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Abstract

Endophytic microorganisms live inside plants for at least part of their life cycle. According to their life strategies, bacterial
endophytes can be classified as ‘‘obligate’’ or ‘‘facultative’’. Reports that members of the genus Micromonospora, Gram-
positive Actinobacteria, are normal occupants of nitrogen-fixing nodules has opened up a question as to what is the
ecological role of these bacteria in interactions with nitrogen-fixing plants and whether it is in a process of adaptation from
a terrestrial to a facultative endophytic life. The aim of this work was to analyse the genome sequence of Micromonospora
lupini Lupac 08 isolated from a nitrogen fixing nodule of the legume Lupinus angustifolius and to identify genomic traits that
provide information on this new plant-microbe interaction. The genome of M. lupini contains a diverse array of genes that
may help its survival in soil or in plant tissues, while the high number of putative plant degrading enzyme genes identified is
quite surprising since this bacterium is not considered a plant-pathogen. Functionality of several of these genes was
demonstrated in vitro, showing that Lupac 08 degraded carboxymethylcellulose, starch and xylan. In addition, the
production of chitinases detected in vitro, indicates that strain Lupac 08 may also confer protection to the plant.
Micromonospora species appears as new candidates in plant-microbe interactions with an important potential in agriculture
and biotechnology. The current data strongly suggests that a beneficial effect is produced on the host-plant.
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Background

For a long time, it was considered that a healthy plant was a

plant without microbes within its tissues. However, this view has

started to change with new approaches to allow strains to grow for

a longer time upon isolation as well as the use of NGS, which has

permitted the identification of several strains present in the tissues

of healthy plants, in particular several actinobacteria [1,2].

Endophytic microorganisms live inside plants for at least part of

their life cycle. According to their life strategies, bacterial

endophytes can be classified as ‘‘obligate’’ or ‘‘facultative’’.

Obligate endophytes are strictly dependent on the host plant for

their growth and survival while facultative endophytes have a stage

in their life cycle during which they exist outside host plants [3].

These endophytes originate from soil, initially infecting the host

plant by colonizing, for instance, the cracks formed at points of

emergence of lateral roots from where they quickly spread to the

intercellular spaces in the root [4]. Thus, a series of environmental

and genetic factors is presumed to have a role in enabling a specific

bacterium to become endophytic [5]. Conversely, Marchetti and

co-workers [6] recently showed how a pathogen can evolve in a

few generations to become a symbiotic endophyte by losing

specific transporters and regulators linked to pathogenesis.

Micromonospora is a genus of Gram-positive Actinobacteria

that was first isolated from soil [7]. This bacterium has received a

lot of attention during natural product screening programs, given

its ability to produce a very rich array of secondary metabolites

[8,9,10]. The distribution of members of Micromonospora is wide-

ranging since these bacteria have been isolated from different

geographical zones. In addition, its habitats are also diverse and

include: soil, freshwater and marine sediments, mangrove soils,

rocks, and nitrogen fixing nodules of both leguminous and

actinorhizal plants [11,12,13]. The recent report [13] that

Micromonospora inhabits nitrogen-fixing nodules in a systematic

way, has opened up a question as to what is the potential

ecological role of this bacterium in the plant and whether this

bacterium is in a process of adaptation from a terrestrial to a

facultative endophytic life style.
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Taxonomically, Micromonospora belongs to the family Micro-
monosporaceae which currently contains 27 genera and includes

aerobic, non-acid fast and mesophilic microorganisms. Many

strains produce mycelial carotenoid pigments giving the colonies

an orange to red appearance, but blue-green, brown or purple

pigmented strains have also been isolated. The family Micro-
monosporaceae also harbors the genus Salinispora, which is widely

distributed in tropical and sub-tropical marine sediments. This

taxon was described as the first marine actinomycete given its

inability to grow in low salinity medium. Indeed, genomic

information obtained from the genomes of Salinispora tropica
and Salinispora arenicola provide evidence of marine adaptation

of Salinispora species [14]. Thus, it appears that Salinispora
evolved from a terrestrial environment to a marine habitat. In the

case of some Micromonospora lineages, the question is whether this

bacterium has followed a comparable evolution process, changing

from a terrestrial to an endophytic lifestyle.

Further examples of closely related actinobacteria with different

lifestyles reflected in their genomes include, among others, the

genera Frankia, Mycobacterium and Streptomyces. In the case of

Frankia, comparative genomic analysis of three representative

strains, differing by less than 2% in their 16S rRNA genes revealed

significant differences in their genome sizes (5.4–9.0 Mb) suggest-

ing that these differences (e.g. gene deletion, acquisition and

duplication, etc.) reflect their rapid adaptation to contrasted host

plants and to their environments [15]. Similarly, several myco-

bacterial genomes were analyzed both at the nucleotide and

protein levels. One of the most striking features was lipid

metabolism genes with marked expansions of the number of

genes related to saturated fatty acid metabolism in the pathogenic

mycobacteria compared to the soil-dwelling strains [16].

In an effort to identify the genomic traits which make possible

adaptation from a soil dwelling way of life to an endophytic

habitat, the aim of this work was to present the genome sequence

analysis of a representative strain, Micromonospora lupini Lupac

08, isolated from a nitrogen fixing nodule of the legume Lupinus
angustifolius. This strain is part of a collection of more than 2000

strains isolated from nitrogen fixing root nodules of diverse legume

[17,18] and actinorhizal species [13]. Strain Lupac 08 was selected

as it showed good plant growth promotion, was used previously for

in situ localization studies in planta [11] and produced several new

secondary metabolites [9,10]. The results presented here show that

the genome of M. lupini Lupac 08 contains a diverse array of

genes that may help its survival in soils or in plant tissues, while the

high number of putative plant degrading enzyme genes identified

in its genome is quite surprising since this bacterium is not

considered a plant-pathogen and may instead reflect their ability

to bind to plant structural compounds.

Results

Phylogenetic position of M. lupini Lupac 08 and general
genome features

The phylogenetic position based on 16S rRNA gene sequence

analysis of strain Lupac 08 with respect to currently described

Micromonospora species and other members of the family

Micromonosporaceae is presented in Figure 1. Those strains

associated with plant/rhizosphere sources are highlighted. Strain

Lupac 08 was clearly positioned within the genus Micromonospora
and forms a subgroup together with the species Micromonospora

saelicesensis, Micromonospora zamorensis and Micromonospora
chokoriensis. These strains were isolated from a nitrogen fixing

nodule, the rhizosphere of a Pisum sativum plant and a sandy soil,

respectively. Nevertheless, a clear picture based on the habitat

cannot emerge from this analysis.

M. lupini Lupac 08 was shown to have a circular chromosome

of 7,327,024 bp with a GC content of 71.96% and no plasmid. A

total of 7158 genomic objects were identified: 7,054 protein-

coding, 10 rRNAs, 77 tRNAs, and 12 miscRNAs genes. The

average gene length was 964 bp with an average intergenic

distance of 126 bp. After manual validation of the automatic

annotation, 61.5% (4338 CDSs) of the genes were assigned a

biological function while 38.5% were registered as open reading

frames (ORFs) with an unknown function. Based on the G+C skew

analysis and position of dnaA, the probable origin of replication

(oriC), was mapped close to the ribosomal protein rpmH. A

circular representation of the M. lupini chromosome is provided

in Figure 2 indicating some of the features described above.

The genomic characteristics of strain Lupac 08 and three

additional Micromonospora genomes deposited in the public

databases including Micromonospora sp. strain L5 isolated from

root nodules of Casuarina equisetifolia [19]; M. aurantiaca
ATCC 27029T and Micromonospora sp. ATCC 39149 isolated

from soil (Table 1) were compared. An important difference

between the four strains was the number of tRNAs identified. M.
lupini 08 contained by far the highest number with 77 tRNAs

while the other strains had between 51 and 53. At present, M.
lupini Lupac 08 contains one of the largest numbers of tRNAs

reported among the actinobacteria sequenced. The number of

rRNA and tRNA genes in a genome can be seen as an indication

of positive selection. A high number of rRNA genes increases

ribosome synthesis, which in turn increases the protein synthesis

rate [20] and growth rate [21].

Comparative genome analysis
COG distribution. Nearly 70% of the CDS were classified

into clusters of orthologous groups (COGs, Table S1). Thus, 4873

out of 7054 CDS were assigned to 24 different categories,

including those for amino acid transport and metabolism (E,

12.7%), transcription (K, 10.8%), carbohydrate transport and

metabolism (G, 9.7%), inorganic ion transport and metabolism (P,

8.7%), energy production and conversion (C, 5.5%), and signal

transduction mechanisms (5.5%).

