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Abstract

A new series of salicyl glycoconjugates containing hydrazide and hydrazone moieties were designed and synthesized. The
bioassay indicated that the novel compounds had no in vitro fungicidal activity but showed significant in vivo antifungal
activity against the tested fungal pathogens. Some compounds even had superior activity than the commercial fungicides
in greenhouse trial. The results of RT-PCR analysis showed that the designed salicyl glycoconjugates could induce the
expression of LOX1 and Cs-AOS2, which are the specific marker genes of jasmonate signaling pathway, to trigger the plant
defense resistance.
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Introduction

In the past two decades, the goal of sustainable and green

agriculture had been inspiring researchers to explore the feasibility

of restricting toxic agrochemical usage to reduce their impact on

environment and food chains. One of the alternatives, which had

been studied intensively in recent years, was to make use of plant

defense potentials. Induction of plant defense resistance in crops

by chemical or biological elicitors had drawn increasing attentions

and was considered as a prospective strategy for disease control

[1,2].

During the long process of co-evolution, plants had evolved

lots of defense mechanisms to deal with pests and pathogens.

Following plant-pathogen interaction, a number of plant defense

responses could be induced (e.g., callus deposition, PR-protein

accumulation, et al.) at the site of infection, and also in

uninfected tissues, activated by signal molecules associated with

defense responses, which resulted in increased resistance to

subsequent infections. The systemic acquired resistance is a

‘‘whole-plant’’ defense response that occurred following an

earlier localized exposure to a pathogen. Activation of systemic

acquired resistance required the accumulation of endogenous

salicylic acid [3–5]. Besides the salicylic acid dependent defense

signaling pathway, the others had also been reported. For

example, endogenous jasmonic acid and methyl jasmonate were

also the potent signaling molecules which could induce a large

set of defense responses [6]. Systemic acquired resistance

possessed low specificity, was not easily overcome by new

pathogens which emerged frequently.

Chemical elicitors are agrochemicals which do not show a direct

effect on pathogens and lacked fungicidal activity themselves but

induce defense mechanisms, which clearly distinguish them from

conventional pesticides [7]. Some of these agrochemicals are

known to have signaling functions in planta, such as benzothia-

diazole [8–13], which is a functional analog of salicylic acid, while

others may mimic the attack of a pathogen, such as harpin [14] or

flagellin [15].

Saccharides are known as potent elicitors [16]. The fragments of

chitin and chitosan, which act as elicitors in many plants, could

induce the production of nitric oxide and hydrogen peroxide in

some plant epidermal cells [17–20]. Even neutral saccharides,

such as b-glucans derived from cellulose or laminarin [21,22], are

capable of enhancing plant resistance. The accumulation of

phytoalexins could be induced by branched hexa (b-D-glucopyr-

anosyl)-D-glucitols in soybean [23,24]. Oligoglucans with poly-

merization between 8 and 17 could induce the chitinase activity in

tobacco BY-2 suspension cells [25,26]. The phenolic pathway

could be rapidly induced by the mannose and glucose disaccha-

rides in Rubus cells [27]. It is evident that saccharides have the

ability to trigger defense responses in plants, enhance resistance

toward infection, and even support plant growth [28,29].

In our previous work, some 1,3,4-oxadiazole [30], benzoylureas

[31–33], acylhydrazones [34,35], diacylhydrazines [36–40], semi-

carbazide [41], pyrazole and 1,2,4-triazole [42] derivatives
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Figure 1. General synthetic procedure for salicylic glycoconjugates.
doi:10.1371/journal.pone.0108338.g001
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Table 1. In vitro fungicidal activity against five fungus species at 50 mg/mL.

Compd. Inhibitory rate (%)

