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Abstract

Background: Angiotensin II (AngII) participates in endothelial damage and inflammation, and accelerates atherosclerosis.
Endothelial lipase (EL) is involved in the metabolism and clearance of high density lipoproteins (HDL), the serum levels of
which correlate negatively with the onset of cardiovascular diseases including atherosclerosis. However, the relationship
between AngII and EL is not yet fully understood. In this study, we investigated the effects of AngII on the expression of EL
and the signaling pathways that mediate its effects in human umbilical vein endothelial cells (HUVECs).

Methods and Findings: HUVECs were cultured in vitro with different treatments as follows: 1) The control group without
any treatment; 2) AngII treatment for 0 h, 4 h, 8 h, 12 h and 24 h; 3) NF-kB activation inhibitor pyrrolidine dithiocarbamate
(PDTC) pretreatment for 1 h before AngII treatment; and 4) mitogen-activated protein kinase (MAPK) p38 inhibitor
(SB203580) pretreatment for 1 h before AngII treatment. EL levels in each group were detected by immunocytochemical
staining and western blotting. HUVECs proliferation was detected by MTT and proliferating cell nuclear antigen (PCNA)
immunofluorescence staining. NF-kappa B (NF-kB) p65, MAPK p38, c-Jun N-terminal kinase (JNK), extracellular signal-
regulated kinase (ERK) and phosphorylated extracellular signal-regulated kinase (p-ERK) expression levels were assayed by
western blotting. The results showed that the protein levels of EL, NF-kB p65, MAPK p38, JNK, and p-ERK protein levels, in
addition to the proliferation of HUVECs, were increased by AngII. Both the NF-kB inhibitor (PDTC) and the MAPK p38
inhibitor (SB203580) partially inhibited the effects of AngII on EL expression.

Conclusion: AngII may upregulate EL protein expression via the NF-kB and MAPK signaling pathways.
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Introduction

Activation of the renin-angiotensin system strongly promotes

inflammation in the arterial wall, and has been shown to

accelerate atherosclerosis in both mice and humans [1–4]. AngII

is the most well-described and most active component in the renin-

angiotensin system. Recent studies have shown that AngII has also

non-hemodynamic effects, such as prothrombotic activity. Several

studies suggest that AngII influences fibrinolysis [5–8], coagulation

[9,10] and platelet activation [11–14], which can promote

thrombosis. Moreover, Mogielnicki et al. found that AngII may

enhance venous thrombus formation in vivo [15]. AngII is also

a direct vasoconstrictor, constricting arteries and veins leading to

increased blood pressure and contributing to atherosclerosis [16–

19].

Endothelial lipase (EL), which belongs to the lipase family, is

a key enzyme with phospholipase activities that plays very

important roles in the metabolism of HDL [20]. The other

functions of EL include increasing the uptake of apolipoprotein B

by endothelial cells and the adhesion of monocytes and

macrophages to endothelial cells [21]. Animal studies have shown

that overexpression of EL decreases the atherosclerotic plaque

area in apo-E knockout mice [22]. Consequently, EL expression is

closely linked with the pathogenesis of atherosclerosis. EL

expression is subject to many factors, and can be increased by

shear forces that induce inflammation and blood pressure [23,24].

However, the precise mechanisms that underlie the regulation of

EL expression are not fully elucidated.

NF-kB is found in many types of cells and is involved in cellular

responses to various stimuli, such as stress, cytokines, oxidized low-

density lipoproteins and bacterial or viral antigens [25–29]. NF-kB
also plays a key role in inflammatory diseases, including

atherosclerosis [30].

The MAPK superfamily comprise four subfamilies: C-JunN

terminal kinase stress-activated protein kinases (JNKs/SAPKs),
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ERKs, big mitogen-activated protein kinase I, and MAPK p38.

MAPK p38 is involved in directing cellular responses to various

stimuli and in the regulation of cellular processes, such as

proliferation and differentiation, cell survival and apoptosis

[31,32]. The inhibition of MAPK p38 has been shown to act as

a clinical intervention in chronic obstructive pulmonary disease

[33].