The COG distribution of M. lupini was similar to that observed

in other bacteria in the family Micromonosporaceae, however

various differences were detected such as the abundance of genes

related to carbohydrate transport and metabolism. Among the

Micromonospora genomes currently available, M. lupini Lupac 08

contained the highest percentage of genes (9.7%, 685) related to

this category, followed by Micromonospora sp. L5 (8.9%, 598) and

M. aurantiaca ATCC 27029 (8.5%, 576). The gene contents (in

the same COG category) of other bacterial genomes classified in

the family Micromonosporaceae were lower as in the case of S.
tropica CNS-205 (7.4%, 391) and S. arenicola CNH-643 (6.4%,

374) two obligate marine actinomycetes. On the other hand, the

overall COG profiles of Verrucosispora maris AB-18-032T

(genome size 6.7 Mb) and M. lupini Lupac 08 were very similar

and no clear differences were found. Although V. maris was

isolated from a sea sediment, it does not require sea salts for

growth and it is not considered an obligate marine microorganism

Figure 1. Neighbour-joining tree based on 16S rRNA gene sequences showing the relationship of Micromonospora species and other
members of the family Micromonosporaceae. Strains isolated from plant related sources are indicated by a green arrow.
doi:10.1371/journal.pone.0108522.g001
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unlike S. tropica and S. arenicola. Thus, its metabolism suggests a

terrestrial life style. Micromonosporae are well known for their

ability to degrade complex polysaccharides such as cellulose, chitin

and lignin [22,23]. In particular, cellulose is frequently utilized as a

carbon source [24,25]. Therefore the abundance of these genes in

the genome of strain Lupac 08, at first glance may not seem

surprising, however, the value of 9.7% is comparable to that of

highly active cellulolytic microorganisms such as Cellulomonas

Figure 2. Circular representation of Micromonospora lupini Lupac 08. Circles displayed from the outside in: 1. Cellulose-binding genes in
black, chitin-binding genes in red, lectin genes in lavender blue; 2. Genome coordinates; 3. MW; 4. GC% (linear range between 65 and 80%); 5.
Regions of genome plasticity according to the RGP_Finder method (Mage platform) based on synteny breaks between the query genome (Lupac 08)
and close genomes (Micromonospora aurantiaca ATCC 27029T, Micromonospora sp. L5 and Verrucosispora maris AB-18-032T) correlated with HGT
features (tRNA hotspot, DNA repeats, mobility genes), and compositional bias and GC deviation computation. C1 to C15 indicate the position of the
15 clusters of genes coding for secondary metabolites of Table 4.
doi:10.1371/journal.pone.0108522.g002

Table 1. Comparative genomic characteristics of M. lupini Lupac 08 and three Micromonospora genomes publicly available.

Feature M. lupini Lupac 08 M. aurantiaca ATCC 27029T Micromonospora sp. L5 Micromonospora sp. ATCC 39149

Size (Mb) 7.3 7.0 6.9 6.8

GC% 72 73 73 72

rRNA Operon 10 9 9 6

tRNA 77 52 53 51

CDS number 7054 6676 6617 5633

Average gene size (kb) 946 964 969 975

Protein-coding density (%) 90.1 90.4 90.4 89.9

Genes in COGs (%) 70.2% 68.3% 69% nd

nd, not determined.
doi:10.1371/journal.pone.0108522.t001
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flavigena 134T (9.5%) and Thermobifida fusca XY (7.9%), which

are abundant in cellulose enriched environments such as soil, or

plant tissues.

Synteny. The genome sequence of strain Lupac 08 was

aligned with those of Micromonospora sp. L5, M. aurantiaca
ATCC 27029T and Micromonospora sp. ATCC 39149T (Fig. 3).

Although the four genomes share a significant amount of genetic

characteristics, they have undergone various inversions and

translocations and M. lupini Lupac 08 contains the highest

number of non-conserved regions. In addition, this alignment

shows a high homology between strains Micromonospora sp. L5

and M. aurantiaca ATCC 27029T confirming their close

phylogenetic relationship as suggested by 16S rRNA gene

phylogeny (Fig. 1); nevertheless, strain L5 shows a large inversion

event. Thus, although the four Micromonospora genomes share

many common features, it is also evident that M. lupini contains

unique genomic regions as compared to M. aurantiaca ATCC

27029T or Micromonospora sp. L5.

Diversity of Micromonosporae: core vs. flexible gene pool
Using the Micromonospora genomes of strains M. lupini Lupac

08, M. aurantiaca ATCC 27029T and that of Micromonospora sp.

L5 available in the NCBI [19], the core genome was calculated

using the SiLix software [26]. The core genome was composed of

2294 CDSs, which correspond to approximately 32% of the

predicted proteome. In addition, M. lupini Lupac 08 contained

the highest number of strain specific CDSs, 4702 (66.6%), which is

a very high value when compared to Micromonospora sp. L5 and

M. aurantiaca ATCC 27029T (13–14%, Figure 4), which both

share a high gene similarity (85–86%).

Horizontal gene transfer is universally recognized as an efficient

mechanism for microorganisms to acquire functions that enable

them to adapt to environments with different selective pressures.

Therefore insertion elements, transposases, integrated phages, and

plasmids can be related to the plasticity of a genome. Strain Lupac

08 contained 49 CDSs (0.7%, of total CDSs) related to gene

exchange including eight integrases and eleven recombinases.

Except for seven CDSs, most of these genes were grouped into 20

clusters. Interestingly, eight of these mobile element clusters were

found near genes related to carbohydrate transport and metab-

olism.

Metabolic Features. A metabolic pathway reconstruction

was performed between the genome of strain Lupac 08 and 20

additional strains among which plant pathogens, symbiotic and

saprophytic bacteria were included. The distribution and grouping

of the microorganisms analyzed using 798 metabolic routes are

presented in Figure 5. A good correlation was obtained between

the microorganisms, their life style and phylogeny. Two main

groups were obtained, the proteobacteria and actinobacteria.

Within the actinobacteria, three clusters were clearly identified:

the first one contained strains that belonged to the family

Micromonosporaceae, the second cluster corresponded to various

streptomycetes and the third cluster included the three Frankia
genomes. Surprisingly, Micromonospora lupini Lupac 08 showed a

closer metabolic relationship with the three Frankia strains

(ACN14a, CcI3 and EAN1pec) than with the other two

Micromonospora genomes.

Plant/Soil-associated life style
Transport systems. Organisms living in endophytic associ-

ations need to share resources with their host. Membrane

transport systems play essential roles in cellular metabolism and

activities. Current data suggest a correlation of transporter profiles

to both evolutionary history and the overall physiology and

lifestyles of organisms [27].

A total of 631 CDSs were located in the genome of M. lupini
coding for a large diversity of transporters, representing approx-

imately 8.9% of the genome. The majority of CDSs were related

Figure 3. MAUVE alignment of the genome sequences of Micromonospora lupini Lupac 08, Micromonospora sp. L5, Micromonospora
aurantiaca ATCC 27029T and Micromonospora sp. ATCC 39149. When boxes have the same colour, this indicates syntenic regions. Boxes below
the horizontal line indicate inverted regions. Rearrangements are shown by coloured lines. Scale is in nucleotides.
doi:10.1371/journal.pone.0108522.g003
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Figure 4. Venn diagram showing the number of clusters of orthologous genes, shared and unique, between M. lupini Lupac 08,
Micromonospora sp. L5 and M. aurantiaca ATCC 27029T.
doi:10.1371/journal.pone.0108522.g004

Figure 5. Bicluster plot of the metabolic profiles of M lupini Lupac 08 and 20 other bacterial genomes.
doi:10.1371/journal.pone.0108522.g005
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to ATP-binding (dependent) transporters of which 362 corre-

sponded to ABC transporters; the next most abundant (215 CDSs)

coded for secondary transporters, with 105 classified in the Major

Facilitator Superfamily –MFS-); 17 transporters belonged to ion

channels and 20 were unclassified. The number of transporters

determined in M. aurantiaca ATCC 27029T and Micromonospora
sp. L5 were lower with 575 and 587, respectively (Table 2).

The number of transporters identified in the genome of M.
lupini Lupac 08 is correlated with those in other bacteria with a

plant/soil associated life style, which requires an efficient nutrient

uptake system to obtain nutrients produced by the host plant, in

addition to those found in the rhizosphere and the soil (Table 2)

[27,28]. However, the number of transporters identified in strain

Lupac 08 was lower than those present in other bacteria such as

Bradyrhizobium japonicum USDA6T (1138, 11.8%), Mesorhizo-
bium loti MAF303099 (968, 14.2%), Sinorhizobium meliloti
Sm1021 (1024, 16.4%) and Rhizobium leguminosarium bv. trifolii
WSM 3125 (1087, 15.5%), which form a very close interaction

with legumes. Nevertheless, the overall distribution (types) and the

percentages of these values were similar. An additional difference

was the absence of phosphotransferase system transporters (PTS)

in M. lupini as compared to the strains mentioned above and

other soil/plant bacteria included in Table 2. On the other hand,

the overall profile of M. lupini Lupac 08 was very similar to those

of Frankia sp. ACN14a and Frankia sp. CcI3 which also lack a

PTS system.

