The broad aim is to

build a library of gene function, which will facilitate research into

human diseases and the development of new drugs and therapies

[2]. Mouse embryo phenotyping will be an important part of this

challenge since an estimated 30% of all targeted genes will lead to

intrauterine lethality when inactivated or perinatal demise [3],

which will preclude analysis of these genes in adult mice, unless

conditional mutagenesis is used for investigating tissue-specific

gene function [4].

A host of advanced imaging technologies exist for characterising

the developing mouse [5]. Magnetic resonance imaging (MRI) is a

well-established technique for monitoring embryonic development

and phenotype classification [6] owing to its non-invasive and

high-throughput capabilities [7], high resolution (,20 mm) [8]

with excellent soft tissue contrast, and the availability of automated

computational methods for image analysis [9]. Conventionally, ex
vivo mouse embryo MRI is carried out on mid to late gestation

embryos (typically aged between E14.5 and 18.5), which have

been extracted from the mother, removed from the amniotic sac

and exsanguinated by cutting the umbilical cord close to the

abdomen [10]. Whilst this protocol is sufficient for screening the

majority of abnormal embryos, abnormalities associated with the

amnion, the placenta or external structures that are fine or easily

damaged could be missed. These include placental defects, such as

preeclampsia [11] and intrauterine growth retardation [12], as

well as abdominal wall abnormalities, such as exomphalos and

gastroschisis, in which the defect may not be accurately delineated

due to disruption of structures whilst extracting and preparing the

embryo [13].

In this study, we describe a new in amnio MR imaging method

in which the mouse embryo is retained within the amniotic sac,

therefore complementing the existing ex vivo embryo screening

protocol by providing additional information on the developmen-

tal relationship between the embryo, fine external structures,

umbilical cord and placenta. As a proof of principle, we apply this

technique to image E17.5 floxed Scribble (Scribfl/-) heterozygote

embryos [14] with abdominal wall defects. Phenotype penetrance

was low in the animal model, thus alongside normal phenotype

embryos, we examined: an abnormal embryo with a defined

exomphalos abnormality, where the herniated abdominal contents

protrude into the base of the umbilical cord and are enclosed

within a membrane; and an abnormal embryo with a suspected
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gastroschisis abnormality, where the eviscerated abdominal

contents have no covering membrane and are exposed directly

to the amniotic fluid.

The aim of the present report was two-fold: to demonstrate the

additional information gained imaging in amnio and to non-

destructively characterise the phenotypes of the abnormal

embryos. Phenotype identification was not possible using conven-

tional ex vivo embryo MRI, light microscopy or histology as the

delicate membranous structures, which were in close proximity of

the abdominal contents and amniotic membrane, were damaged

during the necessary preparation for these approaches.

Materials and Methods

Ethics statement
All animal studies were approved by the University College

London Biological Services Ethical Review Committee and

licensed under the UK Home Office regulations and the Guidance

for the Operation of Animals (Scientific Procedures) Act 1986

(Home Office, London, United Kingdom).

In amnio embryo preparation and optimisation
Dams from one successfully timed mating of floxed Scribble

(Scribfl/-) heterozygotes were sacrificed by Schedule 1 cervical

dislocation methods at 17.5 days of pregnancy (E17.5). After death

Figure 1. Stereo microscope images of ex vivo mouse embryos in their amniotic sacs. (a) normal, (b) known exomphalos, (c) suspected
gastroschisis phenotypes. The two abnormal embryos have similar abdominal wall defects but the herninated viscera of the embryo in (c) are much
more dispersed than the tightly compacted herniation of the known exomphalos embryo in (b).
doi:10.1371/journal.pone.0109143.g001