C. orbiculare F. oxysporum S. fuliginea R. solanii P. capsici

2a 97.362.0 73.062.2 73.162.1 86.562.3 56.262.2

2b 95.461.3 95.562.3 77.762.3 79.261.7 61.761.8

4a 11.361.0 12.261.1 28.162.0 27.961.6 13.261.1

4b 28.661.2 28.061.5 10.361.5 28.962.0 28.461.3

4c 12.961.2 9.360.4 6.560.6 18.162.0 12.961.7

4d 8.160.4 11.661.0 11.562.1 23.062.0 2.060.4

5a 15.260.9 7.460.2 10.461.7 26.161.0 21.661.0

5b 19.761.1 9.460.7 25.962.6 12.961.1 26.761.6

5c 2.260.3 3.260.1 1.360.8 16.362.4 23.861.2

5d 17.661.3 13.361.2 15.261.4 19.561.3 28.462.3

7a 24.461.2 35.361.7 28.562.0 15.461.0 21.461.3

7b 15.761.8 24.761.4 37.562.3 47.661.5 31.661.8

7c 25.561.7 33.361.6 17.561.1 39.462.0 38.661.2

7d 13.361.9 25.361.3 36.561.6 38.461.3 29.061.4

7e 25.561.0 21.561.1 19.661.7 19.861.0 41.561.5

7f 6.061.0 12.661.1 27.661.6 37.662.5 24.561.2

7g 11.360.6 8.260.8 12.461.6 21.561.5 15.761.1

DMSO 1.060.3 1.960.7 1.060.1 1.460.5 1.060.2

Fungicidesa 91.061.3 a 98.261.2 b 97.562.1 c 91.062.1 d 91.262.5 e

aControl fungicides: a, thiophanate-methyl; b, benomyl; c, chlorothalonil; d, validamycin; e, dimethomorph.
doi:10.1371/journal.pone.0108338.t001

Table 2. In vivo antifungal activity against five fungus species at 500 mg/mL.

Compd. Inhibitory rate (%)

C. orbiculare F. oxysporum S. fuliginea R. solanii P. capsici

2a 51.862.0 55.262.2 48.163.1 51.762.2 33.261.3

2b 61.761.1 64.562.4 43.562.2 51.863.1 26.861.1

4a 45.662.6 43.662.3 41.961.1 49.762.3 12.961.2

4b 41.661.2 28.161.0 39.461.7 21.561.5 11.360.6

4c 51.661.7 59.762.1 49.362.3 17.461.9 3.260.9

4d 47.561.8 34.561.6 34.761.3 43.861.6 6.660.3

5a 50.361.3 54.561.2 50.861.7 26.061.3 40.462.2

5b 53.361.8 61.862.0 53.762.5 45.062.0 11.361.7

5c 34.661.6 55.660.8 54.561.3 34.561.4 24.261.0

5d 68.661.3 71.062.3 73.962.6 31.261.4 12.961.2

7a 41.360.5 53.861.5 52.361.1 45.562.1 76.062.2

7b 48.361.3 33.661.5 54.561.5 36.861.9 68.661.5

7c 54.861.9 62.661.6 34.560.7 28.661.5 83.561.3

7d 12.660.3 34.561.0 37.861.3 36.661.9 78.561.6

7e 54.362.5 54.660.9 23.361.2 33.261.8 77.562.0

7f 59.661.8 74.961.3 14.760.8 14.561.0 25.661.1

7g 54.861.5 40.361.2 42.861.3 33.961.5 34.761.0

DMSO 2.260.6 2.960.2 2.460.4 2.260.8 3.160.6

Fungicidesa 76.862.3 a 74.562.3 b 94.661.7 c 81.062.7 d 91.262.4 e

aControl fungicides: a, 70% thiophanate-methyl WP; b, 70% benomyl WP; c, 50% chlorothalonil WP; d, 3% validamycin AS; e, 50% dimethomorph WP.
doi:10.1371/journal.pone.0108338.t002
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containing 5-phenyl-2-furan were designed and synthesized. All

the compounds had considerable and diverse bioactivities such as

insecticidal, fungicidal, and antitumor activities. Thus, 5-phenyl-2-

furan was regarded as an active scaffold in drug design. In this

study, we focused on the molecular design and synthesis of novel

salicyl glycoconjugates as elicitors against plant diseases. We

present here the preparation and characterization of the new

elicitors based on salicylic acid and 5-phenyl-2-furan moiety

(Figure 1), and show that these compounds could induce the

systemic acquired resistance against pathogenic infections in

cucumber.

Materials and Methods

Instruments
All the melting points were determined with a Cole-Parmer

melting point apparatus (Cole-Parmer, Vernon Hills, Illinois,

USA) while the thermometer was uncorrected. Optical rotation

data were recorded on a KRUSS P8000 instrument (KRUSS,

Karlsruhe, Germany). IR spectra were recorded on a Nicolet

NEXUS-470 FTIR spectrometer (International Equipment Trad-

ing Ltd., Vernon Hills, Illinois, USA) with KBr pellets. 1H NMR

spectra were recorded with Bruker DPX300 (Bruker, Fallanden,

Switzerland) and JEOL JNM-ECS400 (JEOL Ltd., Tokyo, Japan),

while tetramethylsilane was used as an internal standard.

