
CisMiner: Genome-Wide In-Silico Cis-Regulatory Module
Prediction by Fuzzy Itemset Mining
Carmen Navarro1*, Francisco J. Lopez2, Carlos Cano1, Fernando Garcia-Alcalde3, Armando Blanco1

1 Department of Computer Science and AI, University of Granada, Granada, Spain, 2 Andalusian Human Genome Sequencing Centre (CASEGH), Medical Genome Project

(MGP), Sevilla, Spain, 3 Max Planck Institute for Infection Biology, Berlin, Germany

Abstract

Eukaryotic gene control regions are known to be spread throughout non-coding DNA sequences which may appear distant
from the gene promoter. Transcription factors are proteins that coordinately bind to these regions at transcription factor
binding sites to regulate gene expression. Several tools allow to detect significant co-occurrences of closely located binding
sites (cis-regulatory modules, CRMs). However, these tools present at least one of the following limitations: 1) scope limited
to promoter or conserved regions of the genome; 2) do not allow to identify combinations involving more than two motifs;
3) require prior information about target motifs. In this work we present CisMiner, a novel methodology to detect putative
CRMs by means of a fuzzy itemset mining approach able to operate at genome-wide scale. CisMiner allows to perform a
blind search of CRMs without any prior information about target CRMs nor limitation in the number of motifs. CisMiner
tackles the combinatorial complexity of genome-wide cis-regulatory module extraction using a natural representation of
motif combinations as itemsets and applying the Top-Down Fuzzy Frequent- Pattern Tree algorithm to identify significant
itemsets. Fuzzy technology allows CisMiner to better handle the imprecision and noise inherent to regulatory processes.
Results obtained for a set of well-known binding sites in the S. cerevisiae genome show that our method yields highly
reliable predictions. Furthermore, CisMiner was also applied to putative in-silico predicted transcription factor binding sites
to identify significant combinations in S. cerevisiae and D. melanogaster, proving that our approach can be further applied
genome-wide to more complex genomes. CisMiner is freely accesible at: http://genome2.ugr.es/cisminer. CisMiner can be
queried for the results presented in this work and can also perform a customized cis-regulatory module prediction on a
query set of transcription factor binding sites provided by the user.
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Introduction

An organism’s DNA encodes the information required for each

cell to function. However, a complete description of the DNA

sequence of an organism is not enough to reconstruct it. Not only

genes (i.e. coding DNA) hold relevant information, but also the

rest of non-coding DNA, which orchestrates how each element is

related to the rest: under which conditions each gene product is

made, and which role it plays in the complex machinery of the cell.

There are many steps in the pathway leading from DNA to

protein. The initiation of RNA transcription is a very important

step in such pathway [1].

Eukaryotic gene control regions consist of a promoter region

plus a set of regulatory DNA sequences. Transcription factors

(TFs) are regulatory proteins that bind at these regions to specific

sequences called transcription factor binding sites (TFBSs) forming

complexes that are essential to the initiation of gene transcription.

In addition, this TF-DNA interaction is usually coordinated

forming cis-regulatory modules (CRMs) [2].

Many different approaches address in silico CRM detection.

However, CRM detection has strong performance limitations due

to its combinatorial complexity [3]. Overall, three conceptually

different classes of methods can be roughly identified according to

an increasing genomic scope [4]: 1) CRM scanners, 2) CRM

builders and 3) CRM genome screeners.

CRM scanners search for sequences that satisfy a strictly

defined CRM model. Their goal is usually to further study well-

characterized problems, and the user is required to provide a

detailed specification of the studied CRM. Therefore, their

application is limited to well-known problems and many

parameters are usually required, such as the expected distance

between TFBSs, a background model for the sequences, number

of target TFBSs, a reduced set of target TFBSs or a window size.

Cister [5], Cluster-Buster [6] or Stubb [7] belong to this category.

Due to their specificity, their execution times tend to be shorter

than other methods with a broader scope.

CRM builders extend the scope of the CRM prediction by

reducing the number of constraints for the target CRM model.

They try to assemble CRMs looking for similar features in a

reduced set of related sequences. These methods reduce the

sequence search space by two main approaches: 1) limiting the

study to gene promoter regions of co-expressed or related genes of
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interest [8, 9]; or 2) focusing on evolutionary conserved regions

[10–12]. The first type of approaches could miss regulatory

elements in less obvious locations, such as those located in introns

and far upstream or downstream of genes. Indeed, genome-wide

chromatin immunoprecipitation experiments [13] have reported

that a significant proportion of TFBSs do not lie in regions

immediately upstream of known protein-coding genes [14–17]. In

addition, comparative genomics revealed that many regulatory

elements involved in early vertebrate development lie far from the

gene they are thought to regulate [10, 18–20]. The second type of

approaches are based on the evolutionary conservation of

regulatory sequences. However, the regulatory sequences have to

be similar enough to be aligned, which is often not the case when

compared sequences are not closely related. Moreover, experi-

ments on mammalian and Drosophila species have shown that

between one and two-thirds of identified regulatory sequences are

not conserved even between closely related species [10, 21–23].

Approaches like INSECT [24] and CORECLUST [25] optionally

combine these two techniques to reduce the search space.

According to the description in the literature [4], CRM
genome screeners search through complete genomes for

CRMs. In contrast to the previous approaches, genome screeners

do not make any assumptions regarding the target CRMs.

Therefore, they present a broader applicability but tackle a more

complex problem. However, although some methods are consid-

ered CRM genome screeners in [4], a genome-wide screening tool

that encompasses the whole non-coding DNA of an organism

without any restriction has not yet been made available. Some

approaches, such as D-light [26], do not restrict the number of

genes but limit the screening to the promoter regions of these

genes, not considering the rest of the non-coding genome.