Secretion systems. Secreted proteins play a number of

essential roles in bacteria, including the colonization of niches and

host–pathogen interactions. In Gram-positive bacteria, the

majority of proteins are exported out of the cytosol by the

conserved Sec translocase system or, alternately, by the twin-

arginine translocation system. In addition, a unique protein export

system, the type VII or ESX secretion system also exists in some

Gram positive bacteria [29].

The genome of M. lupini Lupac 08 encodes for 537 (7.6%)

secreted proteins including several protein secretion systems

(Table 3). All genes related to the Sec-dependent pathway were

located and included the SecY and SecE proteins which form the

membrane channel and interact with the cytoplasmic membrane

protein SecG; the auxiliary proteins SecD, YajC and the ATPase

SecA. In addition, the heterodimer Ffh-FtsY (MiLup08_41486

and Milup08_41460) was also present. As in other Gram-positive

bacteria, M. lupini Lupac 08 lacks homologs of SecB, the

chaperone that targets proteins to the Sec translocon for passage

through the cytoplasmic membrane [30].

Genes related to the Sec-independent twin-arginine transloca-

tion pathyway (TAT), which exports prefolded proteins across the

cytoplasmic membrane using the transmembrane proton gradient

as the main driving force for translocation were also located in

strain Lupac 08 (Table 3). Homologs of TatA and TatC were

identified, however no homolog for TatB was found. Similar to

other actinobacteria (e.g. Frankia sp. ACN14a) the tatA gene was

found next to tatC. Only an ORF encoding TatC was located in

the genomes of Micromonospora sp. L5 and M. aurantiaca ATCC

27029T while no copies of tatA or tatB were found.

A set of fifteen genes identified as part of the type VII secretion

system were located in M. lupini Lupac 08 (Table 3). These are

arranged in three different clusters and included the essential

proteins for secretion EccC, EccD, EsxA and EsxB [31]. The first

cluster contains eight genes: eccC, esxA, esxB, eccD, eccB, eccE and

two copies of mycP, a subtilisin-like serine protease which also

appears essential but the function of which is not yet known [32].

The second cluster includes a copy of esxA (MiLup08_40381),

esxB (MiLup08_40380) and mycP, annotated as S8 S53 subtilin

kexin sedolisin (MiLup08_40382). Finally a third cluster contains

the genes eccC (MiLup08_46744), eccD (MiLup08_46743) and

mycP (MiLup08_46745).

Gram-negative bacteria use the type II secretion system to

transport a large number of secreted proteins from the periplasmic

space into the extracellular environment. Many of the secreted

proteins are major virulence factors in plants and animals [33].

Type II secretion systems have been found in all completely

sequenced plant pathogenic bacterial genomes, except in Agro-
bacterium tumefaciens. In addition, other bacteria have been

shown to use secretion systems for the delivery of toxins, proteases,

cellulases and lipases [34–37]. Genes coding for this system have

also been reported for the three symbiotic strains Frankia [38].

Fifteen genes in M. lupini were annotated as components of the

Type II secretion system, grouped into clusters of three to five

genes (Table 3). Nine of these genes were annotated as Type II

secretion system proteins including protein E and protein F; four

were recorded as TadE family proteins and Milup08_40403 was

annotated as an uncharacterized protein closest to one found in

the Frankia symbiont of Datisca glomerata.

The secretion systems III and IV which are commonly related

to plant-associated bacteria transport a wide variety of effector

proteins into the extracellular medium or into the cytoplasm of

eukaryotic host cells thus affecting the interaction [39]. In

addition, a functional type IV system has been described in the

plant symbiont M. loti strain R7A [40]. A gene annotated as virB4

and related to secretion system IV was located in Lupac 08

(MiLup08_42651), this ORF is surrounded by proteins with

unknown function related to those present in the genomes of

Micromonospora sp. L5 and M. aurantiaca ATCC 27029T.

Survival against plant defenses. Reactive oxygen species

(ROS) play a major role in plant defense against pathogens. In

response to attempted invasion, plants mount a broad range of

defense responses, including the synthesis of ROS. M. lupini needs

to survive under an oxidative environment in the rhizosphere

before it can colonize plant roots and its genome revealed several

genes encoding proteins to neutralize oxidative stress. The

following genes were identified: three sod genes (MiLup08_45788,

MiLup08_46012 and MiLup08_46604) that code for superoxide

dismutases; a catalase HPII katE (MiLup08_44247); a catalase-

peroxidase (katG, MiLup08_44435) and a catalase hydroperox-

idase (katA, MiLup08_45857); four hydroperoxide reductases

(MiLup08_40110, MiLup08_40293, MiLup08_41393,

MiLup08_45407); a chloroperoxidase (MiLup08_44157) and a

thiol peroxidase (MiLup08_43629).

In addition, a putative organic hydroperoxide resistance protein

(Ohr, MiLup08_45098); a 4-hydroxyphenylpyruvate dioxygenase

(Hpd, MiLup08_46664) and a homogentisate 1,2-dioxygenase

(MiLup08_46677) were identified. Other enzymes include a

glutathione peroxidase (MiLup08_45173); two glutathione trans-

ferases (MiLup08_46358 and MiLup08_41529) and four glutathi-

one-S-transferases (fdh, MiLup08_42270, MiLup08_42834,

MiLup08_44416 and 45648). Experimental data indicated that

M. lupini indeed yields a catalase positive reaction [17] confirming

the functionality of some of these genes. Therefore, to successfully

reach the internal plant tissues, these genes may defend the

bacterium against a ROS release by the plant.

Regulation as a means of adaptation
Lifestyle can be viewed as the set of biotopes an organism can

thrive into and the relationships that it establishes with other

species and its abiotic components. It is one of the driving forces

that contribute to the overall characteristics of bacterial genomes

[41].

Micromonospora lupini Lupac 08 Genome
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Table 3. Secretion system genes present in the genome of M. lupini Lupac 08.

Secretion System Gene (Milup08_X) Product

Sec-dependent secY (prlA)(46297) Preprotein translocase, membrane component

secE (46336) Preprotein translocase subunit secE

secG (44961) Preprotein translocase SecG subunit

secD (42464) Protein-export membrane protein secD

secF (42465) Protein-export membrane protein secF

yajC (42463) Preprotein translocase, YajC subunit

secA (41087) Protein translocase subunit secA

ffh (41468) Signal recognition particle protein

scRNA (misc_RNA-12) SRP, Ribosome-nascent chain complex (RNC)

yidC (30220) Cytoplasmic insertase into membrane protein

yidC-like (43138) Membrane protein insertase, YidC/Oxa1 family

yidC (45964) Inner membrane protein translocase component YidC

Milup_08_41485 Signal peptidase I

Milup_08_41486 Signal peptidase I

Milup_08_42560 Conserved protein of unknown fuction (probable signal peptidase I)

lspA (45113) Lipoprotein signal peptidase

lgt (45071) Prolipoprotein diacylglyceryltransferase

TAT- tatA (43424) Sec-independent protein translocase protein tatA/E homolog

tatC (43425) Sec-independent protein translocase protein tatC homolog

Type II- (T2SS) Milup_08_40403 Similar to uncharacterized protein from Frankia symbiont of Diastica glomerata

Milup_08_40405 Putative helicase/secretion neighbourhood TadE-like protein

tadE (40223) TadE Family protein

tadE (40224) TadE Family protein

tadE (42690) Similar to TadE family protein

tadE (42691) Similar to TadE family protein

Milup_08_40226 Type II secretion system protein

Milup_08_40227 Type II secretion system protein

Milup_08_40228 Type II secretion system protein E

Milup_08_40398 Type II secretion system protein E

Milup_08_40399 Similar to Type II secretion system protein E

Milup_08_40401 Similar to Type II secretion system protein

Milup_08_42693 Type II secretion system protein F

Milup_08_42694 Type II secretion system protein F

Milup_08_42695 Type II secretion system protein

Type IV- (T4SS) Milup_08_42651 VirB4 protein-like protein

Type VII/WXG100- eccB (40554) ESX-4 secretion system protein eccB4

eccC (40438) FtsK/SpoIIIE family protein

eccC (40557) ESX-4 secretion system protein/cell division protein ftsK/spoIIIE

eccC (46744) FtsK/SpoIIIE-like transmembrane protein

eccD (40556) ESX-4 secretion system protein eccD4/Putative secretion protein snm4

eccD (46743) FtsK/SpoIIIE family protein

eccE (40555) Putative uncharacterized protein

esxA (40381) Putative uncharacterized protein

esxA (40559) Putative uncharacterized protein

esxB (40380) Putative uncharacterized protein

esxB (40558) Putative uncharacterized protein

mycP (40382) Peptidase S8 and S53 subtilisin kexin sedolisin

mycP (40560) Peptidase S8 and S53 subtilisin kexin sedolisin

mycP (40564) Peptidase S8 and S53 subtilisin kexin sedolisin

mycP (46745) Peptidase S8 and S53 subtilisin kexin sedolisin

TAT, twin-arginine translocation; X, corresponds to the annotation gene numbers given in parenthesis.
doi:10.1371/journal.pone.0108522.t003
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The M. lupini genome shows a strong emphasis on regulation,

with 643 proteins (,10%) predicted to have a regulatory function.