Analytical thin-layer chromatography was carried out on silica

gel 60 F254 plates, and spots were visualized with ultraviolet light.

Elemental analysis was carried out with a Flash EA 1112 elemental

analyzer (Thermo Finnigan, Bremen, Germany). Mass spectra

were measured on a Bruker APEX IV spectrometer (Bruker,

Fallanden, Switzerland).

Synthetic procedures
General synthetic procedure for hydrazides 2a and

2b. Preparation of hydrazides 2a and 2b: Esters 1a and 1b
(30 mmol) was suspended in 100 mL methanol and reacted with

98% hydrazine monohydrate (60 mmol, 2.9 mL) under reflux for

12 h. The solid was filtered, washed with methanol and dried to

afford hydrazides 2a and 2b.

2-mercaptobenzohydrazide (2a). Light yellow solid: yield 90%.

m.p. 114–115uC. IR (KBr): nmax 3342, 3123, 1664, 1574, 1505,

1454, 1323, 1223, 1053 cm21. 1H NMR (300 MHz, DMSO-d6):

4.65 (s, 2H, NH2), 5.16 (s, 1H, SH), 7.29–7.31 (m, 1H, PhH),

7.42–7.45 (m, 1H, PhH), 7.65–7.69 (m, 2H, PhH), 9.89 (s, 1H,

CONH). ESI-MS: m/e 169.1 [M+H]+. Anal. Calcd. (%) for

C7H8N2OS: C, 49.98; H, 4.79; N, 16.65. Found: C, 50.16; H,

4.91; N, 16.45.

2-hydroxybenzohydrazide (2b). White solid: yield 92%. m.p.

147–148uC. IR (KBr): nmax 3623, 3468, 1667, 1549, 1531, 1464,

1245, 1062 cm21. 1H NMR (300 MHz, DMSO-d6): d 4.53 (s, 2H,

NH2), 5.23 (s, 1H, OH), 6.72–6.75 (m, 1H, PhH), 7.30–7.32 (m,

1H, PhH), 7.76–7.79 (m, 1H, PhH), 7.85–7.88 (m, 1H, PhH), 9.79

(s, 1H, CONH). ESI-MS: m/e 153.1 [M+H]+. Anal. Calcd. (%) for

C7H8N2O2: C, 55.26; H, 5.30; N, 18.41. Found: C, 55.52; H,

5.14; N, 18.59.

Figure 2. In vitro fungicidal activity against Fusarium oxysporum. A: blank control, B: 5d, C: DMSO, D: 2b, E: benomyl, F: 2a.
doi:10.1371/journal.pone.0108338.g002
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General synthetic procedure for hydrazides 5a–d and

hydrazones 7a–g. The key intermediates hydrazides 5a–d were

obtained almost quantitatively by the hydrazinolysis of compounds

4a,d in alcohol. Compounds 5a,d were condensed with 5-

substituted phenyl-2-furfural to form the glycosyl hydrazones 7a–
g. All the chemical characterization was given in reference [35].

Bioassays
In vitro fungicidal activity. In vitro fungicidal activity of the

salicylic glycoconjugates against Colletotrichum orbiculare, Fusar-
ium oxysporum, Rhizoctonia solanii, and Phytophthora capsici were

evaluated using mycelium growth rate test [43–45]. The tested

compounds were dissolved in DMSO (dimethyl sulfoxide) and

mixed with sterile molten potato dextrose agar to a final

concentration of 50 mg/mL. In vitro fungicidal activity of the

salicylic glycoconjugates against Sphaerotheca fuliginea was

evaluated using colonized detached leaves method [43–45]. The

conidial suspensions were prepared by seeding about 26105 spores

mL21 conidia in a 0.05% Tween 80 solution, and the DMSO

solution of compounds (5000 mg/mL) was diluted with conidial

suspension to a final concentration of 50 mg/mL. The solution was

sprayed with a hand sprayer on the surface of the detached leaves

which were inoculated with S. fuliginea.

P. capsici was maintained on oat medium at 17uC. C.
orbiculare, F. oxysporum, and R. solanii were maintained on

potato dextrose agar medium at 4uC. Five commercial fungicides:

thiophanate-methyl, benomyl, chlorothalonil, validamycin, and

dimethomorph were used as controls against the above mentioned

fungal pathogens under the same conditions. Three replicates were

performed. The relative inhibition rate of the synthetic compounds

compared to blank control was calculated via the following

equation:

I~ C{Tð Þ=C|100%

In which, I stands for the rate of inhibition (%), C is the

diameter of mycelia in the blank control test (in mm), and T is the

diameter of mycelia in the presence of tested compounds (in mm).