Approaches like COPS [27] search for co-ocurring TFs in

sequences known to be bound in vivo, therefore requiring

previous knowledge on target TFs and experimental evidence of

their binding sites. Other approaches like TraFaC [28], PreMod

[11] or EEL [12], also reduce the search space to a set of

orthologous sequences or co-regulated genes, and therefore could

be considered CRM builders. CisMiner, the methodology we

present in this work, can be framed into the CRM genome

screeners category.

Independently of their scope, all the aforementioned approach-

es suffer the computational complexity of CRM detection, which is

not only increased by the total length of the sequences to screen,

but also by the number of putative TFBSs detected and the size of

the target modules. In this sense, some approaches reduce the

search space by limiting the number of cooperating transcription

factors, usually looking for pairs of co-ocurring transcription

factors [29, 30]. Although these are easier to identify and have

been shown to have biological significance, CRMs can encompass

larger sets of transcription factors which relate in a more

sophisticated manner [2]. These complex CRMs are overlooked

with such approaches.

Perhaps because of its combinatorial complexity, specially when

applied genome-wide, the vast majority of available approaches

for computational CRM discovery restrict the search space (to a

set of co-regulated genes and/or orthologous sequences) or the

dimensionality of the problem (number or positioning of TFBSs),

overlooking larger CRMs or those located in other non-coding

regions of the genome. With the currently available approaches,

any researcher aiming to obtain a set of putative cis-regulatory

modules in a query organism with no prior information about

which transcription factors are involved in the process will need a

specific set of motifs as an input.

This might not be likely if the researcher does not have any

prior knowledge. Thus, the probability of selecting the adequate

subset of TFBSs would be equivalent to the probability of picking a

random subset of the given set of TFBSs in an organism, which is

very small. The same applies for approaches that use orthologous

sequences to a certain gene or a set of co-regulated genes. These

approaches are useful for the study of already known processes.

However, it is very unlikely that a researcher trying to explore a

certain organism without prior knowledge will be able to provide a

set of specific motifs and sequences useful for extracting knowledge

in a given organism.

On the other hand, CRM prediction tools are usually coupled

with TFBS detection tools. Therefore, CRM prediction usually

requires a set of position weight matrices (PWMs) as input to first

apply a TFBS detection tool to screen the query sequences for a set

of putative TFBSs. In this case, the overall performance of CRM

genome screeners depends heavily on the quality of the predictions

made by the TFBSs detection tool. CisMiner, the tool we propose,

is able to perform CRM prediction by either using a computa-

tional TFBS prediction tool for whole genome sreening, or a set of

already predicted or known TFBSs provided by the user.

Furthermore, information about the exact location and length

of regulatory regions is imprecise and uncertain. It is known that

CRMs can span hundreds of base pairs, although their exact

length has not been assessed. Not only the location and length of

CRMs, but also the information about the positions where

transcription factors bind to the genome, are still vague and

inaccurate. In-silico tools for TFBS prediction sometimes surpass

the reasonable amount of false positives due to the probabilistic

and biological complexity of this problem. The sought sequences

are indeed very short (10{30bp) compared to the size of the

scanned genomes, and the appearance of sequences which are

truly similar to those of real TFBSs but do not represent a

regulatory function must be expected as well. This lack of

transcription factor sequence specificity may suggest that more

complex rules and mechanisms govern the regulation process

influenced by transcription factor binding activity [2].

Any computational CRM prediction approach must therefore

take these problems into consideration and handle the imprecision

and uncertainty unavoidably present in the data. However,

although fuzzy techniques are known to outperform classical crisp

techniques when dealing with imprecise and noisy data, these

approaches are barely used in this field.

In this work we present CisMiner, a fuzzy-based genome-wide

CRM screener which overcomes some of the mentioned

limitations by allowing to scan whole non-coding genomes for

significant combinations of any number of TFBSs. Given a set of

TFBSs, CisMiner implements a fuzzy clustering of closely-located

TFBSs and analyze these fuzzy sets to obtain combinations of

TFBSs which co-occur significantly using the Top-Down Fuzzy

Frequent-Pattern Tree algorithm.

To the extent of our knowledge, there are not any available

approaches that encompass the whole non-coding genome of an

organism and allow a search for highly dimensional CRMs.

Therefore, the area of application of CisMiner differs greatly to

those of the rest of mentioned approaches. CisMiner is based on

performing a fuzzy frequent itemset mining on a large set of fuzzy

clusters in order to find significant patterns affecting an organism

genome-wide. The tailored sensitivity of CRM predictors based on

related sequences may be useful for studying the specifics of

previously established mechanisms, although the application of

such tools genome-wide may not be suitable due to performance

restrictions and the lack of enough prior knowledge. CisMiner is,

in this sense, a unique approach for obtaining reliable putative
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CRMs for whole-genome studies with no prior assumptions about

genes or transcription factors involved.

This work is organized as follows. First, the proposed

methodology is described in detail. Second, obtained results for

Saccharomyces cerevisiae and Drosophila melanogaster are pre-

sented and discussed. We show that many of the obtained relations

between TFs are supported by previous scientific evidence. In

addition, confident new putative cis-regulatory modules have been

obtained, contributing to the discovery of new regulatory relations.

Finally, conclusions and future work are discussed. CisMiner is

freely accessible at http://genome2.ugr.es/cisminer.

Methods

Methodology overview
CisMiner implements a data analysis pipeline that takes a set of

transcription factor binding sites (TFBSs) as input and provides a

set of significant co-ocurrences of any number of TFBSs as output.