This value is lower than that reported for the saprophytic strain

Streptomyces coelicolor A3(2) with an exclusively terrestrial lifestyle

(965 proteins; 12.3%) [42], but higher than the endosymbiotic

strains M. loti MAFF303099 (542 proteins, 7.7%) [43]; Frankia
alni ACN14a (515 proteins, 7.6%); Frankia sp. EAN1pec (555,

6.1%) and Frankia sp. CcI3 (244 proteins, 4.3%).

The genome codes for various regulator families such as TetR,

AraC, LacI, ArsR, MerR, AsnC, MarR, DeoR, GntR and Crp. In

addition, thirty-three ECF (extra-cytoplasmic function) sigma

factors were located. Furthermore, 147 genes were related to

two-component regulatory systems of which 34 were LuxR

proteins. These two-component systems appear to play a crucial

role in quorum sensing of Gram-positive bacteria and a positive

correlation between plant-microbe interactions and the number of

LuxR proteins has been suggested [44,45].

Many regulatory genes (,18%) were located near polysaccha-

ride related loci including those involved in plant cell wall

degradation. Specifically, 63% of cellulose degradation or cellulose

binding genes had a nearby regulator (proximity ranged from 2–4

genes up or downstream). In the case of xylan metabolism,

regulators were identified for 50% of the genes, while 43% of

pectin metabolism genes also had a regulator nearby. An extended

overview of the regulators and their associated carbohydrate genes

is presented in Table S2.

An endophytic bacterium highly equipped with an array
of plant cell wall degrading enzymes

The ability of M. lupini lupac 08 to assimilate a wide range of

sugars was previously reported [19] and this is clearly reflected in

its genome. The range of simple and complex saccharides

assimilated by this strain include cellobiose, cellulose, glucose,

mannitol, starch, sucrose, trehalose, xylan and xylose among

others. Genomic analyses confirmed the presence of a large

number of genes devoted to the metabolism of carbohydrates,

including many compounds of plant origin. Plant-polymer

degrading enzymes such as cellulases, xylanases and pectinases

have been suspected to play a role in internal plant colonization

[46]. In the case of plant pathogenic bacteria and fungi, these gain

access by actively degrading plant cell wall compounds using

glycoside hydrolases including cellulases and endoglucanases.

However, genomic analyses show that non-pathogenic endophytic

microorganisms such as Enterobacter sp. 638 [47], Azoarcus BH72

[39] or the symbiotic actinobacterium Frankia sp. [48] have only a

reduced set of cell-wall degrading enzymes.

The genome of M. lupini Lupac 08 revealed a significant

number of genes encoding enzymes potentially involved in plant-

polymer degradation but also an important number of cellulose-

binding related genes. Overall, about 10% of the genome coded

for genes related to carbohydrate metabolism of which 192 had a

hydrolytic function. At least 79 genes putatively involved in

interactions with plants and with the potential to hydrolyze plant

polymers were identified (Table S1). These genes were placed into

the glycosyl hydrolase families GH5, GH6, GH9, GH10, GH11,

GH18, GH20, GH43, GH44 and GH62, or into the carbohydrate

binding modules CBM2, CBM13, CBM33, CBM3, CBM46,

CBM42, CBM5, CBM4, CBM6 and CBM32. The CBM2 family

was the most abundant appearing in 46 of the 79 genes identified.

Fourteen genes were further identified as lectins or proteins with

lectin binding domains, which presumably bind to and interact

with carbohydrates. Some of these loci (e.g. Milup_42969,

Milup_42975, Milup_44484, and Milup_44962) appear to be

related to cellulases and xylanases, respectively. These proteins are

important as they serve as a means of attachment between a

bacterium and its host (animal or plant) and are produced by

either of the two interacting organisms [48].

Compared to the 45 enzymes predicted to act on oligo- and/or

polysaccharides reported for T. fusca XY [49], the number of

these enzymes present in the genome of M. lupini is significantly

higher.

Cellulose metabolism. Aerobic cellulolytic actinobacteria

have been shown to use a system for cellulose degradation

consisting of sets of soluble cellulases and hemicellulases. Most of

these independent cellulolytic enzymes contain one or more

carbohydrate binding domains [50].

A total of 46 genes were found to present a hydrolytic or binding

fuction towards cellulose (Table S1). Several endoglucanases were

detected in strain Lupac 08 (e.g. C1, C2 C10 and C14), these

enzymes hydrolyze internal bonds at random positions of

amorphous regions of cellulose and generate chain ends for the

processive action of cellobiohydrolases (exoglucanases). A copy of

the exoglucanase gene cbhA (C16) was also located in the genome.

Exoglucanases act on the ends of cellulose polysaccharide chains,

liberating cellobiose as the major product. b-D-glucosidases such

as M108 and M109 which would further hydrolyze cellobiose

were also identified. In addition, several extracellular cellulase

coding genes were identified including celA (C3 and C6), celB (C5)

and celD (C13). These results strongly suggest that strain Lupac 08

is potentially capable of completely degrading cellulose.

Strain Lupac 08 was tested for in vitro production of cellulases.

Very high cellulase activity was detected in minimal agar

supplemented with carboxymethylcellulose (CMC, 0.5%)

(Fig. 6A). When the culture medium was supplemented with

glucose (1%) similar results were obtained indicating that this

sugar did not repress nor derepress the expression of the genes

responsible for the production of cellulases.

Hemicellulosic substrates. Genome analysis also revealed

the ability of M. lupini to convert various hemicellulosic substrates

to sugars. Twelve putative genes related to the metabolism of xylan

included several copies of extracellular xylanases (X1, X3, X4, X5,

X6, X7, X9, X10 and X12; see Table S1); an extracellular

bifunctional xylanase/deacetylase (X8); and an arabinofuranosi-

dase (X2) which work synergistically with xylanases to degrade

xylan to its component sugars. Genes for several a-arabinofur-

anosidases were also identified (C17, M33, and M39); these are

exo-acting enzymes which hydrolyze nonreducing arabinofura-

nose residues from arabinoxylan, pectins, and shorter oligosac-

charides.

In vitro xylanase activity was detected in strain Lupac 08 when

tested in a minimal medium supplemented with xylan (1%).

Production of xylanases was detected after incubation for 4 days

increasing significantly after 14 days (Fig. 6D). The substrate was

assayed with and without glucose with similar results.

Starch degradation. Starch is a ubiquitous and easily

accessible source of energy. In plant cells it is usually deposited

as large granules in the cytoplasm. Several genes coding for amylo-

a-1,6-glucosidases (e.g. M26, M32, M44, M63, M111 and M121;

Table S1) were located in addition to two amyE homologs that

code for an extracellular a-amylase. Furthermore, strain Lupac 08

was able to degrade this polymer under laboratory conditions

(Fig. 6C) and it was previously shown that Lupac 08 can utilize

this substrate as a carbon source [17].

Pectin degradation. Pectinolytic enzymes can degrade

pectic substances either through hydrolysis (hydrolases) or trans-

elimination (lyases) [51] and are important virulence mechanisms

in many soft-rotting and macerating pathogens [52]. Six pectate

lyases (P1, P3, P4, P5 and P6; Table S1) were located in the
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genome of M. lupini, two of which were annotated as virulence

factors (P5 and P6). In addition, an extracellular pectin

methylesterase gene, pmeA, and a gene coding for a pectate lyase

involved in D-galacturonic acid hydrolysis (P7) were also

identified. Interestingly, T. fusca XY contains two pectin lyase

homologs but does not appear to possess a pectin methylesterase

or a pectin acetylesterase gene. Pectinase-encoding genes are

reported to be absent in other endophytic microorganisms such as

Azoarcus sp. BH72 or Enterobacter sp. 638 [39,47]. Production of

pectinases was observed under laboratory conditions and activity

was visualized after 8 days of incubation (Fig. 7D).

Expansin-like proteins. Expansins are proteins that were

first described from plants [53]. These molecules function as cell

wall loosening proteins by disrupting the noncovalent binding of

matrix polysaccharides to cellulose [54], resulting in physical

effects, such as polymer creep and stress relaxation of extended cell

walls [55,56]. Many plant-associated microorganisms including

several pathogenic actinobacterial species have been shown to

contain proteins with expansin-like domains [57].

