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Abstract

A major cue to the location of a sound source is the interaural time difference (ITD)–the difference in sound arrival time at
the two ears. The neural representation of this auditory cue is unresolved. The classic model of ITD coding, dominant for a
half-century, posits that the distribution of best ITDs (the ITD evoking a neuron’s maximal response) is unimodal and largely
within the range of ITDs permitted by head-size. This is often interpreted as a place code for source location. An alternative
model, based on neurophysiology in small mammals, posits a bimodal distribution of best ITDs with exquisite sensitivity to
ITDs generated by means of relative firing rates between the distributions. Recently, an optimal-coding model was
proposed, unifying the disparate features of these two models under the framework of efficient coding by neural
populations. The optimal-coding model predicts that distributions of best ITDs depend on head size and sound frequency:
for high frequencies and large heads it resembles the classic model, for low frequencies and small head sizes it resembles
the bimodal model. The optimal-coding model makes key, yet unobserved, predictions: for many species, including
humans, both forms of neural representation are employed, depending on sound frequency. Furthermore, novel
representations are predicted for intermediate frequencies. Here, we examine these predictions in neurophysiological data
from five mammalian species: macaque, guinea pig, cat, gerbil and kangaroo rat. We present the first evidence supporting
these untested predictions, and demonstrate that different representations appear to be employed at different sound
frequencies in the same species.
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Introduction

For many species, including humans, a major cue for sound-

source lateralization is the interaural time difference (ITD), the

difference in arrival time of a sound at the two ears [1,2]. Sound

from a source takes longer to reach the far ear than the near ear,

resulting in an ITD, with the exact ITD depending on the position

of the sound source (Figure 1A). The classic model of the neural

representation of ITD, developed by Jeffress [3], proposes an array

of coincidence-detector neurons fed by a series of internal delay

lines originating from each ear. Each neuron generates a maximal

response at its ‘best ITD’, when the difference in internal delay

compensates the external ITD, bringing the neuron’s inputs into

coincidence. The Jeffress model posits that best ITDs are

distributed within the ‘‘physiological range’’ of ITDs, generated

by the size and shape of the head. This range is bounded by the

maximum ITD, found for sound sources near the interaural axis

(Figures 1B). Most instantiations of the Jeffress model posit a

unimodal or uniform distribution of best ITDs centred at zero

ITD [4–10], designed to account for the better spatial acuity

observed for frontal locations. This ‘centrality’ in the neural

representation of ITD was first suggested by Sayers and Cherry

[11], and also proposed by Jeffress [12]. The Jeffress model is often

envisaged as an explicit place code for ITD, and commonly

assumed to apply at all sound frequencies.

Basic features of the Jeffress model are generally considered

consistent with anatomical and physiological features of the barn-

owl auditory brain [13–15] and were also considered to hold for

mammals [16]. More recently, however, neural recordings from

several mammalian species report a bimodal distribution of best

ITDs, with the best ITDs of many neurons, counter-intuitively,

lying beyond the physiological range. This suggested a model in

which ITDs are encoded by means of the relative firing rates of

opposing neural populations [17–25]. The disparate features of the

Jeffress and two-channel models were recently unified under an

optimal-coding model derived from the principle of efficient

coding [26]. The optimal-coding model predicts that the uniform

representation suggested by Jeffress provides for optimal ITD
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discrimination in species with relatively large heads (and therefore

large maximum ITDs) and at relatively high sound-frequencies,

whereas the bimodal representation of the two-channel model

confers an advantage in species with small head-sizes, and for

larger species at low sound-frequencies. In addition to offering a

unifying explanation for the range of experimental observations,

the optimal-coding model predicts that for many mammalian

species, including humans, both forms of representation will be

evident, depending on the sound frequency. It also predicts

additional, novel representations that conform to neither the

Jeffress nor two-channel models. Here, we assess experimental

data from five mammalian species, and demonstrate evidence

supporting these predictions. In particular, we demonstrate that,

for many species, ITD is encoded by different neural represen-

tations at different sound frequencies.

Results

Experimentally recorded distributions of best ITDs were

examined as a function of sound frequency for five mammalian

species with different head sizes, and compared to the distributions

predicted by the optimal-coding model, the Jeffress model, and the

two-channel model. Figure 1D illustrates the general predictions

of the optimal-coding model. In this and subsequent figures, ITD

is plotted as interaural phase difference (IPD) - the ITD as a

proportion of the period of the sound frequency (provided on the

ordinate). In Figures 1D–F, sound frequency is plotted normalized

by 1/maximum ITD, and thus predictions for different species

with different maximum ITDs constitute scaled versions of these

Figures (with slight distortions if the relatively small fluctuations of

maximum ITD with sound frequency are accounted for). The

actual distributions would be expected to be substantially more

diffuse than the predictions of the models, with distinct sub-

populations of the models being peaks in the distribution of best

IPDs in the data.

Broadly stated, the main untested prediction of the optimal-

coding model is that, for intermediate and larger head-sizes,

different neural representations will be observed at different sound

frequencies in the same species. However, for species with smaller

head-sizes, the optimal-coding model predicts only the two-

channel representation to be present at all frequencies (as reported

experimentally). To this end, for rigorous cross-species compari-

sons, data sets for these smaller species are also subject to the same

analysis as for the other, larger, species. Experimental data we

recorded from guinea-pigs and macaques are analysed. In

addition, new analyses of data sets extracted from previously

published studies of ITD sensitivity in the kangaroo rat, gerbil, and

cat are performed. For the cat, guinea pig, and gerbil data, the

frequencies at which the best IPDs were measured were the best

frequency (or a similar frequency tuning measure) of each neuron

(best frequency, BF, is the frequency that elicits the greatest firing

rate for a given sound intensity). For the macaque and kangaroo

rat data, best IPDs were measured for a small number of

stimulating sound frequencies within a neuron’s frequency tuning

range. For these data sets, either case is expected to be reasonable

for testing the broad predictions of the optimal-coding model (see

Methods). For each species, the data are represented in the form of

a 2D histogram, plotting the number of neurons with particular

best IPDs as a function of frequency.