次Recent studies have shown that the blockade of NF-kB
expression can inhibit EL expression, and the authors suggested

that EL gene expression may be regulated by NF-kB [34]. The

aim of this study was to investigate the effect of AngII on EL

expression in HUVECs cultured in vitro and the possible signaling

pathways that mediate this effect. Before AngII treatment,

HUVECs were pretreated with inhibitors of either NF-kB or

MAPK p38 to explore the molecular mechanisms that underlie

this process. The protein levels of other MAPK superfamily

members, JNK, ERK, and p-ERK, were also detected by western

blotting.

Materials and Methods

Reagents
AngII, endothelial cell growth factor (EGF) and a protease

inhibitor cocktail were purchased from Sigma (St. Louis, MO,

USA); anti-JNK rabbit primary antibody, anti-ERK and anti-p-

ERK mouse primary antibody, MTT assay kits, the NF-kB
inhibitor (PDTC), the MAPK p38 inhibitor SB203580, RIPA

Lysis Buffer, BCA Protein Assay kits were purchased from

Beyotime (Beijing, China); phosphate buffer solution (PBS), trypsin

and M199 media were from Hyclone (Logan, UT, USA); The

rabbit polyclonal anti- EL primary antibody was from Cayman

Chemicals (Ann Arbor, MI, USA); anti-von Willebrand factor

(vWF, also known as factor VIII-related antigen) mouse mono-

clonal primary antibody was purchased from Abcam Inc. (Cam-

bridge, MA, USA); anti-PCNA mouse primary antibody, anti-

MAPK p38 rabbit primary antibody, anti-NF-kB p65 rabbit

primary antibody, the rabbit IgG-immunohistochemical SABC

kit, the DAB (diaminobenzidine) kit, FITC- and TRITC-

conjugated anti-mouse IgG and the monoclonal anti-b-actin
mouse primary antibody were purchased from Zhongshanjinqiao

Biotechnology (Beijing, China); fetal bovine serum (FBS) was from

Yuanpeng Biotech Co. (Jinan, China); penicillin was from North

China Pharmaceutical Co. (Shijiazhuang, China); and streptomy-

cin was from Merro Pharmaceutical Co. (Dalian, China). PVDF

membranes were from Millipore (Millipore Corp, MA, USA).

Electrochemiluminescence kits were from Amersham (Amersham

Life Sciences Inc., IL, USA).

Ethical approval
This study was conducted on the approval of Ethical Committee

at the school of Medicine, Shandong University (Permit Number:

200800243). Written informed consent for the donation of the

umbilical cords used in this study was obtained from all patients.

Cell culture
HUVECs were established from a 15-cm length of umbilical

cord. Briefly, the umbilical vein was washed inPBS solution for

5 min. Subsequently, 0.25% trypsin-EDTA (0.02%) was injected

into the lumen of the umbilical vein and allowed to digest for 10–

15 min at room temperature with gentle shaking to allow full

contact of the enzyme with the vascular wall. The solution was

then collected in a 50 ml tube and centrifuged at 8886g for 10

minutes. The supernatant was removed and cells were resus-

pended at 36105 cells/ml in 20% FBS cell culture medium (M199

+ 20% FBS +100 U/ml penicillin +100 U/ml streptomycin

+3 ml/ml EGF). The cell suspension was transferred to a 6-well

culture plate (66105 cells/well) and incubated in a saturated

humidity, under 5% CO2 in a 37uC incubator. The medium was

changed every 2 or 3 days. Cells were passaged at 80–90%

confluence and the passaged cells were subsequently incubated in

10% FBS culture media. The purity of HUVECs (at .80%

confluence) was determined by the immunofluorescent staining of

vWF.

Cell treatments
Cells were divided into three groups and treated after the third

passage. The groups were treated as follows: 1) control group,

without any treatment; 2) AngII (10 mmol/L); 3) PDTC

(10 mmol/L) pretreatment for 1 h + AngII (10 mmol/L); and 4)

SB203580 (10 mmol/L) pretreatment for 1 h + AngII (10 mmol/

L). Cells from each group were collected at 0 h, 2 h, 4 h, 8 h,

12 h, and 24 h after the initial treatments for further analysis.