To this end, the following steps are performed. Given a set of

TFBSs, fuzzy clusters of closely-located TFBSs are detected

genome-wide. These fuzzy sets are included as itemsets in a fuzzy

transactional database, which is in turn mined to obtain

combinations of TFBSs which co-occur significantly. The Fuzzy

Frequent-Pattern Tree (Fuzzy FP-Tree) algorithm, a fuzzy

frequent itemset mining algorithm developed by the authors, is

applied to this end, since it has previously shown a good

performance for very large datasets [31]. The set of TFBSs used

as input can either be predicted in-silico or in-vivo, allowing the

user to couple this methodology to any in-silico TFBSs prediction

tool to perform a prior genome-wide search for a set of putative

TFBSs, which can then be given to CisMiner as an input to

discover CRMs. An outline of the procedure is shown in Figure 1.

Clustering of TFBSs and fuzzy transactional database
construction

In order to be able to extract significant groups of TFs that form

putative cis-regulatory modules (CRMs), the first step taken by

CisMiner is to perform a fuzzy clustering of closely located TFBSs

and model this set of clusters as a fuzzy transactional database.

Fuzzy set theory was proposed by Zadeh in 1965 to

mathematically model the imprecision inherent to some concepts

[32]. Briefly, fuzzy set theory allows an object to partially belong to

a set with a membership degree between 0 and 1.

Frequent Itemset Mining was proposed by Agrawal in 1993, as

an algorithm for extracting frequent itemsets from large databases

[33]. Since then, a large number of algorithms have been proposed

for frequent-itemset mining [34]. Given a transactional database

where each transaction is a set of items, the aim of these techniques

is to find a set of expressions of the form fx1,x2,x3,:::,xig, where

each xi represents an item. This expression is called itemset. The

probability that a given itemset occurs in the data base is called the

support of the itemset. If the support of an itemset is greater than a

user-specified threshold, then the itemset is said to be frequent.
Thus, Frequent Itemset Mining algorithms aim to extract itemsets

from a database with support greater than some user-specified

threshold.

Frequent Itemset Mining algorithms have featured many

applications that enable researchers to unveil hidden patterns in

large amounts of data [35]. However, biological data are usually

uncertain and imprecise. In order to be able to reflect this

uncertainty, fuzzy technology has been incorporated to the

Figure 1. Outline of the CisMiner procedure. Diagram of the main steps of the CisMiner procedure. Given a set of TFBSs, the process starts by
performing a fuzzy hierarchical clustering to obtain a set of closely located TFBSs. The result of this step is a fuzzy transactional database, which will
then be mined by a Fuzzy Frequent Itemset Mining algorithm (Fuzzy Frequent-Pattern Tree) to obtain a set of frequent fuzzy itemsets. Finally, a
postprocessing takes place in order to handle overlapping TFBSs that appear in each frequent itemset. As a result, a set of putative CRMs, along with
their estimated p-value and their fuzzy support, is given.
doi:10.1371/journal.pone.0108065.g001
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Frequent Itemset Mining philosophy in the Fuzzy FP-Tree

algorithm applied in this work.

Connecting fuzzy technology with frequent itemset mining

allows us to incorporate uncertainty and imprecision to our

knowledge model. In this sense, fuzzy itemsets are also expressions

of the form fx1,x2,:::,xig, but in this case, each xi is accompanied

by a value in ½0,1� which defines its membership degree to the

itemset. Fuzzy support measures the frequency of the itemset.

CisMiner combines fuzzy theory with frequent itemsets in order

to increase their capacity of modelling the uncertainty present in

biological data, and, in particular, TFBS binding location data.

The fuzzy clusters of closely located TFBSs are modelled as

itemsets in a fuzzy transactional database. In order to build such

database, a group-average hierarchical clustering (the implemen-

tation of the hierarchical clustering method was obtained from the

python-hcluster package release 0.2.0-1).algorithm is run over the

set of TFBS locations.

An upper-threshold of 300bp was set for stopping the cluster

aggregation. That is, we seek groups of TFBSs which span around

*300bp in the genome, assuming that regulatory modules are

generally a few hundred base pairs in length [36].

Once the list of clusters was obtained, a fuzzy transaction was

defined for each cluster. The membership degree function for each

TFBS in each cluster was defined as a trapezoidal function, as it is

shown in figure 2, with the following parameters: a centroid C was

obtained for each cluster as the median value of the position of the

included TFBSs. Then, the constant region of the trapezoidal

function was set from C{150 to Cz150. A linear increasing

function in ½C{250,C{150� and a decreasing function in

½Cz250,Cz150� were defined to set membership degrees at

the fuzzy borders of each cluster.

Once the membership degree functions were defined, a set of

fuzzy transactions were built. Figure 2 shows an outline of this

procedure.

Mining the frequent fuzzy itemsets
After the fuzzy transactional database has been built, CisMiner

proceeds to obtain significant sets of co-occurring TFs (i.e. putative

CRMs). The fuzzy frequent itemset mining procedure enables

CisMiner to remove non-significant TF clusters at a genome-wide

scale. We implemented a fuzzy frequent itemset mining algorithm

called the Top-Down Fuzzy Frequent Pattern-Growth algorithm,

which has been developed by the authors in a previous work [31].