For data for each of the five species, the form of the distributions

of best IPDs over sound frequency was analyzed, sufficient data

permitting. The results were then compared to the predictions of

the optimal-coding model, as well as the Jeffress model and the

two-channel model. Figures 1E–F illustrate the predicted distri-

butions of best IPD as a function of best frequency for the Jeffress

model (for a uniform distribution) and the two-channel model,

respectively, if predictions from these models were to hold over the

entire frequency range.

Specifically, the following questions were addressed in the

analysis (see Methods for details):

Q1) At low frequencies (normalized frequency below ,0.12),

does the distribution of best IPDs fall largely outside the

Figure 1. Models predicting the distribution of best ITDs. (A)
Illustration of an ITD from a sound source (B) Illustration a sound source
near the interaural axis (horizontal dotted line) having maximum ITD. In
A–B red and blue lines are the shortest paths from the sound source
(black dot) to the ears. (C) A illustration of a model rate-vs-IPD function
and best IPD. IPD is ITD as a proportion of the period of the sound
frequency. (D) Optimal-coding model: complex frequency dependent
distribution. (E) Jeffress model: homogeneous distribution or unimodal
distribution of best IPDs at all frequencies, largely within the
physiological range. (F) Two-channel model, bimodal at all frequencies.
In Figure (D–F), solid black line, maximum IPD, white line, limit of IPD
sensitivity, color, percentage of neurons at a given frequency with that
best IPD. The ordinate is the sound frequency normalized with respect
to the reciprocal of the maximum ITD (i.e. sound frequency as a
proportion of 1/maximum ITD).
doi:10.1371/journal.pone.0108154.g001
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physiological range (i.e. is it two-channel), as predicted by the

optimal-coding model? Although this prediction has been tested in

some small mammals, it has not been tested in a systematic

manner across species.

Q2) At intermediate frequencies (normalized frequency ,0.12

to ,0.5), do the data indicate the novel distributions of best IPDs

predicted by the optimal-coding model, with a central peak in the

distribution in the lower intermediate frequencies and above that a

bimodal distribution within the physiological range? Neither the

Jeffress model nor two-channel models predict this. This

prediction is as yet untested.

Q3) At high frequencies (normalized frequency above ,0.5), do

the data tend toward a uniform or unimodal best-IPD distribution

(i.e. is the distribution Jeffress-like), as predicted by the optimal-

coding model? This prediction has not yet been examined in

mammals.

The distribution of best ITDs is bimodal in small
mammals, but shows frequency-dependent ITD
representation in intermediate-sized mammals

Small mammals. Two small mammals for which the

distribution of best ITDs has been reported are the banner-tailed

kangaroo rat (Dipodomys spectabilis) and the Mongolian gerbil

(Meriones unguiculatus). These species have maximum ITDs of

105 ms [25] and 120 ms [27] respectively. The predictions of the

optimal-coding model for the kangaroo rat and gerbil (Figure 2A

and 2D, respectively) are that the majority of best IPDs lie beyond

the physiological range, and that best IPDs are distributed

bimodally at all but the highest frequencies. Previous studies have

argued for the existence of a bimodal distribution of ITDs in these

species, consistent with the two-channel model and the predictions

of the optimal-coding model. In the kangaroo rat, Crow et al. [18]

measured best ITDs as a function of frequency for neurons

recorded from the superior olivary complex of the hindbrain, the

presumed site of primary binaural integration. In the gerbil, Pecka

et al. [28] measured best ITD as a function of best frequency in

the medial superior olive, the dominant ITD-sensitive nucleus of

the superior olivary complex. Here, we re-analyze this data in

order to compare them in a consistent manner with data obtained

from other species.

The data from the kangaroo rat of Crow et al. [18] are re-

plotted in Figure 2B, with the distribution of best IPDs plotted for

a number of frequency bands as a ‘mirrored’ 2D-histogram.

Mirroring assumes symmetry in the neural representation, with

each neuron having an opposing neuron with a best ITD of equal

magnitude but opposite sign. Recall that IPD equates to ITD as a

proportion of the period of the sound frequency along the

ordinate. Figure 2C plots the same data as Figure 2B, but

collapsed across sound frequency. Figures 2E re-plots the data

obtained from histologically identified medial superior olive

neurons by Pecka et al. [28], using the same form of mirrored

2D-histogram employed in Figure 2B. Figure 2F shows the same

data as in 2E, again collapsed across sound frequency. Examining

question Q1 - whether the distribution of best IPDs falls largely

outside the physiological range for frequencies below the ‘specific’

frequency (normalized frequency 0.12, in kangaroo rat, 1143 Hz,

in gerbil, 1000 Hz), the optimal-coding model predicts that a

greater number of best IPDs does indeed lie beyond the

physiological range (i.e. outside the black lines in Figures 2A–B

and 2D–E) than within. The null hypothesis, consistent with the

Jeffress model, postulates the opposite. For the kangaroo rat, 86%

(48/56) of best IPDs below the specific frequency lie beyond the

physiological range. This proportion is significant (p = 2.361028,

one-tailed binomial test), and thus the null hypothesis is rejected.

Employing the same analysis for the gerbil, 82% (28/34) of the

best IPDs below the specific frequency lie beyond the physiological

range. Again, this is significant (p = 9.861025, one-tailed binomial

test), and once more the null hypothesis is rejected. With respect to

bimodality in the distribution of best IPDs, Figures 2B–C and 2E–

F clearly indicate two distinct sub-populations across the entire

frequency range for which data exist. This analysis demonstrates

that, in small mammals, the distributions of best IPDs are

consistent with the optimal-coding model: a two-channel code

with distributions of best IPDs lying outside the physiological

range (Q1 confirmed). Similar data are also found for recordings

made in the inferior colliculus of the midbrain of the kangaroo rat

[25], which receives direct input from the medial superior olive.

This midbrain data is shown in the inset to Figure 2C, indicating

that the form of the distribution is not specific to the brain centre

from which the recordings were made.

