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Abstract

P-glycoprotein (Pgp) extrudes a large variety of chemotherapeutic drugs from the cells, causing multidrug resistance (MDR).
The UIC2 monoclonal antibody recognizes human Pgp and inhibits its drug transport activity. However, this inhibition is
partial, since UIC2 binds only to 10–40% of cell surface Pgps, while the rest becomes accessible to this antibody only in the
presence of certain substrates or modulators (e.g. cyclosporine A (CsA)). The combined addition of UIC2 and 10 times lower
concentrations of CsA than what is necessary for Pgp inhibition when the modulator is applied alone, decreased the EC50 of
doxorubicin (DOX) in KB-V1 (Pgp+) cells in vitro almost to the level of KB-3-1 (Pgp-) cells. At the same time, UIC2 alone did
not affect the EC50 value of DOX significantly. In xenotransplanted severe combined immunodeficient (SCID) mice co-
treated with DOX, UIC2 and CsA, the average weight of Pgp+ tumors was only ,10% of the untreated control and in 52% of
these animals we could not detect tumors at all, while DOX treatment alone did not decrease the weight of Pgp+ tumors.
These data were confirmed by visualizing the tumors in vivo by positron emission tomography (PET) based on their
increased 18FDG accumulation. Unexpectedly, UIC2+DOX treatment also decreased the size of tumors compared to the DOX
only treated animals, as opposed to the results of our in vitro cytotoxicity assays, suggesting that immunological factors are
also involved in the antitumor effect of in vivo UIC2 treatment. Since UIC2 binding itself did not affect the viability of Pgp
expressing cells, but it triggered in vitro cell killing by peripheral blood mononuclear cells (PBMCs), it is concluded that the
impressive in vivo anti-tumor effect of the DOX-UIC2-CsA treatment is the combined result of Pgp inhibition and antibody
dependent cell-mediated cytotoxicity (ADCC).
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Introduction

One of the most common causes of cancer chemotherapy

failure is the development of resistance against chemotherapeutic

agents. In most cases the tumor cells are either intrinsically

resistant, or become resistant in the course of chemotherapy, to a

broad spectrum of chemotherapeutic agents, including compounds

they have never met before [1]. This phenomenon is called

multidrug resistance (MDR) and it is often associated with high-

level expression of active transporter proteins belonging to the

ATP Binding Cassette (ABC) super-family, such as ABCB1

(MDR1, P-glycoprotein, Pgp), ABCC1 (MRP1, multidrug resis-

tance protein 1) or ABCG2 (BCRP, breast cancer resistance

protein)[2,3]. Pgp was the first transporter described in connection

with multidrug resistance, and it seems to have the most significant

role in clinical cases [3].

The Pgp molecule consists of two almost identical halves

connected by a 75 amino acid long intracellular linker region.

Both halves comprise six membrane spanning a-helices forming a

transmembrane domain (TMD) and a nucleotide binding domain
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(NBD). The two TMDs define the substrate binding sites and the

translocation pathway, allowing the protein to transport various

hydrophobic compounds out of the cells [4]. The overall energy

requirement of drug efflux is covered by ATP hydrolysis

conducted by the two NBDs (for possible models, see e.g. Senior

[5], Ambudkar et al. [6]).

Pgp is generally expressed in tissues having barrier functions

(e.g., in endothelial cells of the blood-brain barrier, in hepatocytes,

in epithelial cells of the kidney and the intestines) and it is

suggested to have an important role in protection of the body from

toxic substances [2,3,7]). However, the loss of the abcb1a/b genes

in mice (homologues of the human ABCB1 gene) is not

accompanied by major physiological consequences [8,9]; hence,

inhibition of Pgp molecules may be a plausible strategy of

overcoming drug resistance without serious side effects. The

classical pharmacological approach involves co-administration of

the cytotoxic compounds that are substrates of Pgp with pump

inhibitors, to increase the accumulation of the former into the

tumor cells. Unfortunately, Pgp inhibitors often induce unpredict-

able and intolerable pharmacokinetic interactions and toxicity

through inhibiting other drug transporters or cytochrome P450, by

changing the clearance and metabolism of the co-administered

chemotherapeutic agents [10–12]

Several monoclonal antibodies (mAb) recognizing extracellular

epitopes have been developed against Pgp. A few of them (e.g.,

MRK16, MRK17, MC57, HYB-241, and UIC2) are thought to

recognize discontinuous conformation sensitive epitopes. Upon

binding, these antibodies can partially inhibit Pgp mediated drug

transport in vivo and in vitro [13–16]. However, this inhibitory

effect is often weak [13–18], its extent may depend on the

transported substrate [15,17,18], and it is variable even in the case

of the same substrate according to general experience.