In vivo Antifungal Activity. Using the pot culture test

[42,46], the in vivo antifungal activities of the salicylic glycocon-

jugates against C. orbiculare, F. oxysporum, S. fuliginea, R.
solanii, and P. capsici were evaluated in greenhouse along with

five commercial fungicides, 70% thiophanate-methyl WP, 70%

benomyl WP, 50% chlorothalonil WP, 3% validamycin AS, and

50% dimethomorph WP as controls.

The culture plates were cultivated at 2461uC. Germination was

conducted by soaking cucumber seeds in water for 2 h at 50uC
and then keeping the seeds moist for 24 h at 28uC in an incubator.

When the radicles were 0.5 cm, the seeds were grown in plastic

pots containing a 1:1 (v/v) mixture of vermiculite and peat.

Cucumber plants used for inoculations were at the stage of two

seed leaves. Ten plants were used for each treatment.

Tested compounds were confected to 2.5% EC (emulsifiable

cocentration) formulations, in which pesticide emulsifier 500

(0.375%) and pesticide emulsifier 600 (2.125%) were the additives,

Figure 3. In vitro fungicidal activity against Colletotrichum orbiculare. A: blank control, B: 5d, C: DMSO, D: 2b, E: thiophanate-methyl, F: 2a.
doi:10.1371/journal.pone.0108338.g003
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DMSO (0.1%) was the solvent, and xylene was the co-solvent. The

formulation was diluted to a concentration of 500 mg/mL with

water. The solution was sprayed with a hand sprayer on the

surface of seed leaves which were then inoculated with C.
orbiculare, S. fuliginea, and R. solanii, respectively. Tested

compounds and commercial fungicides were applied by irrigation

at seedling stage, which were then inoculated with F. oxysporum
and P. capsici, respectively. Three replicates for each treatment

were applied.

Inoculations of C. orbiculare and S. fuliginea were carried out

by spraying conidial suspension, and inoculation of R. solanii was

carried out by spraying a mycelial suspension. F. oxysporum assay

was carried out by embryo root inoculation, and P. capsici assay

was carried out by irrigation inoculation.

Three replicates for each treatment were applied. After

inoculation, the plants were maintained at 2461uC and above

80% relative humidity.

The fungicidal activity was evaluated when the untreated

cucumber plant (blank control) fully developed symptoms. The

area of inoculated leaves covered by disease symptoms was

assessed and compared to that of untreated ones to determine the

average disease index. The relative control efficacy of compounds

compared to the blank assay was calculated via the following

equation:

I %ð Þ~½(CK-PT)=CK�|100%

where I is relative control efficacy, CK is the average disease index

during the blank assay and PT is the average disease index after

treatment during testing.

RT-PCR for detection of pathogenesis-related gene

expression. Tested compounds (500 mg/mL) were sprayed

with a hand sprayer on the surface of the cucumber (Cucumis
sativus) seed leaves, which were collected after 24 h, 48 h, and

72 h. The leaves were treated by liquid nitrogen. RNA isolation

was performed with the RNAiso Plus Kit (Takara Bio). First-strand

cDNA was synthesized from 100 mg/mL total RNA, which was

quantified with QuantiT RNA Assay Kit (Invitrogen), by reverse

transcription using the QuantiTect Reverse Transcription Kit

(QIEGEN). Gene-specific primers (Table S1 in File S1) were

designed and actin was used as the housekeeping gene [47,48].

Each reaction mixture (30 mL) contained 1 mL of the cDNA

template, 100 pmol of each primer, 10 mL of Premix Ex Taq HS

(Takara Bio), and 20 mL reaction buffer. The thermal cycling

conditions were as follows: initial denaturation (94uC, 5 min),

followed by 40 cycles of denaturation (94uC, 30 s), annealing (30 s)

and extension (72uC, 30 s), and one final cycle of extension (72uC,

5 min). Finally, RT-PCR products were separated by electropho-

resis and visualized in 1% agarose gel.

Figure 4. In vivo antifungal activity against Colletotrichum orbiculare.
doi:10.1371/journal.pone.0108338.g004
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Ethics statement
No specific permits were required for the described field studies.

No specific permissions were required for these locations. We

confirm that the location is not privately-owned or protected in

any way. We confirm that the field studies did not involve

endangered or protected species.