Immunocytochemical staining
Coverslips coated with cells were washed in PBS. The cells were

then fixed in methanol: acetic acid (3:1) for 10 min and washed in

PBS. Then cells were immunoblocked with normal goat serum

and permeabilized in 0.01 M PBS containing 0.3% Triton X-100

at RT for 1 h. Cells were incubated with primary antibodies for

the detection of EL (1:100) and PCNA (1:100) in a humidified box

at 4uC overnight. Cells were then incubated with biotin-

conjugated anti-rabbit IgG or TRITC-conjugated anti-mouse

IgG (for PCNA staining) at 37uC for 1 h. Cells were examined

using an Olympus U-LH100HG microscope (for PCNA staining)

directly or treated with SABC complex at 37uC for 1 h according

Figure 1. Immunofluorescence staining of vWF was performed to identify HUVECs cultured in vitro. The panels show immunostaining
of vWF (A) and DAPI staining of nuclei (B) with merged images (C). Almost all cells (.95%) were vWF-positive.
doi:10.1371/journal.pone.0107634.g001
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to the manufacturer’s instructions and immunoreactions were

visualized using the DAB kit. Cells were washed twice in PBS

between sequential steps of the procedure. Negative control

staining was performed with nonspecific IgG instead of the

primary antibody. Cells were counterstained with hematoxylin or

DAPI and finally sealed with neutral balsam or anti-fade (for

PCNA staining) and examined using an Olympus U-LH100HG

microscope.

Western blotting
EL, MAPK p38, NF-kB p65, JNK, ERK and p-ERK protein

levels in HUVECs were detected by western blotting. Briefly,

HUVECs in each group were harvested separately and washed in

cold PBS, and homogenized at 4uC in lysis buffer containing

10 mM Hepes pH 7.9, 10 mM KCl, 1.5 mM MgCl2, 0.1 mM

EGTA, 0.5 mM DTT, 10 mM b-glycerophosphate, 0.1 mM

sodium vanadate and a protease inhibitor cocktail. After 15 min

of incubation on ice, cell debris was removed by centrifugation at

15,0006g for 20 min at 4uC. Protein concentration was de-

termined by the BCA assay with BSA as a standard. Proteins were

separated on a 10% SDS-polyacrylamide gel, and then transferred

to a PVDF membrane. After blocking with 5% (w/v) fat-free milk

for 1 h at room temperature, the membranes were probed with

primary antibodies overnight at 4uC, followed by incubation with

peroxidase-conjugated IgG for 1 h at room temperature. The

interaction was monitored with an electrochemiluminescence kit.

Detection of b-actin was performed as a loading control.

MTT assays
The MTT assay is a colorimetric assay for assessing cell viability. It

was performed according to the instructions of the manufacturer.

Briefly, cells (3.06104/well) were grown in a 96-well flat-bottomed

culture plate at 37uC in a humidified atmosphere with 5%CO2. After

96 h, 10 ml of theMTT (final concentration 0.5 mg/ml) was added to

each well and the plate was incubated for a further 4 h prior to the

addition of 100 ml of formazan to each well. The plate was incubated

overnight and the absorbance of the samples at 570 nmwasmeasured

using a microtiter plate reader (BIO-RAD Model 680).

Statistical analysis
Densitometric evaluation of Western blot results was conducted

using the Quantity One software with b-actin as an internal

Figure 2. AngII treatment was shown to increase EL expression in HUVECs by immunocytochemical staining and Western blot
analyses. (A) Negative control and the immunocytochemical staining of EL at 0 h, 4 h, 8 h, 12 h and 24 h after AngII treatment. (B) EL expression
detected by western blotting at 0 h, 4 h, 8 h, 12 h and 24 h after AngII treatment. (C) Semi-quantitative analysis of the EL levels detected by western
blotting. Different symbols represent statistical significance (p,0.05).
doi:10.1371/journal.pone.0107634.g002

AngII Upregulates EL Expression via NF-kB and MAPK

PLOS ONE | www.plosone.org 3 September 2014 | Volume 9 | Issue 9 | e107634



control. Data were presented as the mean 6 standard deviation

(SD) of three separate experiments. Comparisons among groups

were conducted using one-way analysis of variance (ANOVA). If

the result of the ANOVA was statistically significant, then multiple

comparison tests between groups were performed using the

Student-Newman-Keuls (SNK) method. Results were considered

statistically significant at P,0.05.

Results

Isolation and identification of HUVECs
Immunofluorescence staining of vWF, which is specifically

expressed in blood vessel endothelial cells, was performed to

identify HUVECs. The results showed that the isolated cells were

almost all (.95%) vWF-positive (Fig. 1).

