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Abstract

Misspellings of organism scientific names create barriers to optimal storage and organization of biological data,
reconciliation of data stored under different spelling variants of the same name, and appropriate responses from user
queries to taxonomic data systems. This study presents an analysis of the nature of the problem from first principles, reviews
some available algorithmic approaches, and describes Taxamatch, an improved name matching solution for this information
domain. Taxamatch employs a custom Modified Damerau-Levenshtein Distance algorithm in tandem with a phonetic
algorithm, together with a rule-based approach incorporating a suite of heuristic filters, to produce improved levels of recall,
precision and execution time over the existing dynamic programming algorithms n-grams (as bigrams and trigrams) and
standard edit distance. Although entirely phonetic methods are faster than Taxamatch, they are inferior in the area of recall
since many real-world errors are non-phonetic in nature. Excellent performance of Taxamatch (as recall, precision and
execution time) is demonstrated against a reference database of over 465,000 genus names and 1.6 million species names,
as well as against a range of error types as present at both genus and species levels in three sets of sample data for species
and four for genera alone. An ancillary authority matching component is included which can be used both for misspelled
names and for otherwise matching names where the associated cited authorities are not identical.
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Introduction

The problem domain
Scientific names of organisms, together with the higher

taxonomic groups within which they are nested, represent the

key identifiers by which the bulk of the world’s biodiversity

information is organized and stored [1], yet in many cases they

may be unfamiliar and non-intuitive to spell, for example

Syzygotettix boettcheri, a grasshopper; Cirrhitichthys oxyrhynchos,
a fish. Misspellings of hard-to-spell names, or even of more

straightforward names (for example ‘Peneus’ for Penaeus, a

common marine crustacean genus) can easily occur and, if

undetected, lead to a variety of problems, including the failure to

retrieve correctly spelled stored (target) data because a search

(input) term is misspelled, or vice versa; stored data in one list or

system not correctly matched with equivalent data in another

because the spellings used are not identical; a single entered search

term may not retrieve all relevant data where the latter is stored

under a range of spelling variants; and in a data compilation,

multiple entries for the same data item may exist under variant

spellings where only one is desired, especially where the data have

been aggregated from multiple sources (the ‘merge-purge’ problem

[2]).

A number of taxonomic data systems currently offer some form

of near match searching facility, for example utilizing the long

established ‘Soundex’ phonetic algorithm [3], [4], [5]; a custom

phonetic algorithm herein designated the Rees 2001/2007 near

match algorithm [6], [7]; Levenshtein Distance [8]; versions of the

UNIX ‘agrep’ search tool [9], [10]; and n-gram similarity [11],

however to date, with the exception of an unpublished study by

Dalcin, 2005 [12], no comparison of the relative merits of any of

these approaches is available. In addition, algorithms of the

dynamic programming type such as edit distance (Levenshtein

Distance and related algorithms) or similarity measure (n-grams)

require designation of relevant thresholds to be used for

acceptance/rejection of particular names as candidate near

matches, choice of which can significantly affect associated

algorithm performance (see [12] and this study).

The present work examines the performance of selected

algorithms of the above types from first principles and in practice

using a range of real world misspellings of scientific names of

organisms drawn from a number of sources, tested against a

reference database containing over 465,000 correctly spelled genus

names and 1.67 million species names, and describes the

Taxamatch algorithm which is a composite approach designed

with the aim of providing optimal performance for near matching

of taxon scientific names. An authority comparison module is also

presented which computes numeric similarities between authori-

ties in the case that these are available for input and target names,

which can either be used within Taxamatch to assist in the

discrimination of likely true from false matches, or as a standalone

test for measuring authority similarity in other situations.

Near matching basics
The concept of near or inexact (‘fuzzy’) matching is well

established in the wider information retrieval/computer science
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domain, where it may also be known as ‘approximate string

matching’ or ‘string matching allowing errors’ (e.g. [13], [14]). In

essence, the near matching process comprises the identification of

data items (text strings) which are not identical but may be

permitted to differ up to a pre-set limit, which may for example be

determined by the number of characters which are different (the

edit distance approach) or by a computed similarity exceeding

some designated threshold according to a preferred metric. An

additional requirement might be the ability to distinguish between

likely true versus false hits of the same measured distance or

similarity, based on characterisation of real-world errors from the

domain in question, where appropriate training data is available.