The presence of an emerging central population is not assessed

for these small mammals because there are insufficient data at

these frequencies (Q2). The optimal-coding model predicts that

regions of uniform distribution of best IPDs do not exist for these

small mammals and the data are consistent with this finding

(confirming Q3).

Intermediate-sized mammals. In order to assess the

untested predictions of the optimal-coding model, it is necessary

to examine data obtained from animals with larger head sizes, as it

is for these species that different representations of ITD are

predicted to arise over different frequency ranges. Two interme-

diate-sized mammals are the guinea pig (Cavia porcellus) and the

cat (Felis catus), with maximum ITDs around 300 ms [29,30]. The

maximum ITD varies slightly with sound frequency in both the cat

(250–325 ms range [30]) and guinea pig (245–330 ms range [29]).

We used these frequency-dependent maximum ITDs in our model

predictions. For these medium-sized species the optimal-coding

model (Figure 2G and 2I, guinea pig and cat, respectively) predicts

that best IPDs show a distribution consistent with the two-channel

model for the lowest sound frequencies, with peaks in the

distribution lying beyond either side of the physiological range

(Q1). Above the specific frequency (normalized frequency 0.12),

however, the model predicts the existence of distinct sub-

populations within the physiological range. At these intermediate

frequencies, it predicts a central sub-population at zero IPD

around 500 Hz, and then a bimodal distribution above that (Q2).

For the highest sound frequencies for intermediate-sized mam-

mals, the model predicts a uniform distribution. However, for both

the guinea and the cat there are too few data at the highest

frequencies to test for uniformity (Q3).

For the guinea pig, best IPDs as a function of best frequency

were obtained from 283 neurons in the inferior colliculus of the

midbrain. Although neural sensitivity to ITD appears first in the

medial superior olive, ITD-sensitive neurons in midbrain struc-

tures such as the inferior colliculus, and forebrain areas such as

auditory thalamus and cortex, tend to display similar ITD-tuning

properties [24,31], as we see in Figure 2C. Therefore, experimen-

tal data recorded from all these brain areas are useful in testing the

various models. Figure 2H plots the guinea pig data as a mirrored

2D-histogram. For neurons with frequency tuning below the

specific frequency of 369 Hz, the lowest frequency at which a sub-

population of best IPDs within the physiological range appears in

the optimal-coding model, 73% (69/94) of best IPDs lie outside

the physiological range (p = 3.261026, one-tailed binomial test).

Thus, the null hypothesis is rejected and the presence of

distributions consistent with the two-channel model, with most

best IPDs beyond the physiological range is confirmed (Q1

confirmed).

Audiospatial Neural Coding Depends on Frequency
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Regarding Q2, the 250–500 Hz frequency band in Figure 2H

demonstrates a previously un-noted central sub-population of best

ITDs. Also, above approximately 500 Hz, two opposing subpop-

ulations are apparent that lie within, rather than beyond, the

physiological range. The frequency bands that included at least

some of the intermediate frequency range were examined for the

presence of a tight central dip at zero IPD in the distribution of

best IPD (that is, whether there are fewer best IPDs of magnitude

,0.075 cycles than the are of magnitude 0.075–0.15 cycles). This

tight dip would be indicative of a bimodal representation within

the physiological range, as predicted by the optimal-coding model

(see Methods). No such dip at 250–500 Hz was evident (not

significant (N.S), n = 50, one-tailed binomial test), consistent with

the null hypothesis, and consistent with an interpretation that a

central subpopulation of best IPDs exists within this band.

However, significant dips in the 500–750 Hz and 750–1000 Hz

Figure 2. Best delay distributions for small and intermediate-sized mammals. (A) Predicted distributions of best IPDs by the optimal-
coding model for the kangaroo rat (max. ITD, ,105 ms, highest frequency with ITD sensitivity ,1500 Hz). IPD is ITD is a proportion of the period of
the sound frequency on the ordinate. Black line, maximum IPD that limits the physiological range, white line, limit of IPD-sensitivity, color, number of
best IPDs in an IPD bin for a given frequency band. The predictions uses the same size frequency and IPD bins as the corresponding data in Figure 2B,
and each frequency band has been scaled to have the same maximum as the corresponding frequency band in the data. (B) Best ITD data from the
Crow et al. [18] kangaroo rat SOC study (59 data points successfully extracted), converted from ITD to IPD, mirrored, and then re-plotted as a 2D
histogram using 300-Hz frequency bins and 0.05 cycle IPD bins. Format a Figure 2A. (C) Best IPD data from Figure 2B collapsed over frequency, solid
blue bars are mirrored data, empty light blue bars unmirrored data. Inset figure plots data from the kangaroo rat inferior colliculus (IC) in the midbrain
[25], showing number of neurons with a given characteristic delay (similar to best ITD). The abscissa on the inset figure spans 27.5 ms to 7.5 ms, with
an ordinate spanning 0 to 14 neurons. (D) Predicted distributions of best IPDs by the optimal-coding mode for the Mongolian gerbil (max. ITD,
,120 ms, highest ITD-sensitive frequency ,1500 Hz). Format as Figure 2A. (E) Best ITD data from Pecka et al. [28] Mongolian gerbil medial superior
olive study (38/40 data points successfully extracted), converted from ITD to IPD, mirrored, and re-plotted as a 2D histogram using 300 Hz frequency
bins and 0.05 cycle IPD bins. Format as Figure 2A. (F) Data in Figure 2E collapsed over frequency. Format as Figure 2C. (G) Predicted distributions of
best IPDs by the optimal-coding model for the guinea pig (max. ITD, 245–330 ms, highest frequency with ITD sensitivity ,1800 Hz). Format as
Figure 2A. (H) 260 best IPDs from the guinea pig inferior colliculus mirrored and re-plotted as a 2D histogram using 250 Hz frequency bins and 0.05
cycle IPD bins. Format as Figure 2A. (I) Predicted distributions of best IPDs by the optimal-coding model for the cat (max. ITD, 250–325 ms, highest
frequency with ITD sensitivity ,2000 Hz). Format as Figure 2A. (J) Combined best IPD data from the Hancock and Delgutte [19] and the Joris et al.
[37] cat inferior colliculus studies (86/107 and 193/219 data points successfully extracted respectively) converted from ITD to IPD, mirrored, and re-
plotted as a 2D histogram using 250 Hz frequency bins and 0.05 cycle IPD bins. Format as Figure 2A.
doi:10.1371/journal.pone.0108154.g002
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bands (p = 0.044 and 0.026, n = 28 and 22, respectively, one-tailed

binomial test) were evident, consistent with the existence of

opposing subpopulations that lie within the physiological range in

these bands. This distribution pattern is consistent with the

predictions of the optimal-coding model, and not predicted by

either the Jeffress model or the two-channel model (Q2

confirmed).