Briefly, this procedure works as follows (for a more exhaustive

description of the Fuzzy FP-Tree data structure generation and

traversing, see [31]). Initially, the algorithm scans the transaction

database in order to get a sorted list of all the frequent items, i.e.

items with support greater than a specified threshold. An item xi

represents one TFBS and belongs to a transaction of the form

fx1,x2,x3,:::,xng with a certain membership degree. The aim of

the frequent itemset mining procedure is to extract significant

itemsets, i.e. collections of items that appear frequently among the

transactions in the database. After the items with higher support

than the specified threshold have been selected, the items in this

list along with their membership degrees for each transaction are

introduced into the Fuzzy FP-Tree data structure. The efficiency

of this procedure relies on the use of this tree, since it compiles all

the information the algorithm needs from the transactions.

Items in each transaction that are present in the frequent items

list are inserted as nodes into the Fuzzy FP-Tree according to their

position in the frequent item list. If two transactions share their

first frequent items they will share the same upper path to the root

node.

For each item I , all its nodes are linked by a side{links list. A

vector associated to each node stores the membership degree of

the transactions that belong to the corresponding item. In

addition, a header table H is built so each row stores the

information associated to an item I : (Item, membership degrees,

side{links). This table helps locating the nodes that correspond to

each item in the Fuzzy FP-tree and to compute the fuzzy support

of each itemset.

Once the Fuzzy FP-Tree and the header table H are generated,

the tree is traversed in a top-down manner in order to obtain the

set of frequent itemsets. Entries in H are considered one by one.

For each item I in the H table the tree is traversed in a down-top

order, starting at the nodes labeled with I . These nodes can be

reached following the side{links list. Each node needs a

membership degree vector that keeps the minimum membership

degree between the starting and the current node. This is crucial

because it ensures that modifications of these vectors at upper

levels do not affect the processing of lower level nodes.

Fuzzy support for each itemset was calculated as described in

[37]. In addition, a p-value was calculated in order to complement

the frequency value provided by the support measure. The

procedure reported in [38] for the p-value computation was

adapted for the fuzzy case. The null model for the calculation of

this p-value represents the uninteresting situation in which no item

associations are present, i.e. in which items occur independently

from each other in transactions. Thus, the p-value represents the

probability of the itemset to be surprising under the null-model.

Post-processing the result set
The hierarchical clustering used in the first step of the proposed

methodology yields a set of closely located TFBSs. However,

especially in the case where a TFBS prediction tool has been used

to predict a set of TFBSs to use as input, the effects of the presence

of overlapping binding sites must be considered before generating

the final result set. For instance, suppose the binding sites of the

transcription in Figure 3. Previous approaches directly removed

both binding sites in case of overlapping [39]. This action may

lead to an incorrect counting of co-occurrence, since there could

be a combination of binding sites which allows the simultaneous

binding of both TFs (see Figure 3.a). Hence, we look for the

optimum way of fitting a given TF combination (itemset) in a given

fuzzy transaction, maximizing the membership degree of the

itemset to the transaction (Figure 3.b). This optimum fit is

considered a putative CRM.

Results and Discussion

We have developed an in-silico methodology to predict putative

cis-regulatory modules (CRMs) which presents some interesting

properties. First, using fuzzy sets to capture CRMs yields a more

realistic model of these modules. In particular, softening their

borders seems to fit the reality better than defining crisp partitions.

In fact, fuzzy technology is proven to be a superior technology to

enhance the interpretability of these partitions [40]. Moreover, the

proposed fuzzy frequent itemset mining procedure allows to

efficiently obtain any TF combination, overcoming constraints on

the size and form of the recovered CRMs. Furthermore, when

coupled with a TFBS prediction tool for scanning the entire non-

coding genome, CisMiner does not limit the search to a set of

specific regions.

The negative effects of the false positive locations generated by

the TFBS search procedure are alleviated by the following filtering

steps: i) Grouping the inferred TFBSs by means of a hierarchical

clustering algorithm. The appearance of clusters of sites in small
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Figure 2. Procedure for generating the fuzzy transactional database. (1) Each circle represents a binding site. Each binding site is labeled
with the name of the TF which binds that BS. (2) Three clusters are obtained. Centroids are calculated for each cluster. (3) Fuzzy sets are defined for
each cluster. (4) Fuzzy transactions are generated from the fuzzy sets. The value after the colon indicates the membership degree of the
corresponding TF to the transaction.
doi:10.1371/journal.pone.0108065.g002

Figure 3. Post-processing of the results. The m value indicates the membership degree of each binding site to its corresponding transaction. (a)
Pairs of overlapping binding sites are directly removed. (b) The optimum way of fitting itemset {A, B, C} is found.
doi:10.1371/journal.pone.0108065.g003
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regions of the genome is considered a reliable indicator of

regulatory function [10, 39, 41, 42]. ii) Searching frequent itemsets

among the obtained fuzzy groups. Frequent itemset mining

procedures have been successfully applied in previous approaches

[39, 43, 44]. Requiring the TF combinations to repeatedly appear

will help to remove spurious occurrences. iii) Calculating the

statistical significance of the obtained combinations. This provides

a value indicating the reliability of the results, thus allowing to

remove non-relevant combinations.

In order to test the performance of CisMiner, several

experiments were made. First, we used our tool to perform

CRM detection from a set of validated TFBSs. In this first

experiment, we avoided the uncertainty associated with the

computational inference of putative TFBSs and feed CisMiner

with a set of validated TFBSs in S. cerevisiae to test if it is able to

detect biologically significant combinations. Once the good

performance of the methodology was proven given a set of

validated TFBSs, we tested the performance of CisMiner when

considering putative TFBSs inferred by a computational tool

(Patser [45, 46]) in S. cerevisiae and D. melanogaster. Further-

more, a comparison to the equivalent crisp technique was made.

Even though the advantages of using fuzzy techniques are

intuitively clear, empirical data is provided to substantiate them.

CRM detection from validated TFBSs
This first approach was carried out over the yeast genome.