Addition of AngII increased the EL expression in HUVECs
After HUVECs were stimulated with AngII, EL expression

levels in different groups were assayed by immunocytochemical

staining and western blotting. The results showed that EL levels

increased significantly from 4 h after AngII treatment. The EL

levels persisted at significantly (p,0.05) high levels until 12 h after

treatment and then decreased to almost baseline levels at 24 h

after treatment (Fig. 2).

Addition of AngII promoted proliferation of HUVECs
In order to detect the effects of increased EL on HUVECs,

immunofluorescent staining of PCNA and MTT was performed to

detect the proliferative activity of HUVECs at 0 h, 2 h, 4 h, 8 h,

12 h, and 24 h. The results showed that increased EL promoted

HUVEC proliferation (Fig. 3).

Addition of AngII increased MAPK p38 and NF-kB p65
expression in HUVECs
To investigate the possible signaling pathways that mediate the

function of AngII, expression levels of MAPK p38 and NF-kB p65

were detected by western blotting at 0 h, 4 h, 8 h and 12 h. The

results showed that both MAPK p38 and NF-kB p65 expression

levels increased significantly at 4 h, 8 h, and 12 h compared to

those detected at 0 h (Fig. 4).

Figure 3. AngII treatment promoted proliferation of HUVECs. AngII treatment was shown to promote HUVEC proliferation by
immunofluorescence staining of PCNA and MTT assays. (A) Immunofluorescence staining of PCNA of HUVECs in each group. (B) Semi-quantitative
analysis of the immunofluorescence staining of PCNA. (C) Shows the statistical analysis of MTT assays for each group. Different symbols indicate
statistical significance (p,0.05).
doi:10.1371/journal.pone.0107634.g003
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Figure 4. AngII treatment was shown to increase NF-kB p65 and MAPK p38 expression in HUVECs by western blotting. (A) MAPK p38
and NF-kB p65 expression levels detected by western blotting. (B) Semi-quantitative analysis of the NF-kB levels detected by western blotting. (C)
Semi-quantitative analysis of the MAPK p38 levels detected by western blotting. Different symbols indicate statistical significance (p,0.05).
doi:10.1371/journal.pone.0107634.g004

Figure 5. Blockade of NF-kB p65 or MAPK p38 was shown to decrease EL levels in HUVECs by western blotting. (A) EL expression levels
in different groups detected by western blotting. (B) Semi-quantitative analysis of the EL levels detected by western blotting. * Indicates statistical
significance (p,0.05).
doi:10.1371/journal.pone.0107634.g005
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NF-kB inhibitor PDTC or MAPK p38 inhibitor SB203580
inhibited the EL increase induced by AngII in HUVECs
In order to determine if the increase of EL in HUVECs induced

by AngII is mediated by MAPK p38 or NF-kB p65, HUVECs

cultured in vitro were pretreated with inhibitors of MAPK p38 or

NF-kB for 1 h before AngII treatment. Cells were harvested at

0 h, 4 h, 8 h, 12 h and 24 h after AngII treatment and EL

expression levels were detected by western blotting. The results

showed a significant reduction in EL levels at 4 h, 8 h and 12 h in

the PDTC + AngII and SB203580 + AngII groups compared to

that detected in the AngII treated group (Fig. 5).

Addition of AngII increased JNK and p-ERK expression in
HUVECs
To investigate whether JNK and ERK were involved in the

increased expression of EL regulated by AngII, expression levels of

JNK, ERK and p-ERK were detected by western blotting at 0 h,

4 h, 8 h, 12 h, and 24 h. The results showed that both JNK and p-

ERK expression levels increased significantly at 4 h, 8 h, and 12 h

compared to those detected at 0 h, ERK protein levels did not

change significantly (Fig. 6).

Discussion

EL was discovered in 1999 as part of the triglyceride lipase

family of genes [20]. EL has an essential phospholipase activity

and is a critical enzyme in HDL metabolism [35]. The plasma

HDL concentration is significantly increased in EL gene knockout

mice and EL overexpression markedly reduces HDL plasma levels,

which is an independent risk factor for atherosclerosis [36]. Fang

et al. found increased EL expression in vascular endothelial cells of

patients with coronary heart disease, and this increase was shown

to correlate with the severity of the clinical syndrome and the

increasing coronary risk scores[37]. Furthermore, polymorphisms

of the gene that encodes EL may be related to the progression of

acute coronary syndrome [38,39].