Probably the most widespread application of near matching is in

the numerous spell checking applications developed either as

standalone programs or as integrated into a range of word

processing applications offering either spell checking of pre-

entered text or, in some cases, checking text as it is being typed.

However, such an approach is sub-optimal for purely taxonomic

data such as lists of scientific names of taxa, for the following

reasons among others:

N standard reference dictionaries contain largely plain text terms

(irrelevant in the present domain) and not taxonomic names;

while the latter could be added, and/or plain text terms

removed, the internal algorithms used in proprietary software

for near matching are not generally publicly disclosed and so

their performance cannot be assessed;

N scientific names of organisms have a formal internal structure

(for example, species names comprise a genus name followed

by a species epithet), thus an input genus name should not be

tested against a species epithet, and vice versa; in addition,

only epithets found in combination with a particular genus

should be tested;

N the lexical characteristics of scientific names and their most

common misspellings may differ from those of plain text. In

other domains such as census data [15], domain-specific

refinements have been introduced which substantially improve

the performance of near matching algorithms according to the

availability of training data, and the same should be possible

for scientific names, especially if lists of real-world misspellings

are available to assist algorithm development;

N algorithms for use with scientific names of organisms must be

scalable so that they perform acceptably against large reference

dictionaries containing (potentially) millions of correctly spelled

target names, for example the estimated 1.9 million valid

names for extant species [16], non-current names (synonyms)

and alternative combinations for the same (perhaps an

additional 100–200%, i.e. a further 2–4 million names), plus

several hundred thousand names for fossil species [17] as well

as those for taxa at higher ranks.

In addition, scientific names of organisms are frequently

supplied with an associated authority portion which itself may

require a degree of near matching, possibly using different

principles from those applied to the strictly ‘scientific name’

component/s.

The lexical nature of taxonomic names
The lexical nature of taxon scientific names offers some

guidance as to how a relevant spell checker might be designed,

in that (1) the names are latin in form and can possess some

unusual syllables/phonemes (atomic level phonetic units) such as

‘oe’, ‘ae’ as well as leading silent characters less frequently found in

plain text; (2) gender agreement of species epithets tends to

produce common endings of the form -us, -a, -um (e.g. see [18])

which are functionally interchangeable, and thus can be allowed to

be more ‘plastic’ than other portions of the word; (3) species

scientific names (other than viruses) are binomial in form,

comprising a genus followed by a species epithet (sometimes with

an interpolated subgenus) which can define a workflow for testing

these portions sequentially rather than as independent words; and

(4) a variety of semi-standardized qualifiers including ‘sp.’/‘spp.’

(for unspecified single or multiple species), ‘cf.’ (comparable

with…), ‘aff.’ (with affinity to…), ‘6’ or ‘x’ as hybrid prefixes,

and more, may be encountered in supplied scientific name strings

and may require to be catered for via a degree of pre-processing

prior to actual spell checking. In additional, taxon scientific names

are frequently associated with an authority (name of the scientist

responsible for originally publishing the name, together with the

year of publication, especially in zoology) which serves to

characterise a name more uniquely than the purely ‘scientific

name’ elements alone – for example Ficus Linnaeus, 1753 is a

plant genus (the fig tree) while Ficus Röding, 1798 is an animal

genus (marine gastropod) – and so a requirement also exists for

near as well as exact matching on the authority components where

these are available.

The logic of the version of Taxamatch which follows is shown

for matching of genus names (uninomials) and binomial species

names, with optional associated authorities, and can be extended

further as desired either for higher ranks (again as uninomials),

subgenera (treated as a second uninomial following genus rank), or

infraspecific taxa (treated as recursive epithets) with minimal

modification. To simplify matching operations for hybrids, in the

hybrid genus or hybrid epithet cases (examples: 6Agropogon P.