More concretely, 3328 binding sites across the whole yeast genome

were found for 102 TFs in the transcription factor binding site data

published by Harbison et al. [47]. With these data, 570
transactions were obtained with a mean of 2:79 different TFs

per transaction and a maximum of 10 TFs in a transaction [see

File S2]. CisMiner obtained 36 itemsets from these transactions

after setting the thresholds for the support and p-value to 0:01.

The frequency of appearance of the 96 TFs which were included

in at least one transaction is provided as File S1. These frequencies

indicate that there are several not very-frequent TFs in the

database which are likely to generate spurious itemsets.

In order to obtain evidence supporting the found relations,

STRING [48] was used. Given a set of genes, STRING looks for

associations among these genes at different levels: close location in

the genome, co-occurrence of the queried genes across species,

individual gene fusion events, co-expression, protein-protein

interactions, curated databases and text mining. STRING

provided evidence of relations among all the TFs present in the

itemsets returned by CisMiner for 32 out of 36 obtained itemsets,

representing an 88:8% of the results. Moreover, for 30 of the 36
itemsets, the graphs representing the associations among their TFs

are connected graphs, i.e. there is a path connecting each pair of

TFs in the graph. The other 2 of them contained indirect relations

involving only one additional transcription factor. The complete

set of graphs returned by STRING for this dataset is provided as

File S1.

Table 1 shows the 20 most significant TF combinations

according to the computed p-value. The whole list of the 36

obtained TF combinations can also be found in File S1. STRING

returned a connected graph for all combinations in Table 1 except

for itemsets 13 and 18. The relations among the TFs present in the

predicted CRMs appear to be strong at several levels (see the

corresponding graphs in supplementary material). Some of the

CRMs suggested by CisMiner represent well characterised

biological processes, such as the interaction of SWI6 with

MBP1 and SWI4 (itemset 3) to form the MBF and SBF protein

complexes, which cooperate and play a major role in progression

from G1 to S phase of the cell cycle [49]. Indeed, it is worth

mentioning that the combinations fSWI6,MBP1g and

fSWI6,SWI4g are also present at positions 7 and 2, respectively.

Another interesting relation is represented by itemsets 1, 5 and 14,

regarding transcription factors STE12, DIG1, and TEC1.

STRING returns a complete graph for these three TFs with

strong empirical evindence, and a recent article by van der Felden

et al. [50] also relates these three TFs. The co-ocurrence of RAP1
and FHL1 binding sites (itemset 9) is in concordance with previous

results, since both of them were shown to bind upstream of many

ribosomal protein genes [51].

No evidence was found by STRING for itemsets 13 and 18. It is

noteworthy to state that when queried for the single TF SUT1,

none of the genes connected to it in STRING appeared in the

dataset by Harbison et al. Therefore, CisMiner was unable to find

any STRING-proven relation of SUT1 to any other TF.

In addition to the STRING validation, we performed a further

test using PubMed to get complementary literature-based

evidences supporting the results. For the 36 obtained CRMs, 29
yield results when searched in PubMed, representing an 80:55% of

the results. Itemsets 4, 13, 18 and 19 from table 1 did not yield any

result when PubMed was queried. From these four itemsets, it is

interesting to note that two (4 and 19) were nonetheless found as

connected graphs in STRING.

Note that the lack of empirical evidence for some of the itemsets

does not necessarily undermine the efectiveness of the method.

Further studies and empirical evaluations are thus necessary to

confirm the not-proven putative associations.

CRM detection from putative TFBSs in S. cerevisiae
CisMiner has been further tested with a set of putative

computationally-predicted TFBSs in the S. cerevisiae genome.

To this aim, data were obtained from the Saccharomyces Genome

Database (SGD) [52, 53] and the JASPAR database [54]. In

particular, the complete yeast genome was downloaded from the

SGD. JASPAR provided 177 PWMs for the yeast genome (release

of January 2014).

First, the locations of potential TFBSs were inferred. For this

purpose, well-known Patser and Consite tools [46, 55] were used,

since their good performance has been repeatedly proven [39, 56,

57]. Certainly, there exist more recent TFBS detection tools which

take into account positional interdependencies within a putative

TFBS sequence [58]. However, their applicability is constrained

by the lack of available information; these techniques require to

specify the lists of sequences used to calculate each PWM, which

are not usually provided by the corresponding databases. In fact,

JASPAR does not provide the sequences of any of the 177 yeast

motifs it contains, while TRANSFAC [59] (public release 7.0

available online) does not provide sequences for any of the 24 yeast

motifs stored.

We tested the ability of both Patser and Consite to recover real

TFBSs using the yeast genome and the dataset by Harbison et al.

as a benchmark. We first run Patser over the complete yeast

genome. Given a PWM and a sequence, Patser yields a list of

values (range ½0,15�) indicating how well the PWM fits each

position in the sequence. Thus, we needed to select a threshold to

determine which of the positions were going to be considered

putative TFBSs. In addition, some TFBSs may be easier to detect

than others, since each motif presents its own peculiarities.

Therefore, an independent Patser-score threshold for each motif

was needed [60]. We realized that it was not feasible to set Patser-

score thresholds under 7:5. This value was selected according to

the Patser documentation [61] and to our own empirical

experience. It was observed that setting the thresholds under 7:5
generates a huge number of putative TFBSs, thus diminishing the
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significance of the results. Hence, for each motif, a specific Patser-

score threshold over 7:5 was calculated. The selection of each

threshold was done so that Patser was able to detect the maximum

number of TFBSs described by Harbison et al. [47].