As guinea pigs appear to have few neurons sensitive to fine-

structure ITDs above 1–1.3 kHz [21,22,32], the data are

insufficient to assess Q2 for neurons tuned to frequencies above

1000 Hz, or the existence of uniformity in the distribution at the

highest frequencies (Q3). In addition, one potential anomaly

relates to the sub-population around 0.5 cycles in the 250–500 Hz

band. In this data set, neurons with best IPDs near 0.5 cycles are

almost all ‘trough-type’ neurons [33], showing a response

minimum as their defining feature [34–36]. Since trough-type

neurons (10–20% of ITD-sensitive neurons) were not included in

the optimal-coding model, one would not expect their best IPDs to

be predicted (see Methods).

The distribution of ITD detectors in the cat has previously been

suggested to follow that suggested by the Jeffress model [16]. In

Figure 2J, best IPDs as a function of best frequency, obtained from

recordings made in the inferior colliculus of the cat [19,37], are

replotted as a mirrored 2D histogram. For neurons with frequency

tuning below the specific frequency of 387 Hz, the majority of best

IPDs, 73% (29/40) lie beyond the physiological range. Employing

a one-tailed binomial test, this finding is significant (p = 3.261023),

and thus the null hypothesis is rejected (Q1 confirmed). In

Figure 2J, in the range 500–1000 Hz, a clear central sub-

population exists at 0 cycles IPD. In addition, qualitatively, it

can be seen that this central subpopulation lies between opposing

sub-populations that are most clearly present down to 250 Hz and

up to 1250 Hz. Assessing evidence of a tight central dip in the

distribution of best IPDs in the intermediate frequency range (as

was performed for the data from the guinea pig), in the range 250–

500 Hz, and where the central subpopulation is observed in the

ranges 500–750 Hz and 750–100 Hz ranges, no evidence of a

significant tight central dip is apparent (N.S. in all cases, n = 21,

18, and 23 respectively, one-tailed binomial test). However, a

significant dip is observed in the range 1000–1250 Hz (p = 0.029,

n = 14, one-tailed binomial test), consistent with the presence of

opposing subpopulations lying within the physiological range in

this frequency range (Q2 confirmed). This is qualitatively

consistent with the predictions of the optimal-coding model - a

central subpopulation above the specific frequency and, above

that, two opposing subpopulations, with no central subpopulation.

As with the guinea pig, too few data points exist above 1250 Hz to

assess the form of the distribution over this frequency range (for

Q2 and Q3). The central sub-population in the cat is at a higher

frequency band than in the guinea pig, and we speculate as to why

this might be in the Discussion. Overall, for both medium-sized

species, the presence of different distributions at different

frequencies is observed within a species, consistent with the

previously untested predictions of the optimal-coding model.

The distribution of best ITDs in a large primate also
shows frequency-dependent ITD representation

The rhesus macaque monkey (Macaca mulatta) is a large

primate. Its maximum ITD of approximately 500 ms [38], is the

closest of all species in this study to the maximum ITD of 690 ms in

humans [39]. The behavioural threshold for ITD discrimination in

this species [40] is best over the range 500–1750 Hz, degrading

above 2000 Hz. The similarity in macaques and humans in head

size and the frequency range over which ITD sensitivity is

observed, not to mention the close genetic relationship, make the

macaque an excellent model from which to infer the representa-

tion of ITD in humans. Figure 3B plots the predicted distribution

of best IPDs suggested by the optimal-coding model for the

macaque, using a frequency-dependent maximum ITD (470–

575 ms range, [38]). The general prediction for the optimal-coding

model is that the representation of ITD should depend on the

sound frequency: below the specific frequency (,209 Hz), the

majority of best IPDs lie beyond the physiological range, at low

intermediate frequencies, a central subpopulation is evident, above

which a bimodal distribution is again apparent (with best IPDs

lying within the physiological range) and, at the highest

frequencies (above ,1000 Hz) a uniform distribution exists. The

predictions for the macaque are similar to those of the human

shown in Figure 3A.

The distribution of best IPDs was measured as a function of

stimulating frequency, for neurons recorded from core auditory

cortex in the macaque. The 1280 values of best IPD (see Methods)

are plotted in the form of a mirrored 2D-histogram (Figure 3C -

recall that IPD reflects ITD as a proportion of the period of the

frequency). We first examined whether the majority of best IPDs

below the specific frequency of 209 Hz in the macaque lie within

or beyond the physiological range, establishing the null hypothesis

that they lie within. From the data, 65% (51/78) of best IPDs

reside beyond the physiological range (p = 4.461023, one-tailed

binomial test), and thus the null hypothesis is rejected (Q1

confirmed). Examining the form of the data, for the lowest sound

frequencies (Figure 3C, 0–200 Hz), bimodality in the distribution

of best IPDs is observed. At slightly higher frequencies (above

200 Hz), a single dominant central population emerges. At even

higher frequencies (above 400 Hz), the data once more show

opponent sub-populations of best IPDs, but here lying within the

physiological range. Testing for a tight dip in best IPDs around

zero IPD in each frequency band covering the intermediate

frequency range (Q2), no evidence exists of a significant dip in the

200–400 Hz band, where the central subpopulation exists, or in

the 400–600 Hz band (N.S. in both cases, n = 97 and 100

respectively, one-tailed binomial test). However, a significant

central dip is evident in the 600–800 Hz band (p = 9.661023,

n = 89, one-tailed binomial test). There is no significant tight dip in

the 800–1000 Hz and 1000–1200 Hz bands (N.S. in both cases,

n = 45 and 25 respectively, one-tailed binomial test). This pattern

of distinct sub-populations is similar to that predicted by the

optimal-coding model which predicts that, with increasing sound

frequency, the distribution of best IPDs shifts from one in which

two opponent sub-populations lie beyond the physiological range,

to one comprising a dominant central population, before reverting

to one comprising two opponent sub-populations within the

physiological range, before again changing pattern. Thus, once

more, the data are qualitatively consistent with predictions of the

optimal-coding model (Q2 confirmed).