Fourn., Mentha 6smithiana R.A. Graham) it is simplest if the

hybrid symbol is removed prior to exact or near matching

operations and then added back as required following the match

process, while for hybrid formulae in which the parent taxa are

indicated separately (for example: Oenothera biennis L. 6 O.
villosa Thunb.) an appropriate parsing routine should be able to

separate the name elements belonging to each parent which can

then be individually matched against names in the target database.

The nature of spelling errors in plain text and in the
‘scientific name’ portions of taxonomic names

Kukich [19] classifies spelling errors into typographic errors,

cognitive errors and phonetic errors, where typographic errors

arise from motor coordination slips such as hitting an incorrect

key, or inadvertent omission, insertion, or reversal of typed

characters; cognitive errors result from a mis-apprehension of how

a word should be spelled; and phonetic errors are a subset of the

previous class in which similar-sounding but incorrect syllables or

phonemes are substituted for correct ones. To this list can be

added other types of error, including for example inadvertent

truncation (e.g. the final characters do not fit in a supplied text

entry box, or break over two lines in published text); optical

character recognition (OCR) errors, such as mistaking m for rn, f
for t, together with a similar class of errors arising from

transcription from handwriting; transmission/encoding errors,

such as those which arise due to incorrect character encodings,

for example non-ASCII characters such as those with diacritical

marks can frequently be represented differently in different

computer systems; and probably more.

In the context of taxon scientific names, such errors manifest

themselves primarily as either phonetic (soundalike) errors, for

example Peneus for Penaeus, forti for fortii, or non-phonetic (e.g.

mis-keying) errors such as Acropaginula for Arcopaginula,

flaveolata for faveolata, and so on. The special case of gender-
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specific endings for species epithets has been mentioned above,

with the consequence that, for example, Neocrex columbiana and

Neocrex columbianus can be treated as variant forms of the same

species name (the former correct, the latter incorrect, refer [20])

and should therefore be accommodated as such by a designated

‘taxonomic’ near match routine.

With regard to the potential magnitude of spelling errors,

Damerau [21] contended that around 80% of errors in his sample

of plain text misspellings affected a single character only (including

reversals) while the remaining 20% affected more than one

character and so should not be ignored for satisfactory error

correction performance. Kukich [19] mentions the belief that

errors infrequently affect the leading character of a word but

points to published studies in which the occurrence of such errors

varies from 1.4% to 15%, so the correct assignment of the leading

character cannot be automatically assumed (as it is, for example, in

the Soundex algorithm) without losing recall. Another potential

influence is that of word length, in that, for example, a 3-character

error might be tolerated in (say) a 10-character word but not in a

3-character word (or all such words would automatically match

each other, a clearly nonsensical result). There do not appear to be

previous studies addressing this issue in particular, however it

proves to be a useful consideration for the design rules of

Taxamatch as will be outlined below.

Algorithms to address the two main classes of errors introduced

above (phonetic versus non-phonetic) differ substantially in their

design and associated performance aspects. ‘Phonetic’ algorithms

rely in the main on the construction of a phonetic representation

or ‘key’ as a transformation of both input and available target

terms, and if the two keys match (but the terms are not identical)

then a phonetic match is reported. As an example, the character

‘h’ is frequently considered to be silent and might be dropped, and

‘i’ and ‘y’ may be considered phonetic equivalents, thus a phonetic

key for both the surnames ‘White’ and ‘Whyte’ might be the same,

e.g. represented as ‘WITE’ after transformation to uppercase (to

reduce mismatches due to case alone). This type of near match

lookup can be made very efficient ( = rapid) at search time by the

simple expedient of computing the phonetic keys for all target

terms in advance, leaving only the transformation of the input

term to be done at run time, followed by an exact match

comparison on the phonetic keys: this can operate very quickly,

being a standard data operation, especially in a database

environment with the facility to pre-index all terms in a separate

portion of the database structure for enhanced performance at

search time (for example refer [22]).