UIC2 is an IgG2a isotype mouse monoclonal antibody raised

against human Pgp. It recognizes a complex epitope involving at

least the first [19] and the third extracellular loops of the protein

[20]. In the absence of Pgp substrates and modulators UIC2 can

bind only to 10–40% of cell surface Pgps, while the rest adopts the

UIC2 binding conformation only in the presence of a distinct

group of substrates or modulators (e.g., cyclosporine A (CsA), SDZ

PSC 833, vinblastine and paclitaxel [21–23]. In previous studies

we have demonstrated that the UIC2 antibody itself completely

inhibits Pgp function when it is applied together with any of the

above Pgp modulators added at low, sub-inhibitory concentrations

[22]. The above phenomenon was also confirmed in vitro, by

measuring the cellular accumulation of various fluorescent Pgp

substrates including DNR, R123, calcein and a radioactive tracer
99mTc-Mibi [22]. In line with the above, combined treatment with

either CSA + UIC2 or paclitaxel + UIC2 specifically decreased the

rate of glucose metabolism in Pgp+ cells, as measured in 2-

[18F]fluoro-2-deoxy-D-glucose (18FDG) accumulation experi-

ments, also suggesting that Pgp inhibition with concomitant

decrease of energy consumption has occurred [23]. On the other

hand, we also demonstrated in xenotransplanted severe combined

immunodeficient (SCID) mice that UIC2 could readily penetrate

into the compact solid tumors, intensively staining cell surface

Pgps and increasing daunorubicin accumulation in the Pgp+

tumors to the level of the Pgp- ones [22].

In the present study we tested whether the combined treatment

with CsA and UIC2 mAb can potentiate the anti-tumor effect of

doxorubicin (DOX) in Pgp+ tumors to achieve clinically relevant

reduction in tumor size, applying the above experimental model

[22]. Tumor growth was followed by weighing the mass of the

tumors in sacrificed animals and also in vivo on the basis of 18FDG

accumulation. In the latter case a small-animal Positron Emission

Tomography (PET) camera was applied to visualize tumors on the

basis of their increased rate of glucose metabolism [24–26]. Our

data demonstrate that the combined application of a class of

modulators (including CsA) used at sub-inhibitory concentrations

and of the UIC2 antibody may serve as an effective tool for

blocking the growth of Pgp expressing tumors.

Materials and Methods

Ethics Statement
The experiments using human blood were done with the

approval of the Scientific and Research Ethics Committee of the

Medical Research Council (ETT TUKEB, permission number:

25364-1/2012/EKU (449/P1/12.)). Written informed consent

was obtained from donors prior to blood donation, and their data

were processed and stored according to the principles expressed in

the Declaration of Helsinki.

In animal experiments the Principles of Laboratory Animal Care
(National Institute of Health) was strictly followed, and the

experimental protocol was approved by the Laboratory Animal

Care and Use Committee of the University of Debrecen

(Permission Numbers: 26/2006/DE-MAB and 122/2009/DE-

MAB).

Cell Lines
KB-3-1 human epidermoid carcinoma cell line and KB-V1, its

Pgp positive counterpart were used in the experiments (obtained

from Michael Gottesman’s lab, NIH, Bethesda) [27,28]. The cells

were grown as monolayer cultures at 37uC in Dulbecco’s modified

Eagle’s medium (DMEM) containing 4.5 g/l glucose and supple-

mented with 10% heat-inactivated fetal bovine serum (FBS),

2 mM L-glutamine and 25 mM/ml gentamycin. The KB-V1 cells

were cultured in the presence of 180 nM vinblastine until 3 days

before their use. The viability of the cells in our experiments was

always higher than 90%, as assessed by the trypan blue exclusion

test. The cells were regularly checked for mycoplasma by the

Plasmo Test mycoplasma detection kit (San Diego, CA) and found

to be negative.

Chemicals
All the Pgp substrates, modulators, cell culture media and

supplements were from Sigma–Aldrich (Budapest, Hungary). The

UIC2, 15D3, 5D3 and QCRL-3 mAbs were purified from the

supernatants of hybridoma cell lines using affinity chromatogra-

phy. The hybridoma cell lines were purchased from the American

Type Culture Collections, Manassas, VA, USA), except the 5D3

hybridoma cell line, which was a kind gift from Brain P.

Sorrentino (Division of Experimental Hematology, Department

of Hematology/Oncology, St. Jude Children’s Research Hospital,

Memphis, Tennessee). The mAb preparations were.97% pure by

SDS/PAGE. The glucose analogue 2-[18F]fluoro-2-deoxy-D-

glucose (18FDG) was synthesized and labeled with the positron-

decaying isotope 18F according to Hamacher et al. [29].

Indirect immunofluorescence
For detection of Pgp and ABCG2 living cells (106 cells/ml) were

incubated in the presence of 30 mg/ml 15D3 anti- Pgp mAb or

2 mg/ml 5D3 anti-ABCG2 mAb for 30 min at 37uC. For

measurement of MRP1 (ABCC1) expression cells were fixed and

permeabilised with 1% para-formaldehyde and 0.1% TritonX-100

in PBS (15 min; 4uC) and then labeled with 2 mg/ml QCRL-3

mAb (30 min; 4uC). After two washes with ice-cold PBS

containing 1% bovine serum albumin (BSA-PBS), cells were

incubated with goat anti-mouse IgG (0.5 mg/ml CruzFluor 647

In Vivo Anti-Tumor Effect of UIC2 mAb
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(CFL647-GaMIgG), Santa Cruz Biotechnology, Inc., Texas) for

30 min at 4uC. Fluorescence intensities were detected using a

Becton Dickinson FACSAria III Cell Sorter (Becton Dickinson)

measuring the 633 nm/660620 nm fluorescence intensities.

Fluorescence signals were collected in logarithmic mode and the

cytofluorimetric data were analyzed by the BDIS CELLQUEST

(Becton Dickinson) software.