Two genes (MiLup_41274 and MiLup_45306) were identified

in the genome of strain Lupac 08 that encode for a secreted

protein showing 42% and 48% sequence similarity to the

corresponding celA genes of Clavibacter michiganensis subsp.

michiganensis and Clavibacter michiganensis subsp. sepedonicus,
respectively. This gene corresponds to a secreted b-1,4-endoglu-

canase (CelA) that is required for virulence and contains a C-

terminal a-expansin like domain [58,59]. In the case of C.
michiganesis subsp. michiganensis CelA, this expansin-like domain

is essential for development of wilting symptoms [58]. It is

suggested that microbial expansins function to promote microbe-

plant interactions, both harmful and beneficial ones [60].

Plant growth promotion traits of Micromonospora lupini
Lupac 08

Our current knowledge of plant-microbe interactions indicates

that populations inhabiting a host plant are not restricted to a

single microbial species but comprise several genera and species.

Few reports are available regarding the presence of other

microorganisms (associated or endophytic) in nitrogen fixing

nodules, in spite of the fact that nodules are much richer in

nutrients as compared to roots [61]. The recent reports on the

isolation of large Micromonospora populations from nitrogen fixing

nodules clearly suggest that this bacterium plays an important role

which has yet to be defined.

Effect of M. lupini Lupac 08 on Trifolium. Micromonospora
lupini Lupac 08 clearly produced a plant growth enhancing effect

when it was co-inoculated with Rhizobium sp. E11 under laboratory

conditions on clover plantlets. In general, the number of nodules

was higher in those plants co-inoculated (18–24 nodules) with both

bacteria as compared to the plants inoculated only with Rhizobium
sp. E11 (11–15 nodules). Overall, the co-inoculated plants showed

better growth and were larger in size as compared to the other two

treatments (Fig. 7C). Similar results were previously observed when

strain Lupac 08 was inoculated in its original host, Lupinus [62].

Nitrogen fixing capacity. Indirect evidence of nitrogen

fixing genes was obtained by partial amplification of nifH-like

gene fragments in strains Micromonospora sp. L5 [12] and M.
lupini Lupac 08 [11]. In the present work the genomes of

Micromonospora lupini Lupac 08 and Micromonospora sp. L5

were screened for the presence of nitrogen fixing genes to confirm

this earlier finding. After thorough analysis of the complete

genome, no sequences related to this biological process

were detected, supporting the results reported for strain

Figure 6. Expression of cellulose, starch, xylan and chitin degrading genes in Micromonospora lupini Lupac 08. (A)
carboxymetheylcellulose hydrolysis at 4 (left) and 14 (right) days after inoculation. (B), starch hydrolysis at 4 days after inoculation. (C), chitin
degradation at 7 days after inoculation. (D), xylan degradation at 4 (left) and 14 (right) days after inoculation.
doi:10.1371/journal.pone.0108522.g006
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Micromonospora sp. L5 [19]. Nitrogenase activity detection by

acetylene reduction assays carried out with strain Lupac 08 over a

period of two weeks were negative. A positive result was reported

for strain L5 [12.].

Trehalose and its role in nodulation and bacteroid

survival. Trehalose is a common reserve disaccharide in the

root nodules of legumes, present at high concentrations in

bacteroids at the onset of nitrogen fixation [63]. It has been

reported that in the interaction between Phaseolus vulgaris and

Rhizobium, enhanced germination, quality and grain yield have

been correlated with trehalose content, and a higher tolerance to

abiotic stress [64,65]. On the other hand, the trehalose content

appears to be regulated by trehalase, a nodule stimulated plant

enzyme [66,67]. Although trehalose metabolism in leguminous

plants is still poorly understood, it has been shown that in

senescent nodules, trehalose becomes the most abundant non-

structural carbohydrate [68] and it is proposed that trehalose, a

stress protectant accumulated in bacteria, could offset membrane

injuries and/or serve as an intermediate energy reserve. Indeed,

Müller et al. [68] showed that during terminal senescence of

nodules an appreciable part of the bacteria maintained their

trehalose pools and survived.

Eight genes related to the metabolism of trehalose were detected

in the genome of Lupac 08; seven genes were related with

trehalose synthesis (Mlup08_40949, Mlup08_43225,

Mlup08_43226, Mlup_45189, Mlup_45758, Mlup08_45759 and

Mlup08_45961) and one (treA, Mlup08_45961) with the enzyme

trehalase. Barraza et al. [67] proposed that modification of the

trehalose content in the nodules could trigger physiological

alterations that would enhace carbon and nitrogen metabolism,

as well as bacteroid fitness (greater survival) and nitrogen fixation,

which in turn would positively impact on symbiotic interactions.

Micromonospora may contribute to the survival of rhizobia by

helping to maintain high levels of trehalose.

Chitin degradation and protection against pathogens. Plant

b-1,3-glucanases are directly involved in defense by hydrolyzing the

cell walls of fungal pathogens most commonly in combina-

tion with chitinases. Nine chitin-related ORFs were identified

in M. lupini. Specifically, six code for a chitooligosaccharide

deacetylase, several extracellular endo- and exo-chitinases and

a b-N-acetyl-hexosaminidase (MiLup08_41789, MiLup08_41912,

MiLup08_43481, MiLup08_44343, MiLup08_45172, MiLup08_

45568), while three CDS code for putative chitin-binding domain

proteins (MiLup08_41110, MiLup08_41724, MiLup08_41729).

Figure 7. Plant growth promotion and biological control features of M. lupini Lupac 08. (A) Siderophore, (B) indole-3-acetic acid [a,
negative control E. coli DH5a; b, Lupac 08] and pectinase production (D) by M. lupini strain Lupac 08;. (C) Plant growth promoting effect of M. lupini
Lupac 08 on clover plantlets. a) control; b) inoculated with Rhizobium sp. E11; c) co-inoculated with Rhizobium sp. E11 and M. lupini Lupac 08.
doi:10.1371/journal.pone.0108522.g007
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Chitinases often work synergistically with chitin-binding proteins

(CBPs). The biological roles of bacterial chitinases and carbon

binding proteins are easily understood in an environmental context,

especially in soil (that harbour fungi and insects) and marine (shellfish)

habitats and their impact on chitin cycling. However, there is an

increasing amount of direct or indirect evidence suggesting that some

chitinases and CBPs additionally serve as virulence factors for

bacterial pathogens during infection of non-chitinous substrates [69].

Experimental data confirmed in vitro chitin degradation of

strain Lupac 08 (Figure 6B). As with other endophytic bacteria

Micromonospora may produce chitinases to inhibit fungal patho-

gens, or may produce these molecules to elicit the plant defense

mechanism. Either way, it seems that Micromonospora would

provide a benefit to its host.

Siderophores (Iron-transport) and other secondary
metabolites

Iron is an element essential for every living organism, as a

cofactor of numerous proteins. Siderophores produced by plant

growth promoting bacteria may reduce the growth of phyto-

phathogens by depriving them of iron. Thus, an efficient iron

uptake system can contribute to protect the host plant against

pathogens. Interestingly, siderophores can also act as important

virulence determinants for both plant and animal pathogens [70].

The genome of strain Lupac 08 revealed several siderophore

related genes including specific iron uptake transporters, secretion

of different siderophores and synthesis of siderophore receptors.

Namely, a zinc/iron permease (MiLup_40258), a ferrous iron

permease FTR1 (efeU, MiLup_41076) and eight iron ABC

transporters (MiLup_42281-MiLup_42285). The number of the

latter transporters is similar to the number of those found in the

genome of the endophytic bacterium Enterobacter sp. 638 [47]

while the plant pathogen Erwinia amylovora CFBP 1430 presents

only three such transporters [71].

Several gene clusters related to the biosynthesis and transport of

the siderophores enterobactin (MiLup_44069-MiUp_44071),

aerobactin (iucA/iucC family protein, MiLup_44063 and

MiLup_44064; MiLup_40326) and alcaligin (MiLup_44065) were

also located. In the case of aerobactin, the gene iucA is highly

correlated with virulence in avian pathogenic E. coli strains [72].

Two siderophore-interacting proteins (MiLup_40648 and

MiLup_45559) were also found. One of these genes

(MiLup_40648) was located next to a siderophore transporter of

the RhtX/FptX family; RhtX from S. meliloti 2011 and FptX

from Pseudomonas aeruginosa appear to be single polypeptide

transporters from the major facilitator family for import of

siderophores as a means to import iron [73]. In addition, a

thiazolinyl imide reductase involved in siderophore biosynthesis

was also identified (MiLup_43551).

The genome of Lupac 08 also contained several regulators

including an iron-dependent repressor (IdeR, MiLup_41668), two

ferric uptake regulation proteins (MiLup_40794 and

MiLup_44436) and a putative iron-regulated membrane protein

which suggests that these systems are highly regulated. Production

of siderophores was detected experimentally (Fig. 7A).