With the large amount of macaque data available, it was also

possible to test statistically the prediction of a uniform distribution

of best IPDs over the whole cycle above a particular frequency

(,1000 Hz), but a non-uniform distribution over the range below

it (Q3). To avoid sample size effects influencing the outcome (due

to there being fewer neural recordings made at the higher

frequencies), each of the 10 frequency bins was set so as to contain

an equal number of samples (IPD values) per bin (any borderline

data-points were randomly assigned to a side of the bin border).

Kuiper’s Test was applied to each frequency band, with a null

hypothesis of a uniform distribution across all best IPDs. The data

were consistently significantly non-uniformly distributed below

the 1000–1200 Hz band (p-values: 0–300 Hz p = 2.7610213,

Audiospatial Neural Coding Depends on Frequency
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300–400 Hz p = 1.161025, 400–500 Hz p = 1.661025, 500–

600 Hz p = 0.024, 600–700 Hz p = 5.561024, 700–800 Hz

p = 0.038, 800–1000 Hz p = 0.013. n = 128 in all cases), but not

significantly different from uniform at and above this band (1000–

1200 Hz, 1200–1400 Hz, 1400–2300 Hz, all N.S., n = 128 in all

cases). This is largely consistent with the predictions of the

optimal-coding model, where the transition between distinct sub-

populations and uniformity is suggested to occur around 1000 Hz

(Q3 confirmed). It is worth considering the possibility that there

may still be some slight non-uniformity at the high frequencies that

is below the power of the test. Indeed, a variation on the optimal-

coding model [26] predicts slight non-uniformities at high

frequencies.

In summary, across the five species: For the intermediate- to

large-sized species (cat, guinea pig, and macaque), the neural

representation of the major auditory spatial cue (the distribution of

best IPDs) shows distinctly different coding regimes at different

sound frequencies within the same species. Furthermore, the

neural representation also depends on the head size, with smaller

mammals having a two-channel representation at all frequencies,

unlike intermediate-sized mammals. Throughout, the distributions

of best IPDs depend on head size and sound frequency in a

systematic manner, as predicted by the optimal-coding model.

Discussion

Overall, the data indicate that many mammalian species

employ multiple different neural representations of the auditory

spatial cue of interaural time difference, with the representation

used depending on head size and sound frequency. This provides

cross-species, experimentally derived, support for the optimal-

coding model of ITD, and suggests that the classic ‘Jeffress’ model

and the more-recently promoted two-channel model represent

limiting cases of the optimal-coding model, at high sound

frequencies and large head sizes, and at low sound frequencies

and small head sizes respectively. At low normalized frequencies

(sound frequency as a proportion of 1/maximum ITD for each

species), the majority of best IPDs recorded experimentally lie

beyond the physiological range. This pattern was present, and

statistically significant, across all the mammalian species exam-

ined, from small desert-dwelling rodents to large primates

(addressing Q1). At intermediate normalized frequencies, in the

relevant species (guinea pig, cat, and macaque), a central

subpopulation is observed in the lower intermediate range of

frequencies, but a significant dip in the distribution (indicating

bimodality) is observed in the higher intermediate range (address-

ing Q2). At high normalized-frequencies (in the macaque, where

sufficient data were obtained), best IPDs are more uniformly

distributed (addressing Q3). The predictions of Q2 and Q3 were

entirely novel, generated by the optimal-coding model purely from

theoretical considerations, and subsequently confirmed (in all cases

with sufficient data) in analysis of previously-obtained experimen-

tal data. Of particular note are the central subpopulations in the

intermediate range, and the existence of multiple different forms of

distribution across the ITD-sensitive frequency range of the guinea

pig, cat, and macaque. Additionally, the prediction of bimodal

distributions of IPD detectors at the lowest sound-frequencies had

not been reported for the macaque. In general, the guinea pig, cat,

Figure 3. Best delay distributions for large primates. (A) The
predicted distributions of best IPDs by the optimal-coding model for the
human (max. ITD, ,690 ms, highest frequency with ITD-sensitivity
,1500 Hz). Color, number of best IPDs in an IPD bin for a given frequency
band (200 best IPDs per band modelled), bin sizes as Figure 1D, otherwise
format as Figure 2A. (B) The predicted distributions of best IPDs by the
optimal-coding model for the macaque (max. ITD, 470–575 ms, max. ITD-
sensitive frequency ,2000 Hz). Format as Figure 2A. (C) Distribution of

1280 best IPDs, recorded from macaque auditory cortex, mirrored and
then plotted as a 2D histogram using 200-Hz frequency bins and 0.05 cycle
IPD bins. Format as Figure 2A.
doi:10.1371/journal.pone.0108154.g003
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and macaque show multiple, different distributions, arranged in a

specific order as a function of ascending frequency bands, whereas

the gerbil and kangaroo rat show only bimodality in their

distributions.