To detect Pgp expression in tumors 5-mm-thick cryosections

were prepared, dried at room temperature and fixed in pre-cooled

acetone (-20uC) for 10 min. Sections were then washed with PBS

and blocked with 1% BSA-PBS for 20 minutes to avoid non-

specific labeling and further incubated at room temperature with

the UIC2 (10 mg/ml) mouse mAb for 60 min. To visualize the

binding of the primary antibody an Alexa-488 conjugated goat

anti-mouse IgG (A488-GaMIgG, Invitrogen) was used at 1:1000

dilution. Negative controls were obtained by omitting the primary

antibody.

A Zeiss LSM 510 confocal laser-scanning microscope was used

for the measurements. Alexa-488 was excited at the 488 nm line of

an argon-ion laser. Fluorescence was detected through a 505–

550 nm band pass filter. Images of 5126512 pixels were obtained

in extended focus mode, through a 636 (numerical aperture = 1.4)

Plan-Apochromat oil immersion objective.

In vitro cytotoxicity tests
Cells were seeded in 96-well plates at a cell density of 56103

cells/well. 24 hours later DOX was added at different concentra-

tions with CsA and/or UIC2 mAb or the modulator alone, and

the plates were further incubated for 72 h at 37uC. The cell

viability was determined using the AlamarBlue assay (Serotec, UK)

measuring the 530/590 nm fluorescence intensity of the dye in an

automated microplate reader (BioTec Synergy HT, US). The

fluorescence intensities of the samples were normalized to the

fluorescence of the untreated (DOX, antibody and CsA free)

control sample, and plotted as a function of DOX concentration.

Dose-response curves were fitted, and EC50 values were calculated

by SigmaPlot 12.0 programme (Systat Software, Inc., USA).

In vitro antibody-dependent cell-mediated cytotoxicity
(ADCC) assay

ADCC experiments were performed as described previously

[30] with minor modifications. Human peripheral blood mono-

nuclear cells (PBMCs) were prepared from the blood of healthy

donors by Ficoll (Histopaque-1077, Sigma-Aldrich, Budapest)

density gradient centrifugation. The PBMC rich fraction (effector

cells) was washed three times and re-suspended in DMEM

containing 10% FCS. After trypsinization, KB-V1 and KB-3-1

(target cells) cells were labeled with 5(6)-carboxyfluorescein

diacetate N-succinimidyl ester (CFDA-SE) at a concentration of

10 mM at 37uC for 10 min. Then, the cells were washed thrice

with DMEM containing 10% FCS and 1% BSA to remove

unbound CFDA-SE and finally re-suspended in DMEM contain-

ing 10% FCS. 1.56105 target cells were mixed with effector cells

at target/effector cell ratios of 1:5, 1:10, 1:50 and 1:100 in a final

volume of 1 ml. Samples were incubated in the absence or

presence of 0.1 mM CsA and/or 20 mg/ml UIC2 at 37uC for

8 hours in CO2 incubator. After incubation the cells were washed

and then re-suspended in ice cold phosphate-buffered saline (PBS),

containing 8 mM glucose and 5 mg/ml propidium iodide (PI) and

were analyzed using a Becton Dickinson FACScan flow cytometer

(Mountain View, CA). The labeling distinguishes four populations

of cells as it is demonstrated in Fig. S1: 1. living target cells in

green (CFDA-SE positive cells); 2. dead target cells in green and

red (CFDA-SE and PI double positive cells); 3. dead effector cells

in red (PI positive cells), and 4. live effector cells, which remain

unstained. The negative control sample did not contain PBMCs,

while tumor cells killed by 4% para-formaldehyde served as the

positive control. The percentage of killed target cells was

calculated dividing the number of PI and CFDA-SE double

positive cells (dead cells) by the number of the CFDA-SE positive

cells.

In vitro complement-dependent cytotoxicity (CDC) assay
Samples containing 2.56105 KB-V1 or KB-3-1 cells and

20 mg/ml UIC2 mAb in the presence or absence of 0.1 mM CsA

were treated with freshly prepared human serum at different

dilutions in DMEM medium. The samples were incubated for

4 hours in CO2 incubator at 37uC and then stained with 5 mg/ml

PI. The percentage of the PI positive dead cell was determined by

a Becton Dickinson FACScan flow cytometer (Mountain View,

CA).

The hemolytic complement activity of the human serum

samples was determined applying sheep red blood cells sensitized

with a rabbit stroma antibody (SSRBC) kindly provided by Attila

Bácsi (Inst. of Immunology, University of Debrecen, Faculty of

Medicine). 50 ml of 1% SSRBC was mixed with different dilutions

of human serum or heat inactivated human serum (inactivated at

56uC for 30 min) and incubated for 30 min at 37uC. After

centrifugation the absorbance of the supernatants was measured at

541 nm by BioTek Synergy HT plate reader. The HC50 value

where 50% of the RBCs were lysed was determined for the human

sera and found to be normal.

Animal model and study design
Adult (10 to 12 week-old), pathogen-free B-17 severe combined

immunodeficiency (SCID) mice were used in this study [31].

Animals were housed under pathogen free circumstances at a

temperature of 2662uC, with 50610% humidity and artificial

lighting with a circadian cycle of 12 h. The food and drinking

water (sterilized by autoclaving) were available ad-libitum to all

animals.