Results and Discussion

Synthesis
The synthetic routes of 2-mercaptobenzohydrazide 2a, 2-

hydroxybenzohydrazide 2b and glycosyl hydrazides 5a–d were

shown in Figure 1. The hydrazides 5a–d were obtained almost

quantitatively by hydrazinolysis of the esters 4a–d in alcohol.

Figure 6. Effect of designed compounds on inducing the expression of pathogenesis-related genes in Cucumis sativus.
doi:10.1371/journal.pone.0108338.g006

Figure 5. In vivo antifungal activity against Sphaerotheca fuliginea.
doi:10.1371/journal.pone.0108338.g005
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Finally, the hydrazides 5a–d were reacted with aldehyde 6 by

condensation to form the glycosyl hydrazones 7a–g.

Fungicidal activity
The in vitro fungicidal results were shown in Table 1. The

hydrazides 2a and 2b showed excellent activity against the tested

fungi (Figures 2 and 3). For example, the inhibitory rates of the

hydrazides 2a and 2b against C. orbiculare were 97.3% and

95.4%, which were better than thiophanate-methyl (91.0%). After

modification of sugars, the in vitro activity of all the derivatives

was decreased and they exhibited poor inhibitory rates. Although

the in vitro activity of these glycosides was not encouraging, the

in vivo tests gave promising results (Table 2), with all the

carbohydrate derivatives showing considerable activity, especially

against F. oxysporum (Table 2), C. orbiculare (Figure 4), and S.
fuliginea (Figure 5). Among them, hydrazide 5d and hydrazone

7f had activity of 71.0% and 74.9% on F. oxysporum, respectively,

which is similar to the control benomyl (74.5%) against the same

pathogen. 5d also showed good activity of 68.6% and 73.9%

against C. orbiculare and S. fuliginea, respectively. Some

hydrazones 7 exhibited promising activity against P. capsici. For

examples, 7c showed an inhibitory rate of 83.5%, and the

inhibitory rates of 7a, 7d and 7e were more than 75%.

The bioassay results showed that the tested compounds had

in vivo antifungal activity against pathogenic fungi of Ascomycota

(C. orbiculare, F. oxysporum and S. fuliginea), Basidiomycota

(R. solanii), and Oomycete (P. capsici). The observed in vivo
antifungal activity also had some association with the issue of

pathogen biology. The tested compounds exhibited activity not

only against the obligatory parasite pathogen (S. fuliginea), but

also against the facultative parasite pathogens (C. orbiculare,
F. oxysporum, R. solanii and P. capsici). The tested compounds

also showed good activity against the soil-borne fungal disease

(F. oxysporum, R. solanii and P. capsici). Also, we confirmed that

all of these test compounds were safe for the host plants.

Defense activity of designed compound in plant
There are two important defense signaling pathways in plant

system. One is mediated by salicylic acid and the other is mediated

by jasmonic acid. In each defense pathway, there are specific

marker genes which expression could be influenced by corre-

sponding signaling molecules. In order to unveil the mode of

action of our designed compounds, RT-PCR was performed to

check the expression patterns of pathogenesis-related genes (PR1a,

PR8, LOX1, Cs-AOS2) (Figure 6). Among them, PR1a and PR8
were the specific marker genes mediated by salicylic acid, whereas

LOX1 and Cs-AOS2 were the specific marker genes mediated by

jasmonic acid. Our results showed that expressions of the LOX1
and Cs-AOS2 genes were significantly induced by hydrazide 5d,

and the expression level was comparable with that mediated by

BTH (S-methyl benzo [1,2,3]thiadiazole-7-carbothioate). Howev-

er, hydrazide 5d had no obvious effect on the expressions of PR1a
and PR8.

Conclusions

A new series of glycosyl hydrazines and hydrozone derivatives

were designed and synthesized. Their antifungal tests indicated

that most of the salicylic glycoconjugates had no in vitro fungicidal

activity but showed considerable in vivo antifungal activity. The

plant defense activity showed that expressions of the LOX1 and

Cs-AOS2 genes were significantly induced by hydrazide 5d, but

the compound had no effect on the expressions of PR1a and PR8.

Intriguingly, although the designed compounds were the deriva-

tives of salicylic acid, they did not mimic the mode of action of

salicylic acid, but seem to follow the jasmonic acid mediated

pathway to induce the plant defense resistance.

Supporting Information

Table S1 Primers Used in This Study.

(DOC)
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