Actinobacteria are well known to be capable of producing a vast

diversity of natural secondary metabolite compounds with

applications in medicine, agriculture, and other biotechnological

areas [74]. Endophytic bacteria are currently of significant interest

as an untapped resource of novel bioactive small molecules

because their metabolites are speculated to affect the physiological

conditions of host plants including growth and disease resistance.

Micromonospora strains are well known for their capacity to

produce many secondary metabolites and M. lupini Lupac 08 was

previously screened for the production of novel compounds with

antitumoral activity and the results obtained confirmed the

production of a new family of molecules named Lupinacidins A,

B and C [9,10].

Fifteen clusters involved in the biosynthesis of secondary

metabolites were identified in the genome of M. lupini Lupac

08. These included siderophores (see above), terpenes, butyrolac-

tones, polyketides (PKS), nonribosomal peptides (NRPS), chalcone

synthases and bacteriocins (Table 4). A DNA stretch of 544 kb

was estimated to code predominantly for secondary metabolites,

accounting for about 7.4% of the genome. This percentage is

lower than that reported for the marine actinobacterium S. tropica
(9.9%, [75]) but it is within the range of other actinobacteria e.g.

S. coelicolor (8.2%, [43]). Interestingly, Frankia strains ACN14a

and EAN1pec dedicate about 5% of their genomes to natural

product assembly while the potential of CcI3, which has the

smallest genome of the three Frankia strains, has a much reduced

host range and is absent from most soils is significantly smaller

(,3%) [76].

Several clusters identified in the genome of M. lupini were also

located in other genomes of phylogenetically related bacteria,

especially in S. tropica CNB-440, S. arenicola CNS-205 and V.
maris AB-18-032. Nevertheless other clusters were unique to M
lupini (Table 4). Eight of the 15 clusters identified were located in

the region between coordinates 4,000 kb and 5,000 kb of the

genome, close to the terminus of replication. This area of the

genome also contains a high density of genes coding for the

biosynthesis of various plant cell wall degrading enzymes and

several transposases.

Terpene related enzymes present in the genome of M. lupini
are involved in the synthesis of carotenoids, sugar-binding lipids

and the production of pentalenolactone type antibiotics. Similar

molecules have also been predicted from the genomes of the three

sequenced Frankia strains [77]. Various polyketide biosynthetic

and non-ribosomal peptide synthase pathways were also identified

specifically as PKI, PKII (2 clusters), PKIII types, NRPS (2

clusters) and hybrid PKS/NRPS clusters (2 clusters). The presence

of these gene clusters suggests that M. lupini is capable of

producing a vast diversity of secondary metabolites such as the

antitumor anthraquinone derivative lupinacidins reported earlier

[9,10]. Some of these metabolites may perform specialized

functions in ecological niches and recent studies have reported

on the importance of PKS and NRPS molecules and their

potential role in communication during root colonization [78,79].

In addition, cluster 10 contains genes that putatively code for the

production of granaticin. Granaticins are antibiotics of the

benzoisochromanequinone class of aromatic polyketides, the best

known member of which is actinorhodin produced by S. coelicolor
A3(2). Production of granaticins has mainly been reported from

Streptomyces strains [80]. NRPS cluster 11 (see Table 4), appeared

to be unique to strain Lupac 08 as this group of genes was not

detected in any of the other genomes compared except in S.
tropica CNB-440 where it seems to be only partially conserved.

The PKS type III cluster corresponds to several genes that code

for the production of naringenin, a central precursor of many

flavonoids. It has recently been proposed that flavonoids play an

important role in the establishment of plant root endosymbioses.

In the case of legume-Rhizobium interactions, flavonoids released

by plant roots induce genes involved in nodulation [81]. In a

similar way it has also been suggested that these molecules play an

important role during the early stages of the symbiotic association

between Frankia and actinorhizal plants [82]. Micromonospora
flavonoids may contribute to support communication between the

nitrogen fixing bacteria and their host plants.

Micromonospora lupini Lupac 08 Genome

PLOS ONE | www.plosone.org 13 September 2014 | Volume 9 | Issue 9 | e108522



T
a

b
le

4
.

C
o

m
p

ar
is

o
n

o
f

se
co

n
d

ar
y

m
e

ta
b

o
lit

e
cl

u
st

e
rs

fo
u

n
d

in
th

e
g

e
n

o
m

e
o

f
M

.
lu

p
in

i
Lu

p
ac

0
8

an
d

o
th

e
r

re
la

te
d

m
ic

ro
o

rg
an

is
m

s.

C
lu

st
e

r
T

y
p

e
M

.
lu

p
in

i
L

u
p

a
c

0
8

(M
il

u
p

0
8

_
X

)
M

ic
ro

m
o

n
o

sp
o

ra
sp

.
L

5
M

.
au

ra
n

ti
ac

a
A

T
C

C
2

7
0

2
9

T
V

e
rr

u
co

si
sp

o
ra

m
ar

is
A

B
-1

8
-0

3
2

S
al

in
is

p
o

ra
tr

o
p

ic
a

C
N

B
-4

4
0

S
al

in
is

p
o

ra
ar

e
n

ic
o

la
C

N
S

-2
0

5
S

tr
e

p
to

m
yc

e
s

co
e

li
co

lo
r

A
3

(2
)

1
T

e
rp

e
n

e
4

0
2

0
4

–
4

0
2

1
0

C
o

n
se

rv
e

d
C

o
n

se
rv

e
d

C
o

n
se

rv
e

d
C

o
n

se
rv

e
d

C
o

n
se

rv
e

d
C

o
n

se
rv

e
d

2
T

e
rp

e
n

e
4

0
3

0
6

–
4

0
3

2
0

C
o

n
se

rv
e

d
C

o
n

se
rv

e
d

C
o

n
se

rv
e

d
A

b
se

n
t

A
b

se
n

t
P

re
se

n
t

3
B

u
ty

ro
la

ct
o

n
e

4
0

6
0

2
–

4
0

6
6

8
A

b
se

n
t

A
b

se
n

t
A

b
se

n
t

C
o

n
se

rv
e

d
C

o
n

se
rv

e
d

C
o

n
se

rv
e

d

4
T

yp
e

I
P

K
S

4
1

9
9

5
–

4
2

0
0

9
C

o
n

se
rv

e
d

C
o

n
se

rv
e

d
C

o
n

se
rv

e
d

C
o

n
se

rv
e

d
C

o
n

se
rv

e
d

A
b

se
n

t

5
T

e
rp

e
n

e
4

3
1

3
4

–
4

3
1

4
4

C
o

n
se

rv
e

d
C

o
n

se
rv

e
d

C
o

n
se

rv
e

d
C

o
n

se
rv

e
d

C
o

n
se

rv
e

d
C

o
n

se
rv

e
d

6
N

R
P

S
+P

K
S

4
3

5
4

6
–

4
3

5
8

1
A

b
se

n
t

A
b

se
n

t
C

o
n

se
rv

e
d

C
o

n
se

rv
e

d
A

b
se

n
t

P
ar

ti
al

ly
co

n
se

rv
e

d

7
T

yp
e

II
P

K
S

4
3

8
0

4
–

4
3

8
4

4
C

o
n

se
rv

e
d

C
o

n
se

rv
e

d
C

o
n

se
rv

e
d

C
o

n
se

rv
e

d
C

o
n

se
rv

e
d

P
ar

ti
al

ly
co

n
se

rv
e

d

8
Si

d
e

ro
p

h
o

re
4

4
0

6
3

–
4

4
0

7
1

C
o

n
se

rv
e

d
C

o
n

se
rv

e
d

C
o

n
se

rv
e

d
C

o
n

se
rv

e
d

C
o

n
se

rv
e

d
C

o
n

se
rv

e
d

9
N

R
P

S-
T

yp
e

I
P

K
S

4
4

3
8

6
–

4
4

4
0

5
C

o
n

se
rv

e
d

N
R

P
S

A
b

se
n

t
N

R
P

S
A

b
se

n
t

N
R

P
S

A
b

se
n

t
N

R
P

S
A

b
se

n
t

N
R

P
S

A
b

se
n

t

1
0

T
yp

e
II

P
K

S
4

4
6

1
3

–
4

4
6

2
4

P
ar

ti
al

ly
co

n
se

rv
e

d
P

ar
ti

al
ly

co
n

se
rv

e
d

P
ar

ti
al

ly
co

n
se

rv
e

d
P

ar
ti

al
ly

co
n

se
rv

e
d

P
ar

ti
al

ly
co

n
se

rv
e

d
P

ar
ti

al
ly

co
n

se
rv

e
d

1
1

N
R

P
S

4
4

6
8

4
–

4
4

6
9

1
A

b
se

n
t

A
b

se
n

t
A

b
se

n
t

P
ar

ti
al

ly
co

n
se

rv
e

d
A

b
se

n
t

A
b

se
n

t

1
2

B
ac

te
ri

o
ci

n
4

4
9

2
9

–
4

4
9

3
3

C
o

n
se

rv
e

d
C

o
n

se
rv

e
d

C
o

n
se

rv
e

d
C

o
n

se
rv

e
d

C
o

n
se

rv
e

d
P

ar
ti

al
ly

co
n

se
rv

e
d

1
3

T
e

rp
e

n
e

4
5

0
8

7
–

4
5

0
9

3
C

o
n

se
rv

e
d

C
o

n
se

rv
e

d
C

o
n

se
rv

e
d

A
b

se
n

t
A

b
se

n
t

C
o

n
se

rv
e

d

1
4

N
R

P
S

4
5

4
3

9
–

4
5

4
4

6
C

o
n

se
rv

e
d

C
o

n
se

rv
e

d
C

o
n

se
rv

e
d

C
o

n
se

rv
e

d
C

o
n

se
rv

e
d

C
o

n
se

rv
e

d

1
5

T
yp

e
III

P
K

S
4

6
6

8
4

–
4

6
7

0
0

C
o

n
se

rv
e

d
C

o
n

se
rv

e
d

C
o

n
se

rv
e

d
C

o
n

se
rv

e
d

C
o

n
se

rv
e

d
A

b
se

n
t

P
K

S,
p

o
ly

ke
ti

d
e

sy
n

th
as

e
s;