A similar procedure was carried out to test Consite’s perfor-

mance. In this case, for each PWM, Consite yields a list of values

in the range ½0,100�. Best results were obtained for a Consite

threshold below 70. Figure 4 shows the number of true TFBSs

recovered by each tool against the total number of sites detected.

As it can be seen, Patser performs better than Consite in this

particular case, since the total number of potential binding sites

tends to be lower than that obtained with Consite for the same

number of true positives. Therefore, Patser was finally selected for

our purposes. The obtained thresholds for each motif are provided

as File S1. Only 66 motifs are shown, since the rest of motifs were

not found in the dataset by Harbison et al. We estimated the

threshold for those PWMs not found in the dataset by Harbison by

computing the median value of the thresholds obtained for the

other 66 motifs [see File S1].

With these settings, 77921 putative binding sites were detected,

which include 1412 of those described by Harbison et al. These

1412 TFBSs represent the *50% of the total number of binding

sites described by these authors. It is noteworthy that, for a

significant number of the motifs (e.g. ARR1, ASH1, BAS1), it was

impossible to detect any of their known TFBSs, not even setting

the Patser-score threshold to 0. Likewise, there were some motifs

which required extremely low thresholds in order to capture their

corresponding TFBSs (e.g 1:65, 2:25, 0:3 for ABF1, ADR1 &

AFT2, respectively). All of this can be reflecting the biological

complexity of the problem. It can also be be due to a certain

incoherence between the data retrieved from JASPAR and those

by Harbison et al. This could be due to the presence of outliers in

both datasets or even to incoherences in the nomenclature of the

motifs and TFs. The following tests are a way to show the ability of

CisMiner to overcome these problems and yield some interesting

results for further research from computationally inferred TFBSs.

However, computational inference of TFBSs is out of the scope of

this work.

Once the putative binding sites were detected, the fuzzy

transactional database was built. 8176 transactions were obtained

with an average of 8:67 different TFs per transaction and a

maximum of 45 TFs in a transaction. The frequency of occurrence

of each TF in the fuzzy transactional database is provided as File

S1. The complete transactional data table is also provided in File

S3.

CisMiner was run with the parameter settings summarized in

Table 2. 255 itemsets were obtained. The reported combinations

of TFs showed significant p-values, indicating that many of the

obtained itemsets may represent real biological associations among

the corresponding transcription factors. Moreover, the obtained

itemsets contain between 2 and 4 TFs, which matches size

estimations by previous works [42, 62]. Table 3 shows a sample of

the obtained itemsets. The complete set of TF combinations is also

provided as File S1. It is not the aim of this paper to provide a

comprehensive list and biological interpretation of all of the

obtained patterns, but to show that significant associations are

obtained and that many of them are in concordance with

Table 1. Top-20 TF combinations.

ID Putative CRM p-value Supp. Evidence

1 STE12, DIG1 1:11|10{16 0:059 SP

2 SWI6, SWI4 1:11|10{16 0:056 SP

3 SWI6, MBP1, SWI4 1:11|10{16 0:025 SP

4 SKN7, SOK2, PHD1 3:00|10{15 0:014 S

5 STE12, DIG1, TEC1 2:44|10{13 0:018 SP

6 SOK2, PHD1 1:20|10{12 0:027 SP

7 SWI6, MBP1 3:02|10{12 0:043 SP

8 MBP1, SWI4 6:81|10{11 0:038 SP

9 RAP1, FHL1 4:66|10{09 0:016 SP

10 DIG1, SWI4, TEC1 2:02|10{08 0:011 SP

11 DIG1, TEC1 4:74|10{08 0:029 SP

12 AFT2, RCS1 4:83|10{08 0:012 SP

13 PHD1, SUT1 5:92|10{08 0:011 -

14 STE12, TEC1 7:19|10{08 0:032 P

15 STE12, SWI6, SWI4 8:72|10{08 0:014 SP

16 SWI6, DIG1, SWI4 2:13|10{07 0:012 SP

17 FKH2, NDD1 3:23|10{07 0:016 SP

18 SOK2, SUT1 8:78|10{07 0:012 -

19 SKN7, SOK2 1:48|10{06 0:022 S

20 SWI6, STB1 2:14|10{06 0:012 SP

First dataset. The twenty TF combinations with the lowest p-value and highest support obtained when using the dataset by Harbison et al. Evidence column shows
whether results were yielded when PubMed was queried for evidence in the literature (P), STRING [48] yielded a connected graph for the given TFs (S), both conditions
(SP) or none (-) were met.
doi:10.1371/journal.pone.0108065.t001
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previously published knowledge. A deeper biological analysis will

be the topic for future works.

First, we wanted to check whether the methodology was able to

detect the combinations obtained in Section following this second

approach. Direct comparison of both result sets showed that only

the itemset fSTE12,TEC1g was shared. The support threshold

could be filtering out the rest of the itemsets in this second

approach. In fact, lowering the support threshold we were able to

get up to 13 of the previous combinations. Furthermore, the TFs

DIG1, NDD1, SWI6, RCS1 and STB1 were not found in

JASPAR, thereby justifying the absence of 14 of the itemsets that

appeared in the first result set. Finally, the rest of itemsets lost their

statistical significance.

Again, STRING was used to validate the results. In this case,

STRING provided evidence of direct relations among the

transcription factors of 23 of the recovered itemsets. In addition,

for the first 100 results, STRING provided direct relations

between the TFs of 11 of the putative CRMs, and indirect

relations (involving only 1 additional TF) for 24. This implies that

for the first 100 results, around 35% represent a direct or indirect

relation among the proposed TFs. The itemset list is provided as

File S1.