Atherosclerosis is a chronic inflammatory disease, characterized

by the interaction of inflammatory mediators and cytokines with

the vascular endothelium. In 2000, the first report was published

showing that interleukin-1b and tumor necrosis factor alpha

(TNFa) upregulate the mRNA expression of EL in HUVECs in

vitro [24]. Jin et al. [23] confirmed that this finding was partially

mediated through the NF-kB pathway. Badellino et al. [40] and

Paradis et al. [41] found that high-sensitivity C-reactive protein,

soluble tumor necrosis factor-receptor, soluble intracellular adhe-

sion molecule, IL-6 and other cytokines are positively correlated

with EL levels. Additionally, vascular pressure and shear forces on

vascular walls increase the risk of atherosclerosis, decrease levels of

HDL and increase the transcription of EL [42]. In the current

study, our results showed that AngII stimulation increased EL

expression between 4 h and 12 h after treatment, with the highest

level at 8 h. Thus, our results further confirmed the positive

correlation between AngII and EL levels in HUVECs cultured in

vitro as well as the time-dependent effects of AngII on EL

expression. Increased EL promoted the proliferative activity of

Figure 6. AngII treatment increased JNK and P-ERK expression in HUVECs by western blotting. (A) JNK and P-ERK expression levels. (B)
Semi-quantitative analysis of the JNK levels. (C) Semi-quantitative analysis of the levels. Different symbols indicate statistical significance (p,0.05).
The same symbols or no symbols indicate no statistical significance (p.0.05).
doi:10.1371/journal.pone.0107634.g006
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HUVECs and may contribute to the pathogenesis of atheroscle-

rosis, which is in accordance with our previous report [43].

NF-kB is an important transcriptional regulatory factor. When

cells are stimulated by various cytokines, NF-kB is activated and

enters the nucleus where it combines with specific DNA motifs and

stimulates the expression of various genes. Physical factors such as

shear stress can also activate NF-kB and then promote secretory

functions of vascular endothelial cells [44]. Chromatin immuno-

precipitation and electrophoretic mobility shift assays have

revealed that the EL gene has five NF-kB binding sites [45]. In

this study, endothelial cells were pretreated with an inhibitor of

NF-kB (PDTC) and were then stimulated by AngII. EL expression

was significantly reduced, which suggested that EL expression is

regulated by AngII through the NF-kB signal transduction

pathway.

The MAPKs constitute the components of a cascade of

reactions that are some of the most important intracellular signal

transduction pathways. They respond to a wide range of

extracellular stimuli and have been associated with endothelial

dysfunction, inflammation, hypertension and vascular remodeling

[46–49]. The MAPK superfamily comprise four subfamilies:

JNKs/SAPKs, ERKs, big mitogen-activated protein kinase I and

MAPK p38. Paravicini et al. [50] determined that AngII

stimulation induces the expression of procollagenase I in rat

smooth muscle cells and accelerates vascular fibrosis. The

development of fibrosis can be ameliorated by the inhibition of

p38 MAPK by SB203580, which suggests that the signal is

transmitted via the p38 MAPK pathway. SB203580 inhibits

MAPK p38 selectively and has no significant inhibitory effect on

JNK/SAPK or ERK. Our current study showed that the

pretreatment of HUVECs with SB203580 also inhibited the

effects of AngII in promoting the expression of EL.

To investigate whether the JNK or ERK signaling pathways

were also involved in the increased expression of EL regulated by

AngII, the protein level of JNK and p-ERK were also detected by

western blotting. Chen Huan previously reported that AngII

treatment can increase the mRNA level of JNK in HUVECs [51].

Jun et al. reported that AngII induces p-ERK [52]. Our results

were in accordance with these previous findings.

Our findings therefore confirm that AngII regulates the

expression of EL via the NF-kB and MAPK signaling pathways.

This preliminary in vitro study suggests that both the NF-kB and

MAPK signaling pathways participate in the regulation of EL

expression and may therefore be linked to atherosclerotic risk.

Although these results cannot be extrapolated to in vivo situations,

this study provides evidence of a possible mechanism by which

AngII affects the EL expression in endothelial cells. We hope that

our study will provide the theoretical and experimental basis for

future preventative treatments that specifically target these factors.
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