Figure 2. Sagittal sections of in amnio mouse embryo MR images at E17.5. (a) normal phenotype, (b) known exomphalos embryo with
craniorachischisis and (c) suspected gastroschisis embryo with craniorachischisis. In the exomphalos embryo, the herniated abdominal contents are
enclosed in a membrane (yellow arrows) whereas in the suspected gastroschisis they appear exposed to the amniotic fluid.
doi:10.1371/journal.pone.0109143.g002
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was confirmed, the embryos from two litters were carefully

removed from the uterus ensuring that the amnion remained

intact. Five embryos were identified for imaging by visual

assessment under a stereo microscope (Zeiss SV6, USA) including

three with a normal phenotype, one abnormal embryo with a

known exomphalos (exom) defect (tightly packaged abdominal

viscera), and one abnormal embryo with a suspected gastroschisis

(s.gas) abnormality (dispersed abdominal viscera). Each embryo

was placed in a Petri dish filled with phosphate buffered saline

(PBS) and photographed using the stereo microscope. Embryos

were then immersed in 4% paraformaldehyde for approximately

one hour. For MR imaging, each embryo was carefully embedded

in 1% agarose gel within individual 50ml centrifuge tubes to

maintain amnion integrity. Embryos were scanned less than

24 hours following extraction and fixation. Samples were stored at

4uC before and after imaging.

Preliminary investigations of the sample preparation indicated

that standard (15 ml) centrifuge tubes were too narrow, which

caused the fragile amniotic sac to split. Furthermore, it was not

possible to stabilise the sac using gauze and immersing the embryo

in Fomblin (Galden Perfluorosolv-1), as in some standard embryo

protocols [15], due to rupturing of the sac. Finally, we found that

attempts to enhance embryo tissue contrast by injecting a

gadolinium-based MRI contrast agent (Magnevist, Bayer-Scher-

ing, Newbury, UK) directly into the embryo also caused the

amniotic sac to collapse.

MR image acquisition and analysis
Embryos were scanned using a 9.4T VNMRS system (Agilent

Technologies, Inc., Santa Clara, CA, USA) with a 33mm volume

coil (RAPID Biomedical GmbH, Germany). T2-weighted images

were acquired using a 3D Fast Spin Echo sequence with repetition

time (TR) = 1500ms, effective echo time (ETE) = 80ms, echo train

length (ETL) = 8, echo spacing (ESP) = 20ms, k0 = 4 and 3

averages. The matrix size was 25662566256px with a

25.6625.6625.6mm field-of-view (FOV), giving an isotropic

resolution of 100 mm/pixel (px), and the total scan time was

approximately 10 hours.

Images were converted into the Analyze 7.5 data format using

ImageJ (NIH, USA) and visualised using Amira 5.4 (Visage

Imaging, Inc., CA, USA). Contrast levels were windowed equally

across images being compared. The signal-to-noise (SNR) ratio

was measured in the brain, liver, amniotic fluid and agarose using

MATLAB (Mathworks Inc., MA, USA) by taking the ratio of the

average signal from the region of interest and the standard

deviation from a region of background noise (SNR = Signal/Noise

SD). The contrast-to-noise ratio (CNR = Signal1 – Signal2/Noise

SD) was also calculated and measured relative to agarose.

Results

Stereo microscope images
The three different types of embryo studied were distinguishable

in the stereo microscope images (Figure 1). As expected, the

normal phenotype embryos had a complete abdominal wall

(Figure 1a), whilst the herniated abdominal contents of the known

exomphalos were tightly enclosed in a membrane (Figure 1b). The

herniated abdominal contents of the suspected gastroschisis were

dispersed, appeared to be exposed to the amniotic fluid

(Figure 1c), and were associated with a more extensive abdominal

wall defect. Abnormal embryos also exhibited craniorachischisis

(Figure S1), which is complete failure of the neural tube to close

along the entirety of the cranium and spinal cord. Furthermore,

we noted extravasation of blood into the amniotic fluid of both

abnormal embryos (Figures 1b and 1c).

MR imaging optimisation
Prior experiments investigated the use of a gradient echo

sequence. However this gave rise to marked susceptibility artefacts

that masked the fine structures of interest due to the blood in the

amniotic fluid. For this reason, a T2-weighted 3D Fast Spin Echo

sequence was chosen, which was well suited to assess structures of

interest in the abnormal embryos as the amniotic fluid provided

natural contrast against the embryo tissue and amniotic mem-

brane (Figure 2 and 3).