Here we briefly comment some of the results in Table 3. For

example, STE12 and TEC1 seem strongly related (itemset 1). Both

proteins are known to cooperate and regulate several cellular

processes [63–65]. The ADR1 protein appears related to RAP1,

RGT1 and SIP4 (itemsets 2–4). A number of bibliographic sources

confirm such associations. ADR1 and RAP1, among other

transcriptional regulators, may participate in barrier function,

blocking the propagation of transcriptional silencing in yeast [66].

Likewise, the relation between ADR1 and RGT1 (YKL038W) was

also found in the literature. These two factors are involved in the

transcriptional response to transient perturbations in carbon

source [67]. Finally, ADR1 and SIP4 participate in the

transcriptional control of nonfermentative metabolism in the

Saccharomyces cerevisiae [68].

Next itemset in Table 3 (itemset 5) contains AFT2 and RAP1,

which are known to induce the expression of FRE1 in response to

iron and copper depletion [53]. The next combination in Table 3

(itemset 6) involves the previously mentioned RGT1 factor, which

in this case appears in cooperation with MIG3. Hazbun et al. [69]

experimentally proved that both factors bind the promoter region

of the gene SUC2, which product is an invertase enzyme. Then,

three itemsets are shown which relate MSN4 with RPN4, SKN7

Figure 4. Comparison of Patser and Consite. Number of TFBSs from the dataset by Harbison et al. against the total number of TFBSs detected
by Patser and Consite.
doi:10.1371/journal.pone.0108065.g004

Table 2. Parameter values.

Patser score threshold Motifs with known BSs Rest

See File S1 8:1

Hierarchical cluster Aggregation threshold

300bp

Fuzzy TD-FP-growth p-value threshold Support threshold

0:01 0:01

Second dataset. Summary of the input parameters used.
doi:10.1371/journal.pone.0108065.t002
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and GIS1 (itemsets 7–9), all of them representing previously

described associations. Thus, MSN4, RPN4 and SKN7 are known

to participate in the transcriptional response of Saccharomyces
cerevisiae to the stress imposed by certain fungicides and

herbicides [70, 71]. Regarding the relation between MSN4 and

GIS1, STRING returned associations at different levels: experi-

mental, curated databases and text mining. Previous authors

described that the Rim15 regulon is mediated by these two

transcription factors [72]. Finally, MIG1 and MIG2 also appear

strongly related at different levels. Glucose repression of the SUC2

gene is dependent on MIG1 and MIG2 [73]. The last itemsets in

Table 3 show some combinations for which STRING returned

indirect associations, and some others for which no confirmation

was obtained.

As in the previous section, a search over PubMed was

performed in order to obtain more information about the

complete result set. The PubMed results were manually curated

and at least 23 more combinations were found to be related [see

File S1].

In our aim to provide additional experimentation supporting

the obtained results, the full methodology was re-run over 100

randomized yeast genomes. Interestingly, the mean number of

predicted TFBSs by Patser in this random datasets was 73307:9,

which is near the 77921 TFBSs predicted using the real dataset.

Even more interestingly, only an average of 11:5 significant TF

combinations remained in this case, in constrast to the 255
putative CRMs obtained using the real genome. This fact could be

a clear evidence of the potential of the methodology to remove

spurious occurrences, and suggests a false discovery rate lower

than 5%.

To finish this section, it is worth mentioning that the complete

process was also re-run after raising the minimum Patser-score

threshold to 8. Thus, 56 itemsets were obtained (results not

shown). It is interesting that this new set of combinations was a

subset of the 255 itemsets analyzed in this section. Moreover, the

p-values were almost the same to those calculated when setting the

minimum Patser-score threshold to 7:5. This fact suggests that the

methodology is coherent and robust.

CRM detection from putative TFBSs in D. melanogaster
In order to test whether the application of the methodology over

larger and more complex genomes is computationally feasible and

whether it can still unveil significant knowledge, a similar

experiment was performed over the Drosophila melanogaster
genome.

A comprehensive biological interpretation of the complete result

set was out of the scope of this work. However, the interest of the

results is discussed and verified in this section. The complete

Drosophila melanogaster genome was downloaded from FlyBase

[74, 75] (Release 5.56, March 2014). In addition, 131 PWMs of

the Drosophila melanogaster genome were retrieved from Jaspar.

According to the Patser-score thresholds calculated above,

subsequences scoring over 8:1 were considered as potential

TFBSs. Thus, 152338 transactions were obtained with a mean

of 4:34 different TFs per transaction and a maximum of 15 TFs in

a transaction. The frequency of appearance of each TF in the

fuzzy transactional database is provided as File S1. The complete

transactional data table is provided as File S4.

Interestingly, only 39 significant putative CRMs were obtained.

In this case, STRING returned just one direct relation

(fMad,brkg, Table 4). Other 8 itemsets returned indirect relations

when STRING was queried, representing *20% of the total

obtained. Regarding PubMed searches, 12 of the results returned

matches when searched in PubMed. The complete list with the

corresponding PubMed links is provided in File S1. However, it is

extremely difficult to search for scientific evidences of the obtained

relations due to the unspecific identifiers of these transcription

factors, e.g.: opa, btd, h, D. The putative CRMs suggested by at

least two more itemsets were found to be related by a manual

inspection of the literature retrieved by PubMed. This last

experiment has shown that it is computationally feasible to apply

the methodology over more complex genomes. Moreover, these

39 modules present significant quality values and may represent

real biological interactions. Future work is needed to biologically

validate and interpret all the obtained combinations.

Table 3. TF combinations.