Despite general agreement with the optimal-coding model,

there are some, mostly quantitative, aspects of the observed

distributions of best IPDs that are not predicted. First, best IPDs

are more scattered in the data than in the model, with the

subpopulations appearing more as peaks in a distribution than

discrete points. This scatter may be due to the inherent variability

of biological systems, or perhaps to an increase in the degree of

heterogeneity in the neural responses to better deal with variation

in other stimulus dimensions, or in order to carry out coding tasks

not requiring discrimination [41]. Nevertheless, the overall

frequency-dependent positioning of the peaks in the distribution

of best IPDs is consistent with the optimal-coding model (across a

wide range of species), indicating the importance of precise IPD

estimation and discrimination for these neurons. Second, in some

cases, certain minor subpopulations that were predicted by the

model were not observed in the data, such as the central sub-

populations at 800–1000 Hz in the macaque. Third, the optimal-

coding model does not predict with total accuracy the IPDs on

which some subpopulations were centred. This may be due,

among other factors, to the shape of rate-vs.-IPD curves in the

optimal-coding model not exactly matching those actually present

in the animal. Finally, the frequencies at which transitions between

subpopulations of best IPDs become apparent differ slightly

between the data and the model. Macaques and guinea pigs show

transitions at slightly lower frequencies than predicted. This may

indicate that a larger maximum ITD occurs in natural environ-

ments (such as in near-field or multi-source environments) than the

values provided by current measurements. Alternatively, it may

indicate IPD tuning curves in the macaque cortex, at the relevant

sound frequencies, are sharper than those used in the model. In

contrast, cats show these transitions at higher frequencies in the

data than in the model. A possible reason as to why cats, with

similar maximum ITDs to guinea pigs, show transitions in

subpopulation regimes at somewhat higher frequencies, is that

they, being predators, may concentrate their auditory spatial

capacities towards the midline. This effect is often seen in the

senses of predators, e.g. forward-facing eyes, tight visual fovea, etc.

That is, they devote more coding resources to the representation of

a narrow range of ITDs around the midline, at the expense of

representation of more peripheral ITDs. This ‘auditory spatial

fovea’ would mean they effectively have a smaller maximum IPD.

In conclusion, we examined experimentally recorded distribu-

tions of neural tuning for ITD across five mammalian species. We

find that for high frequencies and large-headed mammals,

distributions exhibit characteristics of the Jeffress model. Addi-

tionally, for low frequencies and small-headed mammals the

distributions exhibit characteristics consistent with the two-channel

model. However, in general, these two models are inconsistent

with the full range of representations of ITD observed across

different sound frequencies and head sizes. In contrast, the

optimal-coding model, of which the above two models can be seen

as particular instantiations at certain sound frequencies, is a

general model motivated by a principled theoretical framework by

which differences in the distributions of neural tuning functions

across species might be understood. Crucially, the optimal-coding

model explains the new experimental findings we present; for

intermediate head-sizes we find different types of neural repre-

sentation of ITD for different sound frequencies in the same

species, including novel representations not previously observed.

This suggests that the optimality approach, whether employing the

model used here [26] or through yet-to-be-determined optimality

models, has the capacity to explain many aspects of the form of the

neural code by which ITD is represented across species. These

findings further the case for normative approaches providing

general cross-species principles underpinning neural systems.

Furthermore, they raise the general point that, for sensory systems,

the form of neural representation may change extensively and

sharply for different species, and even for different stimuli of the

same modality within the same animal.

Materials and Methods

Experiments and preliminary analyses
The guinea pig data was gathered in the UK, and the macaque

data in the US, in different labs as part of entirely separate studies

that were later synthesized into this paper. Thus the macaque and

guinea pig data were governed by separate ethical protocols.

Guinea pig. Single-neuron recordings were made from the

inferior colliculus of urethane-anesthetized guinea pigs (Cavia
porcellus) using glass-coated tungsten microelectrodes. These data

contributed to a range of different studies investigating binaural

hearing [21,32,33]. All experiments were carried out in accor-

dance with the Animal (Scientific Procedures) Act of 1986 of Great

Britain and Northern Ireland. All procedures were reviewed and

approved under UK Home Office Licence (covered by both

Project and Personal licenses). At the end of each experiment, the

guinea pig was sacrificed with an overdose of sodium pentobarbital

by intraperitoneal injection.

After isolation of a neuron, each neuron’s characteristic

frequency (CF) was determined. The CF is the sound frequency

with the lowest sound-intensity threshold, and is typically close to

the best frequency (BF), the sound-frequency that elicits the

greatest firing rate for a given sound intensity. The CF was

determined audio-visually using binaurally-presented tones with

zero ITD, and then by a detailed frequency-versus-level response

area covering a 6-octave range around this CF. Noise stimuli to

measure noise-delay (firing rate vs. ITD) functions consisted of

identical (frozen) broadband noise bursts (50 Hz–5 kHz) presented

dichotically to each ear using 12.7-mm Brüel and Kjær (Nærum)

condenser ear- phones at 10–20 dB above the neuron’s noise

threshold. Noise-delay functions were constructed over a range of

ITDs equal to 3 times the period of the neuron’s CF. Either 20

repetitions of a 50-ms burst of noise, or 3 repetitions of a 320-ms

burst of noise were presented at each of 51 equally-spaced delays

over this range. For each neuron, a sinusoid was fitted to the

neuron’s rate-vs-ITD function to obtain a measure of best ITD.

Since noise rather than tones was employed as a stimulus, best IPD

was considered to be the best ITD divided by the period of the

best-fitted sinusoid, which approximates best IPD to a pure tone

[22]. The frequency of this sinusoid corresponds to the dominant

frequency component in the response, and will closely match the

BF [33], and provides the frequency measures in Figure 2H.

Macaque. Subjects were two male rhesus monkeys (Macaca
mulatta). The responses of 248 single neurons were recorded from

the low-frequency auditory core (AI and R) of both hemispheres

during awake passive listening. The physiological techniques have

been described previously [40,42], and all procedures involving

animal use and welfare in this study were reviewed and approved

by the New York University Institutional Animal Care and Use

Committee. Animals were pair-housed at the NYU Animal

Facility, kept on a 12-hour light/dark cycle, and allowed access

to a variety of enrichment activity (mirrors, toys, etc.). Food

(monkey biscuits) was available ad-lib, and fresh fruit and other

treats were given daily following each session. During experimen-
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tal sessions, animals performed an auditory task of discriminating

IPDs to earn liquid reward, and were allowed to work to satiety.