N
R

P
S,

n
o

n
-r

ib
o

so
m

al
p

e
p

ti
d

e
sy

n
th

as
e

s.
d

o
i:1

0
.1

3
7

1
/j

o
u

rn
al

.p
o

n
e

.0
1

0
8

5
2

2
.t

0
0

4

Micromonospora lupini Lupac 08 Genome

PLOS ONE | www.plosone.org 14 September 2014 | Volume 9 | Issue 9 | e108522



Genomic information also revealed that M. lupini has the

potential to produce bacteriocins (cluster 12) as suggested by the

presence of a putative short-chain dehydrogenase/reductase.

Phytohormones
Indole-3 acetic acid. Diverse bacterial species have the

ability to produce auxinic phytohormones such as indole-3-acetic

acid (IAA) and a few can also produce phenyl-acetate (PAA) such

as Frankia alni [83,84]. Different biosynthesis pathways have been

identified and redundancy for IAA biosynthesis is widespread

among plant-associated bacteria [83]. Interactions between IAA-

producing bacteria and plants may lead to several outcomes, from

pathogenesis to phytostimulation [85]. The genome of M. lupini
Lupac 08 contains a gene (Milup_45687) potentially involved in

the biosynthesis of IAA via the indole-3-acetonitrile pathway. This

gene corresponds to the conversion of indole-3-acetonitrile to

indole-3-acetic acid. Nitrilases with specificity for indole-3-

acetonitrile have been reported in Alcaligenes faecalis [86]. In

A. tumefaciens and Rhizobium spp. nitrile hydratase and amidase

activity could be identified, indicating the conversion of indole-3-

acetonitrile to indole-3-acetic acid via indole-3-acetamide [87].

Analysis of IAA production by strain Lupac 08 was carried out,

yielding a positive result (Fig. 7B).

Acetoin and 2,3-butanediol. The volatile compounds acet-

oin and 2,3-butanediol produced by bacteria such as Bacillus
subtilis GB03 and Bacillus amyloliquefaciens IN937a have been

reported as plant growth promoting hormones [88]. Several genes

were located in the genome of strain Lupac 08 which could be

involved in the production of these compounds. Two copies of the

gene pdhB (MiLup_40114 and MiLup_43782) that encode the

enzyme pyruvate dehydrogenase were identified. This enzyme

transforms pyruvate to acetaldehyde and in this process a small

fraction of pyruvate is converted to acetoin as a by-product. In

addition, three acetolactate synthases involved in the synthesis of

acetolactate from pyruvate are present (MiLup_41336,

MiLup_41383 and MiLup_41384). Under aerobic conditions,

acetolactate is converted to acetoin by the enzyme acetoin

dehydrogenase (MiLup_41670).

Discussion

The most extensively studied bacteria interacting with plants are

Gram-negative proteobacteria because they are readily isolated

from plant tissues and genetically handled for interaction studies.

However, the impact of Gram-positive bacteria on plants should

not be underestimated as has been done for many years mainly

due to their slow growth. M. lupini Lupac 08, a Gram-positive

actinobacterium was isolated from the internal root nodule tissues

of Lupinus angustifolius but it is only a representative of a large

collection of more than 2000 Micromonospora strains isolated from

diverse legumes and actinorhizals from different geographical

locations. So far, several genomes of root symbionts and soil

saprophytes have been studied; therefore we decided to focus on

an intermediary category, that of facultative endophytes.

Lupac 08 was isolated from lupine nodules, and shown to

produce the anticancer agents Lupinadicin A, B and C. The

genome of strain Lupac 08 was sequenced to obtain information

about the potential ecological role of Micromonospora in

interaction with legumes and actinorhizal plants. Genomic

analysis revealed several strategies which are probably necessary

to lead a successful lifestyle as a saprophyte in the rhizosphere, a

competitive and harsh environment, and as an endophyte capable

of colonizing the internal plant tissues. Micromonospora species

have less than 3% distance in their 16S rRNA genes, which can be

roughly translated to a time of 150MY according to the

equivalence proposed by Ochman and Wilson [89]. In the current

phylogeny (Fig. 1), M. lupini has as closest neighbours M.
chokoriensis M. saelicesensis and M. zamorensis, isolated from

sandy soil, root nodules of L. angustifolius and the rhizosphere of

P. sativum respectively. Micromonospora sp. L5 and M.
aurantiaca are located further away, with a distance of 1.2% that

would translate to 60 MY for the emergence of a group of species

that interact with plants, a date that would be close to the

postulated time of emergence of Fabaceae and that of many

actinorhizal plant families [90]. The separation from the

Salinispora and Verrucosispora lineages would constitute two

independent events that would have occurred slightly earlier at

160MY and 170MY, while the emergence of the Actinoplanes and

that of the Dactylosporangium would have occurred 250MY ago, a

time when dicotyledons had not yet appeared but when continents

and thus soils had appeared that did permit the growth of

primitive plants such as the gymnosperms.

The size of the Micromonospora genomes analyzed is quite

uniform, with that of Lupac 08 slightly larger. The chromosome

size of M. lupini Lupac 08 appears to reflect a wealth of genes

allowing for adaptation to a complex saprophytic/endophytic

lifestyle, which means adapting to a wider range of environmental

conditions with the ability to metabolize a large variety of nutrient

sources. Considering that Micromonospora sp. L5 and M. lupini
Lupac 08 were both isolated from nitrogen fixing nodules

(actinorhizal and legume plants, respectively), it would be expected

that the genomes of these strains be more similar to each other

than to M. aurantiaca ATCC 27029T which was originally

isolated from soil. Surprisingly this was not the case as confirmed

by the high number of strain specific genes identified in the

genome of Lupac 08, suggesting a high capacity of adaptation to a

fluctuating environment by this microorganism. On the other

hand, Micromonospora sp. L5 and M. aurantiaca ATCC 27029T

share a high number of orthologous genes (86%) suggesting that

the niche of origin is not crucial.

An interesting result was the distribution of the metabolic

profiles of 20 bacteria representing different living environments

(Fig. 5). There was a clear proximity between M. lupini Lupac 08

and the three Frankia genomes. This result suggests that strain

Lupac 08 contains metabolic functions similar to those found in

Frankia strains that are probably useful for its interaction with

plants. This metabolic versatility combined with a diverse

transport system make Lupac 08 an organism fit to adapt to a

soil/plant environment.

The emergence and evolution of nitrogen fixation ability among

the domains Bacteria and Archaea is complex and has not yet been

fully elucidated. Although it was previously reported that

Micromonospora strains isolated from legume and actinorhizal

root nodules contained nifH-like gene fragments [11,12], we could

not confirm these results. In a similar approach based on PCR-

amplification, other authors reported the presence of nif-H like

sequences for bacterial isolates obtained from legumes collected in

arid zones including Microbacterium, Agromyces, Mycobacterium
and Ornithinicoccus [91]. One recurrent problem with the use of a

PCR-based approach is that it is limited to a single gene amplified

billions of times, which may provide false-positive results [92] and

for this reason must always be confirmed by an independent

approach.

Plant-polymer degrading enzymes such as cellulases and

pectinases have been suspected to play a role in internal

colonization. Most plant pathogens secrete cellulases, pectinases,

xylanases, or other enzymes to hydrolyze plant cell wall polymers,

while a lack of secreted hydrolases has been proposed to be

Micromonospora lupini Lupac 08 Genome
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favourable for microorganisms that form beneficial association

with plants. Examples of endophytic plant growth promoting

bacteria that lack large amounts of cell wall degrading enzymes

include Frankia [38], Enterobacter sp. 638 [47], Azoarcus sp.