ID Putative CRM p-value Support

1 STE12, TEC1 8:40|10{03 0.013

2 ADR1, RAP1 2:39|10{08 0.014

3 ADR1, RGT1 9:18|10{05 0.013

4 ADR1, SIP4 1:22|10{04 0.011

5 AFT2, RAP1 1:17|10{13 0.012

6 MIG3, RGT1 3:13|10{06 0.012

7 MSN4, RPN4 2:37|10{03 0.024

8 MSN4, SKN7 9:24|10{06 0.013

9 MSN4, GIS1 1:11|10{16 0.020

10 MIG1, MIG2 1:11|10{16 0.016

11 STE12, GCR2, STB5, XBP1 1:11|10{16 0.010

12 ADR1, MIG1 1:11|10{16 0.020

13 SUT1, MIG1 1:11|10{16 0.018

Second dataset. Some of the TF combinations obtained when using the TFBSs detected by Patser (yeast genome).
doi:10.1371/journal.pone.0108065.t003

CisMiner: Fuzzy Genome-Wide In-Silico Cis-Regulatory Module Prediction

PLOS ONE | www.plosone.org 9 September 2014 | Volume 9 | Issue 9 | e108065



Fuzzy-crisp comparison
To evaluate the contribution of fuzzy technologies to the

methodology, we implemented a crisp version of the same

methodology and compared the results obtained using the same

quality thresholds (See Methods). The procedure to create the

crisp transactional database was a crisp version of the fuzzy

procedure previously described. First, a crisp clustering method

was run to identify the transactions, where crisp borders were

defined for each cluster at bases C{300 and Cz300 (C is the

cluster centroid as defined in Methods). In the crisp transactional

database, all items in each transaction have a membership degree

of 1:0. This means that a TFBS belongs to a given cluster if it is

fully located within bases C{300 and Cz300. A crisp version of

the frequent itemset mining algorithm was applied in this case to

extract the frequent itemsets.

As expected, significant differences were found between the

crisp and fuzzy results on the yeast dataset. First, the crisp

algorithm obtained 4217 combinations while the fuzzy one

returned 1388, being these a subset of the crisp results [see File

S5]. In order to determine whether the values of the measures

obtained by the fuzzy and the crisp methodologies were

significantly different, two ANOVAs were carried out (Table 5).

Fuzzy sets are proven to be a superior technology to model

partitions with blurry borders. Obtained results show more

significant p-values achieved by the fuzzy methodology, suggesting

that an effective prunning of spurious itemsets is achieved by

applying the fuzzy algorithm.

The same steps were taken to test fuzzy-crisp performance over

the Drosophila melanogaster dataset. In this case, 4388 TF

combinations were returned by the crisp procedure while 4272
were obtained by the fuzzy one [see File S5]. Table 5 shows that

the results obtained with this other dataset also comply with the

previous comments. These results show the advantages of using

fuzzy technology to model the TFBS clusters, improving the

representation of a CRM by removing sharp borders and

achieving a better performance in terms of p-values.

Conclusions

In this work we have presented CisMiner, an in silico fuzzy

methodology able to obtain putative CRMs by means of extracting

significant co-occurrences of closely located TFBSs genome-wide.

This methodology presents some interesting properties:

Genome-wide scope. CisMiner is capable of analyzing the

complete non-coding genome of an organism without limiting

the search space to specific regions.

Uncertainty handling. The uncertainty inherent to CRM

detection is better modeled by fuzzy technology.

Flexibility in TFBS number, distribution and distance. CisMiner

does not impose constraints on the form or number of elements of

the discovered CRMs.

Prior knowledge not needed. The proposed methodology does

not require any prior knowledge to restrict the search space.

Easily interpretable results. Each CRM is expressed as a set of

TFs, its frequency of appearance in the genome and a p-value,

which makes the results robust and easily interpretable.

Extensible and efficient. To the extent of our knowledge, the

proposed methodology is the only one available that addresses a

global genome-wide search for CRMs with no restrictions, which

is efficient and robust due to the use of efficient data structures. In

addition, it is easily extensible to larger genomes.

Freely accessible. CisMiner is available at: http://genome2.ugr.

es/cisminer.

Several experiments were carried out to validate the proposed

methodology. CisMiner has been shown to identify statistically

significant CRMs composed of TFs with well-known interactions

as reported in STRING and the literature.

The experimental results also showed that when coupled with a

TFBS detection tool, the performance of the final results is

strongly dependent on the performance of the TFBS detection

approach.

On the other hand, although many approaches have been

proposed to understand local regulatory mechanisms, little has

been proposed to extract knowledge about broader regulatory

mechanisms. In this sense, the genome-wide scope of CisMiner

can help to shed some light in such regulatory processes.

Future work comprises testing the methodology on more

complex species with larger genomes. The performed experiments

have shown that the methodology is based on consistent principles

and its modularity enables us to easily improve it when new

methos and data are made available. In addition, we believe that

the integration of additional sources of information besides

sequence data (e.g. chromatin structure, protein structure) may

help to refine the results.

Table 4. TF combinations.

Id Putative CRM p-value Support

1 btd, hkb 1:11|10{16 0.045

2 btd, Mad 1:11|10{16 0.041

3 btd, opa 1:11|10{16 0.033

4 btd, h 1:11|10{16 0.003

5 Mad, brk 1:11|10{16 0.029

6 btd, CTCF 1:11|10{16 0.023

7 Mad, opa 1:11|10{16 0.023

8 Mad, hkb 1:11|10{16 0.022

9 brk, opa 1:11|10{16 0.021

10 Mad, h 1:11|10{16 0.019

Third dataset. Some of the TF combinations obtained when using the TFBSs detected by Patser (Drosophila genome).
doi:10.1371/journal.pone.0108065.t004
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