The neural recordings used were made when the macaques were

in a passive but awake state between behavioural sessions. To

maintain alertness, animals were monitored by video and given

periodic rewards between stimulus sets. For the implant surgery

(under sterile conditions) that allowed for the neural recording,

anaesthesia was induced using ketamine and sodium thiopental. A

surgical plane maintained with isoflurane. These data contributed

to a range of different studies investigating binaural hearing. At the

conclusion of a series of studies from which these data were drawn,

animals were deeply anesthetized by intravenous injection of

sodium pentobarbital, then transcardially perfused. Post-mortem,

standard histological processing verified the recording sites to be

within core auditory cortex.

For the data presented in the results the responses to IPDs were

measured using binaural beats, a continuous modulation of IPD

produced when the tone frequency presented to one ear differs

slightly from the frequency presented to the other. The stimulus

traverses 360u of interaural phase at a rate determined by the

frequency mismatch (here, a period of 500 ms for a 2-Hz

difference in frequency). Beats were presented across multiple

carrier frequencies spanning the receptive field of each neuron in

typically 100-Hz steps, at each neuron’s best sound pressure level

(median 60 dB SPL). Neural discharges were folded on the beat

cycle, from which synchrony to the beat (i.e. tuning to IPD) was

measured by vector strength. The best IPD was determined by the

mean phase of the spike discharges, if synchrony to the beat was

significant by the Rayleigh test (p,161023).

Other species. For cat, kangaroo rat, and gerbil, data were

extracted from published figures in the relevant papers

[18,19,25,28,37] using the programs Techdig or PlotDigitizer. In

the kangaroo rat (Dipodomys spectabilis), Crow et al. [18]

examined the distribution of 51 neural best ITDs to interaurally-

delayed tones as a function of frequency, for 28 ITD-sensitive

neurons (some neurons were measured at multiple frequencies),

recorded in the superior olivary complex, the presumed site of

primary binaural integration. In the gerbil (Meriones unguicula-
tus), Pecka et al. [28] measured best ITD as a function of best

frequency (the frequency to which a neuron responds most) in the

medial superior olive, the dominant ITD-sensitive nucleus of the

superior olivary complex, using pure tones or narrowband noise.

In the cat (Felis catus), Hancock and Delgutte [19] and Joris et al.

[37] measure best ITDs to interaurally-delayed noise as a function

of neural best frequency and the similar measure of characteristic

frequency respectively. For all species we converted the best ITDs

to best IPDs by dividing by the period of the sound frequency.

Modelling
The optimal-coding model postulates that best ITDs are

arranged to represent most precisely ITDs within the physiological

range, conditioned on head size, and given limitations such as

neural noise. This pan-species model is motivated by principles of

efficient coding [43,44], which hypothesises that, through natural

selection, neural representations are optimized to be efficient for

coding of natural stimuli. The current study aims to test

experimentally a key prediction of the optimal-coding model;

namely, that many species exhibit different representations of ITD

at different sound frequencies. For a full description of the optimal-

coding model see Harper & McAlpine [26].

Briefly, the optimal-coding model was developed to predict the

optimal distribution of a population of neural best ITDs that

represents most precisely the ITD of a pure tone, for all ITDs

within the physiological range (i.e. for ITDs up to the maximum

ITD). For a given species and pure-tone frequency, the optimal

distribution of best ITDs is found by varying the best ITDs of a

population of model neurons so as to minimise a measure of

coding error for ITD. The firing rate-vs.-ITD function of a model

neuron, and its best ITD, are illustrated in Figure 1C. In this, and

all subsequent figures, ITD is considered in terms of the equivalent

interaural phase difference (IPD), i.e. the ITD as a proportion of

the period of pure tone frequency. The optimal-coding model

predicts the distribution of best IPDs (best ITD in terms of

equivalent IPD) for all the neurons that respond to a given sound

frequency. Practically, however, this response will be dominated

by those neurons for which the sound frequency represents their

best frequency. Therefore, it is the distribution of best IPD over

best frequency will also be appropriate to compare with the

optimal-coding model’s predictions. For gerbil, guinea pig, and

cat, BF (or a similar measure) was employed, and for macaque and

kangaroo rat stimulating frequency (although with typically only a

few frequencies per neuron). This decision was based entirely on

the format in which the data were available. Furthermore, the best

ITD to broadband noise tends to be similar to that to a pure tone

at BF [22], so either is used depending on data availability. Finally,

the model employs sharpened cosine functions to represent rate-

vs.-IPD curves, which although describing well most ITD

functions, do not account for the shape of a relatively small

proportion (10–20%) of ITD-sensitive neurons referred to as

‘trough-type’ neurons [45,46]. Thus, where possible, only the

distribution of best IPDs for ‘peak-type’ neurons – neurons that

accord with the form posited in the Jeffress model - was assessed

with respect to the optimal-coding model.

Figure 1D illustrates the general predictions of the optimal-

coding model. Predictions of the optimal-coding models are: at the

lowest frequencies, a ‘‘two-channel’’ representation exists with best

IPDs largely lying outside the physiological range. At low

intermediate frequencies, a central sub-population of best IPDs

with flanking sub-populations exists. At high intermediate

frequencies, again a ‘‘two-channel’’ representation exists but with

best IPDs inside the physiological range. Above this two-channel

representation, a central population re-emerges over a narrow,

higher, frequency range. However, for most species, an insufficient

number of IPD-sensitive neurons with BFs in the range were

recorded to examine this perspective. At the highest frequencies a

uniform/unimodal distribution of best IPDs exists, consistent with

the Jeffress model. Of course, any sub-populations in the data

would be expected to be substantially more diffuse than in the

model, with the sub-populations in the data being peaks in the

distribution of best IPDs.