SCID mice were injected subcutaneously with KB-3-1 (Pgp-;

1.56106 cells in 150 ml sterile phosphate-buffered saline (PBS)) on

the left and KB-V1 (Pgp+; 36106 cells in 150 ml sterile PBS) cells

on the right thighs. To obtain approximately similar tumor sizes in

case of KB-V1 and KB-3-1 cells we had to inject double number

of KB-V1 cells, because of their slower cell proliferation rate. In

another experiment we grafted four tumors per animal in order to

limit the number of animals and to maximize the number of

tumors imaged. In this case each animal received two injections in

the shoulders and two in the upper part of the thighs. Tumors

were grown for 4 days and then the mice were treated with DOX

alone (5 mg/kg, i.v.), or DOX combined with either UIC2 mAb

(5 mg/kg, i.v.) or CsA (Sandimmun, Novartis, Basel, Switzerland;

10 mg/kg i.p.) or both. The animals were killed 8 days after

treatment with chemotherapy by cervical dislocation and the

tumors were removed to weigh them and then they were snap

frozen in liquid nitrogen and stored at -70uC till mRNA expression

analysis.

mRNA expression analysis
The frozen tumor sections were equilibrated in 10 volumes pre-

chilled RNAlater-ICE solution (Applied Biosystem, CA) at -20uC
overnight to protect RNA from degradation and then total RNA

was isolated using the RNeasy Mini kit (Qiagen Inc., CA)

according to the protocol. RNA quantity was determined by

NanoDrop ND-1000 UV-Vis Spectrophotometer (NanoDrop

Technologies, Wilmington, DE). RNA was then subjected to

In Vivo Anti-Tumor Effect of UIC2 mAb
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reverse transcription-real time quantitative polymerase chain

reaction (RT-qPCR) using the Taqman assay with stocked primers

and probes (Applied Biosystem, CA). Pgp mRNA expression was

normalized to the human glyceraldehyde-3-phosphate dehydro-

genase (GAPDH) expression.

Small-animal PET imaging using 18FDG
After the implantation of tumor cells 18FDG PET scans were

repeated at different time points. Prior to PET measurements,

mice were fasted overnight. On the day of PET imaging mice were

pre-warmed to a body temperature of 37uC and this temperature

was maintained throughout the uptake and scanning period to

minimize the visualization of brown fat. Mice were injected via the

tail vein with 5.560.2 MBq of 18FDG. 40 min after tracer

injection animal were anaesthetized by 3% isoflurane with a

dedicated small animal anesthesia device and then 20 min long

static single-frame PET scans were acquired using a small-animal

PET scanner (MiniPET-II, Department of Nuclear Medicine,

Faculty of Medicine, University of Debrecen) to visualize the

tumors.

The MiniPET-II system is a dedicated small animal PET

scanner developed with the help of a Hungarian project. The

MiniPET-II scanner consists of 12 detector modules including

LYSO (Cerium Doped Lutetium Yttrium Orthosilicate) scintilla-

tion crystal blocks and position sensitive photo multiplier tubes.

Each crystal block comprises 35635 pins of 1.2761.27612 mm

size. Scanner normalization and random correction were applied

on the data and the images were reconstructed with the standard

maximum likelihood expectation maximization iterative algo-

rithm. The pixel size was 0.2760.2761.35 mm and the spatial

resolution varies between 1.4 to 2.1 mm from central to 25 mm

radial distances. The system sensitivity is 11.4%.

18FDG-PET data analysis
The 18FDG uptake was expressed in terms of standardized

uptake values (SUVs) and tumor to muscle (T/M) ratios.

Ellipsoidal 3-dimensional regions of interest (ROI) were manually

drawn around the edges of the tumor xenografts by visual

inspection using BrainCad software (Institute of Nuclear Medicine,

University of Debrecen). The standardized uptake value (SUV)

was calculated as follows: SUV = [ROI activity (Bq/ml)]/[injected

activity (Bq)/animal weight (g)], assuming a density of 1 g/cm3.

The T/M ratios were computed as the ratio of the mean activity in

the tumor volume of interest (VOI) and the background (muscle)

VOI.

Statistical analysis
The displayed data are the means 6 SD of the results of at least

three independent experiments. Data have been analyzed using

SigmaPlot 12.0 programme (Systat Software, Inc., USA) and IBM

SPSS Statistics 20 (IBM Corp., USA). Statistical significance was

assessed using analysis of variance (ANOVA), applying Holm-

Sidak method for post hoc pair-wise comparison of the different

samples. In the case of unequal variances Dunnett T3 post hoc

pair-wise comparison method was used. Differences were consid-

ered to be significant at P,0.05.