In amnio MR images
Structures visualised with in amnio imaging. In addition

to the internal organs, which can be imaged with conventional ex
vivo protocols, important developmental structures could be

Figure 3. Coronal sections of in amnio mouse embryo MR images at E17.5. (a) Normal and (b) known exomphalos embryos: the umbilical
cord is visible connecting from the abdomen to the placenta. (c) and (d): Sections through the placenta of the normal and known exomphalos
embryos, respectively, showing clearly the labyrinth blood vessels.
doi:10.1371/journal.pone.0109143.g003
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observed in amnio, such as the placenta, umbilical cord and

amniotic sac (Figure 3). The hyperintense amniotic fluid was

distinct against the hypointense agarose, enabling delineation of

the border of the amniotic sac and cross-sections through the

embryo placentas showed the labyrinth blood vessels (Figure 3a

and 3b). In the abnormal embryos only, we also observed

complete failure of the cranium and vertebrae to fuse resulting in

externalisation of the brain and spinal cord (Figures 2b and 2c),

which matched the observations of craniorachischisis made with

light microscopy.

Signal disparity between normal phenotypes and

abnormal embryos. A marked signal intensity difference was

observed between the normal phenotype and abnormal embryos

(Figures 2 and 3). For example, the abnormal embryos exhibited a

positive CNR in the brain and liver (relative to the agarose)

compared to the normal embryos which all had a negative CNR

(Table 1). The abnormal embryos exhibited at least a three-fold

higher SNR in the brain (SNRnorm = 19.563.2 vs. SNRexom = 75.9

and SNRs.gas = 66.7) and nine-fold higher SNR in the liver

(SNRnorm = 5.360.9 vs. SNRexom = 46.7, SNRs.gas = 44.9). Con-

versely, the agarose signal was relatively constant across all

embryos (SNRnorm = 29.960.4 vs. SNRexom = 35.1 and

SNRs.gas = 30.2) as was the amniotic fluid signal

(SNRnorm = 63.162.3, SNRexom = 73.3, SNRs.gas = 74.6).

Phenotyping study: exomphalos or gastroschisis?. Using

our in amnio imaging method, we confirmed that the viscera of the

known exomphalos embryo were clearly enclosed within a

membrane (yellow arrows in Figure 2b), which could be traced

back to the abdomen. Furthermore, we determined that the

suspected gastroschisis embryo had an exomphalos defect rather

than a true gastroschisis defect. Whilst the stereo microscope

image (Figure 1c) showed that the herniated abdominal contents

were dispersed and may have been exposed to the amniotic fluid,

the MR images (Figure 4a, 4b, and 4c) revealed thin (,200 mm),

dark structures extending outwards from the abdomen of the

embryo, which appear to be remnants of a ruptured membrane.

These membranous structures were not present in the normal

embryos (Figure 4d, 4e, and 4f).

Discussion

In this study, we have developed an in amnio MRI method for

imaging ex vivo mouse embryos retained within their amniotic sac.

As a proof of principle, we applied our technique to phenotyping a

mouse model with an ambiguous abdominal wall abnormality,

and determined that it exhibits an exomphalos defect of varying

severity.

Whilst other animal models have been studied in ovo [16] using

MRI, such as chick embryos, ex vivo imaging of mouse embryos is

generally conducted on subjects excised from the amniotic sac [5].

In utero MRI of mouse embryos is possible, but resolution is

limited to the level of whole organs [6] and major vasculature [17]