BH72 [60] and Herbaspirillum seropedicae [93]. An Azospirillum
sp. that does not colonize root tissues proper, but only the

rhizosphere, has a genome containing a large number of putative

cellulases similar to soil cellulolytic bacteria with 26–34 glycosyl

hydrolases [94], as compared to the 37 present in T. fusca, a

highly cellulolytic actinobacterium isolated from soil.

The genome of M. lupini revealed a high number of putative

genes that encode for hydrolytic enzymes and specifically

cellulolytic, xylanolytic, chitinolytic and pectinolytic activities were

confirmed in the laboratory, indicating the capacity of Micro-
monospora to degrade plant polymers in a way similar to that of

plant pathogen microorganisms. In the case of Micromonospora,

there seems to be a paradox since strain M. lupini Lupac 08 shows

a very high in vitro activity for cellulases and xylanases, however,

preliminary inoculation experiments in our laboratory indicate

that the microorganism does not behave as a pathogen, on the

contrary, Micromonospora appears to interact in a tripartite

relationship stimulating nodulation and plant growth (Fig. 7c).

Therefore the question arises as to what is the function of these

enzymes when Micromonospora interacts with the host plant.

Alternatively some of the genes present, especially those related to

the metabolism of cellulose may not necessarily imply that the

bacterium is involved in plant cell wall degradation but have a

different role, yet to be defined [95]. In addition many of the

cellulose-related genes contain binding-domains suggesting that

these may be related to the adhesion of the bacterium to the plant.

These genes could also help Micromonospora digest plant cell walls

upon senescence of the nodules.

M. lupini Lupac 08 contains several secondary metabolite gene

clusters, many of which appear to be involved in the synthesis of

siderophores and also of antibiotics. These would also in all

likelihood be involved in the synthesis of the antitumor anthra-

quinone molecules described previously [9,10]. Micromonospora,

like many other endophytic bacteria is a facultative plant colonizer

that must compete with other microorganisms in the rhizosphere

before entering the plant. In this sense, the NRPS and PKS gene

clusters identified in the genome of M. lupini Lupac 08 may be

involved in defense as well as in interaction and communication

with its host plant. Thus, it will be necessary to identify these

compounds and their functional attributes to further expand our

knowledge of this plant-microbe interaction.

Conclusions

We have provided experimental data which supports the

hypothesis that M. lupini Lupac 08 is a plant growth promoting

bacterium. Micromonospora lupini Lupac 08 clearly produces a

plant growth enhancing effect as observed in laboratory experi-

ments. The localization of several genes involved in plant growth

promotion traits such as the production of siderophores, phyto-

hormones, the degradation of chitin (biocontrol) and the

biosynthesis of trehalose may all contribute to the welfare of the

host plant. Micromonospora appears as a new candidate in plant-

microbe interactions with an important potential in agriculture

and other biotechnological applications. The current data is

promising but it is still too early to determine which specific roles

are played by this microorganism in interactions with nitrogen

fixing plants.

Methods

Genome sequencing, annotation and analysis
The genome sequence of M. lupini Lupac 08 was determined

using the 454 FLX system and Titanium platform (454 Life

Sciences) as previously reported [96]. Sequences were assembled

into 50 contigs and four scaffolds ranging from 583 to 7,083,659

nucelotides using the MaGe (Magnifying Genomes) interface [97].

This Whole Genome Shotgun project has been deposited at

European Nucleotide Archive under accession number

NZ_CAIE00000000.01.

16S rRNA gene phylogeny
Sequences obtained from public databases (Genbank/EMBL)

were manually aligned using clustal X software [98]. Phylogenetic

distances were calculated with the Kimura 2-parameter model

[99] and the tree topologies were inferred using the maximum-

likelihood method [100]. All analyses were carried out using the

MEGA5 program [101].

Comparative genome analysis
Genome rearrangement of the Micromonospora strains M.

lupini Lupac 08, Micromonospora sp. L5, M. aurantiaca ATCC

27029T and Micromonospora sp. ATCC 39149 were carried out

using MAUVE software [102]. The number of shared and unique

genes present in the respective genomes were calculated and

represented by a Venn-diagram using the EDGAR software [103].

Potential horizontally transferred genes were predicted using the

‘‘Region of Genomic Plasticity Finder’’ method implemented on

the MicroScope platform. First we selected genomes included in

the PkGDB and NCBI RefSeq databases that presented high

synteny percentages with the Lupac 08 strain. Automatic results

were manually curated according to several features such as base

composition, DNA repetitions, presence of near mobile elements

and information provided by SIGI and IVON programs [104].

Comparative analysis of metabolic profiles
A bicluster plot of the metabolic profiles for M lupini Lupac 08

and 20 other bacterial genomes was performed with Multibiplot

[105]. A comparison of 798 MicroCyc metabolic pathways was

made using MaGe. This comparison is based on the calculation of

‘pathway completion’ values, scaled from 0 to 1, where 0 means

that a particular organism does not contain any enzyme for a given

pathway and 1 that it contains all the reactions of the pathway.

These values were transformed applying row standardization and

a JK-Biplot was constructed after performing a PCA (Singular

Value Decomposition estimation method). The heatmap was then

obtained with the expected values computing the Euclidian

distance and average linkage for rows and columns.

Transport proteins identification and classification
Information about transport proteins of genomes was obtained

from the TransportDB relational database when available (http://

www.membranetransport.org/). The identification and classifica-

tion of the transporters of strain Lupac 08 was performed using the

TransAAP tool based on TransportDB [106] followed by manual

validation.

Cellulose, starch and xylan degradation
Strain Lupac 08 was cultivated on yeast-malt agar for 5 days

and subsequently transferred to M3 agar [107] with and without

glucose and supplemented with one of the substrates in the

following way: carboxymethylcellulose (CMC, 0.5%), starch (1%)
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and xylan (1%). A bacterial suspension of 106 per ml was prepared

in saline solution (0.85%) and 200 ml were inoculated on the

different plates which were then incubated at 28uC and results

were recorded at 4, 7 and 14 days after inoculation. Xylan and

CMC plates were stained with Congo red [108] while starch plates

were flooded with iodine solution [109].

Pectin degradation
Pectinolytic acitivity was determined as described in Williams

et al. [109]. Agar plates supplemented with pectin (0.5%) were

streaked with strain Lupac 08 and incubated at 28uC. Hydrolysis

zones were detected after 14 days incubation by flooding plates

with an aqueous solution of cetyltrimethyl ammonium bromide

(CTAB, 1%) and examining them after 30 min.

Chitin degradation
Chitinolytic acitivity was determined as described in Murthy

et al. [110]. Agar plates supplemented with colloidal chitin at

0.5% (Gift of France-Chitine, Orange, http://france-chitine.com/),

partly hydrolysed by stirring in 0.5 M HCl for 2h, were inoculated

with strain Lupac 08 and incubated at 28uC. Hydrolysis zones were

detected as cleared zones after 14 days incubation.

Siderophore production
Siderophore production was assessed using a modified chrome

azurol S (CAS) assay [111]. Strain Lupac 08 was cultured on yeast-

malt agar and incubated for 7 days, subsequently it was streaked

onto CAS agar plates and incubated at 28uC for 7–10 days. A

positive result was indicated by an orange halo around bacterial

colonies.

Indole-3-acetic acid production
Production of indole acetic acid was assayed following the

method of Glickmann and Dessaux [112]. Strain Lupac 08 was

inoculated in 5 ml of yeast-malt medium supplemented with L-

tryptophan (0.2%) and incubated at 28uC at 150 rpm during 7

days. The culture was then centrifuged at 12,000 x g for 10 min

and 1 ml of the supernatant was mixed with 2 ml of Salkowski’s

reagent [113] and incubated at room temperature for 30 min. IAA

production was measured spectrophotometrically at 530 nm to

assess the development of a pink colour.

Plant growth
Surface-sterilized seeds of Trifolium sp. were germinated

axenically in Petri dishes on 1.4% w/v agar. Seedlings were

transferred to sterile square plastic plates that contained a

nitrogen-free nutrient solution [114]. Fifteen plantlets were

inoculated in the following manner (5 per treatment): 500 ml

(each) of bacterial suspensions (106 cells per ml) of M. lupini Lupac

08 and Rhizobium sp. E11 for coinoculation treatment; inoculation

with Rhizobium sp. E11; and uninoculated plants as negative

controls.

Acetylene reduction activity
Nitrogenase activity was measured using acetylene reduction

[115] in sterile 150 ml plasma flasks with a rubber stopper. Cells of

Lupac 08 were cultured in liquid minimal glucose medium without

nitrogen at 28uC with shaking. The air in flasks was replaced with

mixture of air and acetylene (ration 90:10 v/v). One mililiter of

mixture was sampled for each measure using gas chromatography

with a flame ionization detector (Girdel 30, France). Mesorhizo-
bium melitolti Sm1021 was used as positive control.
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