Results

In vitro cytotoxicity measurements
KB-V1 cells express Pgp at high level, while other drug

transporting ABC proteins ABCG2 and ABCC1 were not

detectable by means of indirect immunofluorescence and flow

cytometry (Fig. S2). KB-3-1 cells do not express any of the above

ABC transporters at measurable level (Fig. S2). In accordance with

the high Pgp expression level of KB-V1 cells the EC50 value of

DOX was 2.1960.39 mM in these cells, while it was only

4463 nM in KB-3-1 (Pgp-) cells (Fig. 1). In KB-V1 cells CsA

co-treatment decreased the EC50 value of DOX in a dose

dependent manner, while UIC2 had only a weak, statistically not

significant effect. Interestingly, the combined treatment of KB-V1

cells with 1 mM CsA and a saturating concentration of UIC2 mAb

decreased the EC50 value to 33619.7 nM, which could be

achieved by 10 times higher CsA concentration when it was

applied alone (Fig. 1). In contrast, administration of the UIC2

mAb and 1 mM CsA to cultures of KB-3-1 cells, simultaneously or

alone, had no significant effects on their DOX sensitivity.

mRNA expression analysis of Pgp in the tumor xenografts
and cells used for grafting the tumors

Based on the above in vitro results, we have designed in vivo
experiments to test the effectiveness of the combined treatment

with low dose of CsA, UIC2 and DOX. SCID mice were

inoculated with KB-V1 and KB-3-1 cells, respectively. Palpable

subcutaneous tumors developed in 10–12 days. Their Pgp

expression was compared to that of the tumor cells used for

grafting the tumors. Since the immunofluorescence intensities in

frozen tissue sections and cell monolayers are not directly

comparable, Pgp expression was examined at the mRNA level.

In the KB-3-1 tumors a well detectable ,60-fold increment of Pgp

mRNA levels occurred compared to the inoculated cells, while the

Pgp mRNA level of the KB-V1 tumors did not change upon

proliferation of the inoculated cells (Fig. 2). The Pgp mRNA levels

proved to be at least three orders of magnitude higher in the KB-

V1 tumors compared to the KB-3-1 xenografts (see Fig. 2). Thus,

the KB-V1 tumor xenografts retained their MDR phenotype as it

was also proved by indirect immunofluorescent labeling (see Fig.

S3), while the KB-3-1 cells continued to express Pgp at very low

levels (not detectable by immunofluorescence, Fig. S3) in the

developed tumors on the time scale of the in vivo experiments.

18FDG accumulation in xenotransplanted tumors
Grafted tumors were grown for 4 days, then the mice were

treated with DOX alone (5 mg/kg, i.v.) or DOX combined with

either the UIC2 mAb (5 mg/kg, i.v.) or CsA (10 mg/kg, i.p.), or

Figure 1. Cytotoxic effect of DOX in KB-3-1 (Pgp-; grey bars)
and KB-V1 (Pgp+; empty bars) cells and its potentiation by
treatments with CsA (used at the indicated concentrations)
and/or UIC2 mAb (20 mg/ml). EC50 values were calculated by fitting
the dose-response curves. Values are means (6 SD) of 3 independent
experiments. Statistically significant differences are shown by * (P,
0.05).
doi:10.1371/journal.pone.0107875.g001
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both. For an in vivo visualization of their effects, miniPET-18FDG

accumulation measurements were performed, carrying out the

scans 6–8 days after the above treatments. Fig. 3 shows

representative 18FDG accumulation scans and the anatomical

pictures of untreated (Fig. 3A and C) and DOX-UIC2-CsA

treated (Fig. 3B and D) SCID mice bearing Pgp+ (KB-V1, right

shoulder and thigh) and Pgp- (KB-3-1, left shoulder and thigh)

tumor xenografts. At the time of the measurements the tumors of

untreated mice were 5–8 mm in diameter (6.4361.13 mm mean

6 SD, KB-3-1; 6.061.15 mm mean 6 SD, KB-V1), and well-

detectable on the basis of their increased rate of glucose

metabolism.

The tumor (T) to skeletal muscle (M) 18FDG accumulation ratio

(T/M) was 4.260.6 in the case of Pgp- and 4.860.7 for the Pgp+

tissues (n = 7, 6 SD), indicating significantly higher rate of glucose

consumption in tumors compared to the muscle cells in both cases.

No visible or palpable tumors developed in 20% of the animals

treated with the combination of DOX-UIC2-CsA. This observa-

tion was confirmed by the mini-PET scans, since no significant
18FDG accumulation was observed at the sites of tumor cell

inoculation in these animals, as reflected by the T/M 18FDG

accumulation ratios being close to 1 (T/M = 1.160.2 for Pgp+ and

T/M = 0.9760.1 for Pgp- tumors; (n = 4)).

Effect of DOX treatment combined with UIC2 and/or a
low dose of CsA on the weights of grafted tumors

Eight days after chemotherapy, the animals were sacrificed by

cervical dislocation and the tumors were removed to weigh them.

As it is shown in Fig. 4A, DOX treatment alone was almost

ineffective in the case of KB-V1 tumors, while the weight of the

KB-3-1 tumors decreased considerably. Co-administration of

10 mg/kg CsA decreased the size of the KB-V1 tumors only

mildly and did not affect the KB-3-1 tumors. Combined treatment

with DOX-CsA-UIC2 decreased the mean weight of the KB-V1

tumors 9 fold compared to the animals treated with DOX alone.

The combined treatment also decreased the mean weight of the

KB-3-1 tumors, but not in a statistically significant extent.