Therefore, this approach can only be used to examine the most

obvious phenotypes [18]. In amnio MRI facilitates high-resolution

information about structures crucial to embryonic development,

such as the amniotic sac, placenta and umbilical cord, which

would otherwise be unattainable using conventional ex vivo
approaches or in utero MRI. In amnio imaging is particularly

applicable to developmental studies of the placenta as small

structures such as the labyrinth blood vessels can be resolved. With

further optimisation of the sequence to increase resolution, such as

a smaller field-of-view, or by using diffusion tensor imaging, in
amnio imaging may be used to examine substructures in the

placenta.
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Optimisation of the embryo preparation determined that

embedding in agarose was suitable for in amnio imaging without

damaging the delicate amniotic sac, as in conventional ex vivo

mouse embryo imaging protocols. One hour fixation was shorter

than in other protocols [15], however this appeared sufficient for

imaging the fine external structures, which remained intact. In
amnio imaging is compatible with multi-embryo phenotyping

protocols [19] as it is possible to embed up to six embryos in

agarose at once, depending on gestational age. A multiple embryo

study was difficult to conduct in the present work as the phenotype

penetrance was low. One limitation of the in amnio preparation is

that tissue samples cannot be extracted directly from the embryos

before imaging as the amniotic sac must be compromised.

Alternatively, there are methods for recovering DNA from fixed

samples [20] or careful extraction of tissue from the placenta could

be conducted before fixation and embedding.

Scan duration was approximately 10 hours, which was conve-

nient for imaging overnight, however acquisition time could be

shortened by using a smaller field-of-view or 2D imaging if whole

embryo coverage is not required.

We found that the abnormal embryos had positive contrast and

higher SNR than the normal phenotype embryos (Figure 3). This

effect was most likely caused by blood extravasation [21]

(Figures 1b and 1c) from blood vessels supplying the externalised

(not covered by normal tissues such as skin) and exposed brain and

spinal cord, as these organs were in direct contact with the irritant

amniotic fluid leading to leaky vasculature. The contrast observed

in normal phenotype embryos was consistent between litters.

Further investigation of the signal disparity was not performed as

the change in MR signal did not impact on delineating the gut

associated membranes, however a combination T1 and T2

mapping may inform the mechanism of the signal disparity.

Using our in amnio imaging method, we confirmed that the

herniated abdominal contents of the known exomphalos embryo

were fully enclosed in a membrane, and determined that the

suspected gastroschisis was also an exomphalos phenotype but

with a ruptured membrane. The cause of the rupture was unclear.

However, it may have split due to environmental factors such as

rubbing against the amniotic sac, or could be due to the natural

embryonic growth rate variation in utero [22]. This demonstrates

the potential of in amnio imaging over other MRI techniques, such

as a conventional ex vivo embryo MRI, in which the embryo

preparation would have disrupted the thin membrane covering the

abdominal contents, and in utero MRI, which would not have

been able to resolve such small structures. In amnio MRI could

easily be extended to examine different defects such as in mouse

models of placental development [23,24]. Furthermore, as in
amnio imaging provides information unattainable using conven-

tional phenotyping methods, such as histology, it could prove a

valuable complement to the embryo screening toolkit by

Figure 4. Contrast-adjusted in amnio MR images of the normal and suspected gastroschisis embryos at E17.5. (a) coronal, (b) axial and
(c) sagittal sections through the suspected gastroschisis mouse embryo. Thin membranous structures (yellow arrows) can be seen extending
outwards from the abdomen of the mouse embryo. (d), (e) and (f) show equivalent images of a normal embryo, where the abdominal contents are
internalised and no emanating membranes can be observed.
doi:10.1371/journal.pone.0109143.g004
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facilitating the formation of a more detailed and complete

phenotyping library.

In conclusion, we present the first in amnio MRI mouse embryo

images for the purposes of phenotyping. Important embryonic

structures such as the placenta, umbilical cord and amniotic sac can

be visualised in amnio. In this paper, we applied the technique to

examine abnormal mice with abdominal defects, determining that

both had an exomphalos phenotype with different levels of severity.

Distinguishing between these subtly different defects would have

been extremely difficult with existing imaging methods.

Supporting Information

Figure S1 Alternative stereo microscope image showing
craniorachischisis in the exomphalos embryo.
(TIF)

Video S1 3D in amnio MRI of a wild-type embryo.

(AVI)

Video S2 3D in amnio MRI of an exomphalos embryo.

(AVI)

Video S3 3D in amnio MRI of a suspected gastroschisis
embryo.

(AVI)
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