An essential parameter of the optimal-coding model is the

maximum IPD – the maximum ITD divided by the period of that

pure-tone frequency. The maximum IPD refers to the limit of the

physiological range of ITDs, expressed in terms of IPD, at any

given frequency. The maximum IPD can also be considered as the

frequency normalized by 1/maximum ITD, this is the normalized

frequency in Figures 1D–F. We employ the maximum ITD, as

determined experimentally, whenever possible (for all species

except the kangaroo rat), rather than estimates from the interaural

distance. The distribution of best IPDs predicted for a species with

a given maximum ITD and for a given sound frequency can be

obtained from Figure 1D by examining the distribution at the

corresponding normalized sound frequency on the ordinate. For

each species, the maximum ITD is set (although see below), and

the ordinate is then denoted as un-normalized sound frequency

(see Figures 2A, D, G, I, 3A–B). The predictions for each species,

therefore, represent scaled versions of the predictions of the

general model in Figure 1D. To facilitate comparison with the
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data, the model predictions for specific species (Figures 2A, D, G,

I, 3A–B) are averaged together over the same large frequency and

IPD bins as employed in the data. Also, to further facilitate

comparison, the distribution of ITDs in each large frequency band

is scaled such that, in each band, the maximum number of best

IPDs in an IPD bin matches that of the data, as the model makes

no assumptions as to the proportion of neurons in each frequency

band.

One minor complication is that maximum ITD can vary slightly

with sound frequency (up to about 25%). Accounting for this in the

optimal-coding model results in a slight non-linear rescaling over

frequency of the general model in Figure 1D. For those animals

for which maximum ITD as a function of frequency is available -

the guinea pig [29], the cat [30], and the macaque [38] - we used

the frequency-dependent maximum ITD. The maximum ITD as

a function of frequency was extracted from the relevant papers

using PlotDigitizer, linearly interpolated, and where necessary

extrapolated by continuing at the endpoint maximum ITD. The

frequency dependence of the maximum ITD has little effect on the

model predictions, as the maximum ITD fluctuations are small.

An important value in the current study is the ‘specific

frequency’, which refers to the lowest frequency at which a sub-

population of best IPDs within the physiological range appears in

the optimal-coding model. This occurs where the maximum IPD

(the normalized frequency) is approximately equal to 0.12. For a

given species, the specific frequency is equal to 0.12 divided by the

maximum ITD (measured in seconds). For the gerbil this is

1000 Hz (0.12/0.000120 s), for the kangaroo rat 1143 Hz (0.12/

0.000105 s). For the animals where frequency dependent maxi-

mum ITD is used, the specific frequency is the lowest frequency

where the maximum IPD is 0.12; for the guinea pig 369 Hz, cat

387 Hz, and for the macaque 209 Hz.

Analysis
For each species, the experimentally recorded data are

represented in the form of a mirrored 2D histogram showing the

number of neurons with particular best IPDs as a function of

frequency. Mirroring the data assumes that the brain is symmetric

across the midline and that, consequently, each neuron has a

partner neuron in the equivalent contralateral brain region whose

best IPD is of equal magnitude and opposite sign. This assumption

permits an estimation of the distribution of best IPDs even when

they were not equally sampled from both sides of the brain.

Mirroring was only used for display, not for statistical analysis. Bin

sizes for each frequency were chosen to be round numbers (300,

250, and 200 Hz) of appropriate size in order ensure a reasonable

number of data points in each bin, whilst still making it possible to

observe any cross- frequency patterns in the data. Bin sizes were

kept constant for similarly-sized animals with similarly-sized data

sets. IPD bin-sizes were always 0.05 cycles. Best ITDs were

converted to IPD by dividing by the stimulation frequency or the

neuron’s best frequency (or a similar measure). In the small

number of cases where ITDs were greater in magnitude than half

a cycle, ITDs were wrapped back by a whole number of cycle of

IPD to ensure they fell between 20.5 to 0.5 cycles.

Sufficient data permitting (statistical tests only when n.10), for

data for each of the five species, the form of the distributions of

best IPDs over frequency was analyzed. The results were then

compared to the predictions of the optimal-coding model, and also

the Jeffress model and two-channel model. Specifically, the

following questions were addressed:

Q1) At low frequencies (normalized frequency below ,0.12),

does the distribution of best IPDs fall largely outside the

physiological range (i.e. consistent with a ‘two-channel’ represen-

tation), as predicted by the optimal-coding model?

Although this prediction has been reported some small

mammals, it has not been tested in a systematic manner across

species and remains contentious. We address this for each species

by applying a binomial test to the experimentally recorded data in

this frequency range. The null hypothesis is that a greater or equal

number of best ITDs lie within the physiological range than

beyond. If the null hypothesis is rejected, then a (statistically

significantly) greater number of best IPDs lie beyond the

physiological range than within. Note that the null hypothesis

represents a conservative measure of accordance with the Jeffress

model, allowing up to half of neurons to show best ITDs beyond

the physiological range of ITDs generated by the head.

Q2) At intermediate frequencies (normalized frequency ,0.12

to ,0.5), do the data indicate the novel distributions of best IPDs

predicted by the optimal-coding model - a central peak in the

distribution in the lower intermediate frequencies and, above that,

a bimodal distribution within the physiological range?

Neither the Jeffress model nor the two-channel model would

predict such an outcome, and this prediction is untested in any

species to date. Examining the bimodal distribution of the optimal-

coding model within the physiological range, we observe that the

sub-populations fall beyond 0.075 cycles IPD (Figure 1. This is

also true of the two-channel model at all frequencies Thus, we use

a binomial test for the data in each frequency band covering the

above intermediate frequency range. For each band, the null

hypothesis (consistent with a Jeffress-like distribution) is that the

number of neurons with best IPDs over the range 0–0.075 cycles

IPD in magnitude is greater than or equal to the number over the

range 0.075–0.15 cycles IPD in magnitude. That is, those

frequencies are determined where a significant narrow central

dip exists in the distribution of IPDs.

Q3) At high frequencies (normalized frequency above ,0.5), do

the data tend toward a uniform or unimodal best-IPD distribution

(i.e. is the distribution Jeffress-like), as predicted by the optimal-

coding model?

This prediction has not yet been examined in mammals. The

macaque is the only species from which sufficient data are

available over a sufficiently-high range of sound frequencies range

to conduct this analysis. For the macaque, the Kuiper’s Test is

applied to each frequency band, with a null hypothesis of a

uniform distribution across over the IPD cycle. By this method, the

frequency at which the distribution of best IPDs becomes

indistinguishable from uniform can be determined, which is then

compared with the optimal-coding model.
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