Importantly, only 52% of the grafted Pgp+ or Pgp- tumors

developed into detectable tumors in the DOX-CSA-UIC2 treated

animals (see Fig. 4B), and 20% of the animals remained

completely tumor-free. In contrast, we always detected tumors in

the other treatment groups. Co-administration of UIC2 and DOX

also decreased tumor size significantly compared to DOX alone in

the case of KB-V1 tumors. This finding, in view of the fact that

UIC2 treatment alone does not affect the EC50 value of DOX in

in vitro cytotoxicity tests (Fig. 1), suggested to us that the growth

inhibitory effect of the antibody is not exclusively due to Pgp

inhibition. UIC2 binding did not affect the in vitro cell viability

significantly (Fig. 5); therefore, the contribution of the immune

system, that is partly functional in the SCID mice, was tested.

In vitro ADCC and CDC measurements
Fig. 6 shows the effect of human peripheral blood mononuclear

cells (PBMCs), and of human serum samples, on UIC2 mAb

treated KB-V1 and KB-3-1 cells, in vitro. PBMCs killed about 70-

80% of the UIC2 treated KB-V1 cells both in the presence and

absence of CsA, at target to effector cell ratios of 1:50 and 1:100,

respectively (Fig. 6A), in contrast with the UIC2 treated KB-3-1

cells that exhibited a survival rate similar to that of the untreated

control (Fig. 6B). In the absence of UIC2, the percentages of dead

target cells were low (see Fig. 6A and B).

In order to assess the possible role of CDC in UIC2 mediated in
vivo tumor cell killing, the cytotoxicity of human serum samples

Figure 2. Relative Pgp mRNA expression levels of the KB-V1
and KB-3-1 tumors and the cells applied for grafting the
tumors. Pgp expression levels are normalized to the expression level of
GAPDH mRNA (mean 6 SD, n = 5). The Pgp expression levels of
inoculated KB-V1 cells and tumors were significantly different from
those of the KB-3-1 cells and tumors (P,0.01), while the Pgp expression
levels of tumors were not statistically different from those of the cells
they originated from.
doi:10.1371/journal.pone.0107875.g002

Figure 3. Effect of combined treatment with DOX+CsA+UIC2 on
the KB-V1 and KB-3-1 tumors visualized in vivo by 18FDG-
miniPET. Coronal section of 18FDG-miniPET image of a representative
control (A) and a DOX-CsA-UIC2-treated tumor bearing mouse (B).
Standardized uptake values (SUV) are calculated as described in
Materials and Methods. The sites of tumor cell inoculation are shown
by arrows (KB-V1 tumors, right side arrows; KB-3-1 tumors, left side
arrows). Below: autopsies of the same control (C) and treated (D)
animals. Bar: 10 mm.
doi:10.1371/journal.pone.0107875.g003
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was measured in vitro. Cell killing did not increase in the UIC2

treated KB-V1 (Fig. 6C) and KB-3-1 (Fig. 6D) samples despite the

strong hemolytic activity of the applied sera (Fig. 6D, inset).

Discussion

In the present experiments SCID mice xenotransplanted with

Pgp+ and Pgp- tumors were used to study the efficacy of an

antibody-based multidrug resistance reversal strategy. The KB-

V1/KB-3-1 cell pair does not express ABCG2 and MRP1

(ABCC1) at detectable levels, while the KB-V1 cells have high

Pgp expression level (see Fig. S2 and Fig. 2). They are growing fast

and develop into subcutaneous tumors of ,1 cm diameter in

about 10-12 days after inoculation of 1–36106 cells into the

animals. An advantage of the fast tumor growth in this model

system is that the Pgp expression level of the tumor cells does not

decline in the absence of Pgp substrates (see Fig. 2) on the time

scale of the in vivo experiments.

In the above model system, co-treatment with UIC2 + CsA

potentiated the anti-tumor effect of DOX and inhibited or

hindered the development of KB-V1 Pgp+ tumors in vivo (Fig. 4).

At the same time, DOX treatment alone did not have a significant

effect on the size of the KB-V1 tumors. These data are in line with

the conclusions of our previously published in vitro and in vivo
drug accumulation studies [22] and with the results of the in vitro
cytotoxicity measurements shown in Fig. 1. Although these

observations may suggest that the dramatic antitumor effect of

the combined treatment is the result of increased antibody binding

with consequential Pgp inhibition and DOX accumulation, the

mechanism proved more complex.

SCID mice have intact complement system as well as

functioning macrophages, natural killer cells and polymorphonu-

clear cells [32]. Therefore, antibody binding to the tumor cells

may elicit cytotoxicity directly through complement binding

(complement-dependent cytotoxicity, CDC) or indirectly, via the

recruitment of the above effector cells to the antibody covered

tumor cells (antibody-dependent cell-mediated cytotoxicity,

ADCC). The possibility, that immunological factors contribute

to the cytotoxic effect of our treatment protocol is strongly

supported by the difference between the outcomes of in vitro
cytotoxicity measurements and of the in vivo experiments

conducted in SCID mice (compare Fig.1 and Fig. 4). In the in
vitro cytotoxicity assay, UIC2 alone only mildly aggravated DOX

cytotoxicity (see Fig. 1) what could be explained by the trapping

and inhibition of only a small fraction of cell surface Pgps by UIC2

in the absence of CsA [22]. In contrast, we experienced in vivo a

marked decrease of tumor size in response to the DOX+UIC2-

only treatment, as the average weight of the KB-V1 tumors was

approx. 4 fold smaller compared to the animals treated with DOX

alone (Fig. 4A). These data are in line with the positive results of

our in vitro ADCC assays (Fig. 6), supporting the notion that the

UIC2 mAb also induces ADCC in vivo in the SCID mice.

The involvement of ADCC in the in vivo anti-tumor effect of

UIC2 treatment is an unexpected finding of our experiments, since

IgG2 antibodies are mostly inefficient at supporting effector

functions and are chosen for antibody therapy when effector

functions are unnecessary or undesirable [33]. However, there is

an example [34] when the antitumor and antimetastatic effects of

two IgG2 isotye anti-Pgp antibodies (the mouse-human chimeric

Ab (MH162) and its mouse counterpart (MRK16)) was attributed

Figure 4. Effect of treatment with DOX combined with UIC2
and/or a low dose of CsA on the weights of the grafted tumors
(A) and on the percentage of the detectable tumors in the
different treatment groups (B). Tumor weights were expressed as a
percentage of the average weight of the tumors of untreated animals
measured at the time of the termination of the experiment (mean
values 6 SEM, n = 8). Statistically significant differences relative to the
untreated control and the DOX-only treated groups are marked with *:
P,0.05; **: P,0.01; ***: P,0.001). Grey bars: KB-3-1 (Pgp-) and empty
bars: KB-V1 (Pgp+) tumors.
doi:10.1371/journal.pone.0107875.g004

Figure 5. Effect of the UIC2 mAb treatment on the in vitro
viability of KB-3-1 (Pgp-; grey bars) and KB-V1 cells (Pgp+;
empty bars) in the presence or absence of 1 mM CsA. Cell
viability was expressed as percentage of the untreated control. Values
are means (6 SD) of three independent experiments.
doi:10.1371/journal.pone.0107875.g005
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to ADCC. Similarly, it was proven in a recent study that a human

IgG2 isotype mAb specific for epidermal growth factor receptor

effectively triggers ADCC by recruting monocytes and neutrophils

[35] via FccRIIa binding [36,37]. Since IgG2 isotype antibodies

do not trigger natural killer cell mediated ADCC [35], therefore in

our in vitro ADCC experiments carried out with PBMCs cell

killing was mediated by monocytes. Since SCID mice also have

monocytes [32] the same mechanism is functional and probably

explains our in vivo results.

The strong anti-tumor effect of the combined treatment might

be attributed exclusively to ADCC triggered by the UIC2 mAb

binding. However, the fact that the extents of the in vitro ADCC

effects were indistinguishable in the presence of UIC2 or UIC2+
CsA suggests that binding of the antibody to a small fraction of the

cell surface Pgps (20-40%) is sufficient to induce a maximal ADCC

effect (Fig. 6A). Consequently, the differences in the size of the

KB-V1 tumors between the UIC2 and UIC2+CsA treated animals

and the lack of the KB-V1 tumors in 52% of these animals (Fig 4A
and B) argue against the above assumption and suggests that the

stronger Pgp inhibitory effect of the UIC2+CsA combination

mediates the anti-tumor effect at least in part. Pgp inhibition by

the antibody requires saturating antibody concentrations that

seems to be reached in our experiments, since strong UIC2

staining and a two fold increase in the accumulation of a Pgp

substrate daunorubicin was measured in the tumor sections

prepared from the tumors 8 hours after the injection of UIC2

and CsA [22] added at similar conditions. Taken together, our in
vitro and in vivo data suggest that strong anti-tumor effect can be

reached by the combinative treatment studied, as a joint result of

Pgp inhibition and ADCC. However, the relative contribution of

these mechanisms to the anti-tumor effect of the UIC2 mAb is not

known.

ADCC can be triggered at relatively low receptor occupancy by

the antibody or at low receptor abundance [35,38]. Thus, the 60

fold increased Pgp expression level of the KB-3-1 tumors

compared to the KB-3-1 cells (see Fig. 2.) is probably sufficient

to trigger ADCC effect, when the Pgp molecules are saturated by

the antibody in the presence of CsA. In line with this assumption

in 52% of the DOX-UIC2-CsA treated animals we could not

detect KB-3-1 tumors, while they appeared in all of the DOX or

DOX+UIC2 treated animals (see Fig. 4B).

It could be a limitation of our study that only one cell line pair

was used in the experiments. However, the observed effects have

been proven to be Pgp specific, since decreased tumor size was

detected exclusively in those animal groups that received UIC2

mAb treatment. In addition, in our previous studies we compared

the KB-V1 cell line with mdr1 transfected NIH 3T3 murine

fibroblast cells [22], and Pgp+ A2780AD ovarian carcinoma cells

[23] and found them equivalent in every aspect of their multidrug

resistant phenotype including the inhibition of Pgp-mediated drug

transport by UIC2 mAb. On the other hand, ADCC effect is not

dependent on the tissue origin of the target cells; rather it is

determined by the interaction between the Fc part of the antibody

and the Fc receptor of the effector cells.

Doubts about the possible clinical application of an anti-Pgp

mAb based tumor therapy are related to the likely side effects that

Figure 6. Antibody-dependent cell-mediated cytotoxicity (ADCC, panels A and B) and complement mediated lysis (CDC, panels C and
D) induced by UIC2 mAb treatment in vitro. In the ADCC assay KB-V1 (A) and KB-3-1 (B) tumor cells were labeled with CFDA-SE then mixed with
PBMCs freshly isolated from peripheral blood at different target to effector cell ratios. Samples were treated with 10 mM CsA (#), 20 mg/ml UIC2 mAb
(&), 10 mM CsA and 20 mg/ml UIC2 mAb (%) or buffer (N). After 8 h incubation at 37uC, samples were stained with PI and analyzed by flow
cytometry. In the CDC assay, cells were incubated with human serum at different dilutions for 4 h. Inset of panel C: Hemolytic effect of the serum (m)
and of heat inactivated serum (n) on sensitized sheep red blood cells served as positive and negative control, respectively. The percentages of killed
cells were calculated as described in Materials and Methods. Values are means (6 SD) of four independent experiments, ***P,0,001.
doi:10.1371/journal.pone.0107875.g006
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may arise as a result of either Pgp inhibition or ADCC, both

exerted on cells expressing Pgp at physiological barriers of the

body. For instance, inhibition of Pgp expressed in the blood-brain

barrier may lead to increased accumulation of its substrates in the

central nervous system leading to neurotoxicity, as it was

experienced in mdr1a/b knock-out mice [8]. However, adminis-

tration of Pgp modulators in clinical trials does not seem to cause

toxicity to the central nervous system [39] probably because other

ABC transporters (e.g. MRP1, BCRP1) may compensate for the

loss off Pgp’s gatekeeper function in the blood-brain barrier

[40]. However, in contrast to Pgp inhibition, ADCC may

damage the tissues at the physiological Pgp expression sites. Our

in vitro assays using human PBMCs confirmed that UIC2 mAb

effectively triggers ADCC. Since ADCC is mediated via the Fc

portion of the antibody, to avoid this side-effect upon human

applications the whole UIC2 antibody could be substituted for

by its Fab fragments (that behave very similarly to whole

antibodies in vitro; our unpublished data) or upon humanization

of the antibody its effector functions may be fine-tuned by the

design of the Fc part [33]. However, it remains to be studied if

inhibition of Pgp function alone may augment DOX cytotox-

icity sufficiently enough for a therapeutically significant anti-

tumor effect.

The UIC2 mAb does not bind to mouse Pgp [14], therefore the

SCID mouse model system is not applicable for studying the

possible side effects brought about by antibody binding to

physiological Pgp expression sites. Since the UIC2 mAb also

recognizes primate [14] and sheep [41] Pgp, such animal models

may be used for the evaluation of the feasibility of the strategy

demonstrated herein. Direct injection of the antibody into the

tumor tissue may also be tested for the purposes of reducing

antibody dose and decrease systemic side effects.

In our model system, treatments were applied shortly (four days)

after injection of the tumor cells, when the tumors were still rather

small, a situation perhaps analogous to the clinical setting when

systemic therapy is applied to prevent or hinder the development

of multidrug resistant primary or metastatic tumors.

Each multidrug resistant tumor may have a unique signature

of resistance mechanisms. Consequently, cancer therapy will

need to be personalized, not only with respect to the

mechanisms of malignant transformation but also regarding

the mechanisms of resistance [42]. The strategy of Pgp

inhibition demonstrated herein is offered to enrich the repertoir

of possible protocols that can be considered for the treatment of

multidrug resistant tumors, once humanized UIC2 becomes

available.

Supporting Information

Figure S1 In the ADCC assay KB-V1 (panels A, B, C) and
KB-3-1 (D, E, F) tumor cells were labeled with CFDA-SE,
then mixed with PBMCs freshly isolated from periph-
eral blood at 1:5 (B, E) or 1:100 (C, F) target to effector
cell ratios. Samples were treated with 20 mg/ml UIC2 mAb.

After 8 h incubation at 37uC, samples were stained with PI and

analyzed by flow cytometry. Green gates mark living target cells,

while red gates show dead target cells.

(TIF)

Figure S2 Flow cytometric analysis of Pgp, ABCG2 and
MRP1 expression in KB-V1 (A, C, E) and KB-3-1 (B, D, F)
cell lines applying indirect immunofluorescence stain-
ing by CFL647-conjugated GaMIgG. Pgp was detected by

15D3 mAb, while ABCG2 and MRP1 (ABCC1) were labeled by

5D3 and QCRL-3 mAbs, respectively. Grey filled histograms

show antibody untreated cells, while dashed lines represent

samples treated with secondary antibody only. The ABCG2

positive MDCK ABCG2 cells (G) and the MRP1 (I) expressing

GLC4-ADR cell line and their nonexpressing counterparts (H and

J) were used as controls. The GLC4 human small cell lung

carcinoma cell line pair was a kind gift from Pinedo HM

(Department of Medical Oncology, Academic Hospital Vrije

Universiteit, Amsterdam), while the MDCK (Madin-Darby canine

kidney) cell line and its ABCG2 transfected counterpart was kindly

provided by Sarkadi B (Biomembrane Institute of Molecular

Pharmacology, Budapest)

(TIF)

Figure S3 Pgp expression of KB-V1 (A) and KB-3-1 (C)
tumor xenografts visualized by indirect immunofluores-
cence. Panels (B) and (D) are phase contrast images of the same

tumor slices. The 5 mm thick cryosections were fixed in acetone,

labeled with UIC2 mAb followed by A488-GaMIgG at room

temperature for 60 min.

(TIF)
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TM ZTK GT IL IJ. Performed the experiments: G. Szalóki ZTK LV AGS
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