By contrast, non-phonetic algorithms rely almost exclusively on

some form of live dynamic programming activity (a series of

calculations to be executed at run time) since the exact relationship

between the two terms to be compared cannot usually be modelled

in advance. For example, implementation of the popular

Levenshtein Distance measure of edit distance involves the

creation and traversal of a 2-dimensional array of characters in

order to calculate the required distance [23], [24] which, although

quite fast for a single pairwise comparison, becomes slow to

execute against a set of thousands or potentially millions of stored

target names, especially in comparison to the near-instantaneous

result obtainable using a simple test to compare phonetic keys.

This, then, creates a problem for a comprehensive spell checking

solution which seeks to detect non-phonetic as well as phonetic

errors, since ideally we would like a result returned to a user

without undue delay (for example within seconds rather than

minutes or hours, even against a large reference dataset), and in

addition it is desirable to minimize the time it takes to deduplicate

a large system which involves testing all names against each other

(for example in a data system containing 2 million names this

would potentially require 4 billion pairwise comparisons).

Addressing the issue of algorithm execution time then becomes a

key consideration for the design of Taxamatch, as will be explored

further below.

Mismatches in the authority portions of taxonomic
names

As introduced above, near matching on the authority portion of

a taxonomic name may also be a design goal, which then requires

some exploration of the lexical characteristics of such authorities

and areas in which cited versions of essentially the same authority

can differ. Such differences may include abbreviation of an author

surname (as is common in botany), for example ‘L.’ versus

‘Linnaeus’; addition or omission of a publication year, for example

‘Röding’ vs. ‘Röding, 1798’; variation in citation format for

multiple authors, for example ‘Rees et al., 1974’ vs. ‘Rees, Leedale

& Cmiech, 1974’; inclusion or omission of author initials and/or

suffixes, such as ‘Loeblich’ vs. ‘A.R. Loeblich’ vs. ‘A.R. Loeblich,

Jr.’; variation in citing author teams with the same surname, such

as ‘H. & A. Adams’ vs. ‘H. Adams & A. Adams’; variability in

citation of a name ascribed to an author other than that of the

containing publication, for example ‘Prins, 1974’ vs. ‘Prins in

Grün et al., 1974’; variation in supplied diacritical marks, for

example ‘Müller’ vs. ‘Mueller’ vs. ‘Muller’, and more, in addition

to simple misspellings of author names analogous to those which

may be encountered in the scientific name portions. Such potential

differences are clearly much less straightforward than could be

reasonably treated by either a phonetic or an edit distance

approach as will be discussed for scientific names, and will

accordingly be approached via a different route (in fact,

combination of routes), as explained further below in step 8 of

the Taxamatch algorithm description section.

Selected algorithms and metrics for comparing text
strings

An overview of some commonly used phonetic algorithms in the

context of personal name matching is given in Christen [25]

including descriptions of Soundex, Phonex, Phonix, NYSIIS (New

York State Identification Intelligence System) and more. The

Soundex phonetic algorithm (and some of its derivatives) is,

however, fairly non-selective in two respects: first, a comparatively

large range of characters are equated for matching purposes (for

example in Soundex, all vowels are considered equivalent, as are

groups of somewhat similar sounding consonants such as c, g, j, k

and q), and second, the phonetic keys typically represent only the

leading 4–6 characters and the remainder of the word is

commonly ignored. For taxonomic names, neither of these

characteristics are considered to be ideal (with the potential to

lead to an elevated number of false positives) and so a custom

algorithm was created in 2001, further refined in 2007 (the ‘Rees

2001’ and the ‘Rees 2007’ phonetic algorithms described herein)

which undertakes a more controlled subset of phonetic substitu-

tions and in addition treats the entire word independent of length

(the Rees 2007 version also incorporating the gender normaliza-

tion rules for species epithets described above, which although not

strictly phonetic substitutions, can be implemented in an exactly

analogous manner). The Rees 2007 phonetic algorithm is also

deployed for specific tasks within Taxamatch, both to assist some

rapid pre-processing at both genus and species level, and to report

phonetic matches separately from non-phonetic ones according to

the principle that these may be more plausible where present. It

should be further noted that phonetic algorithms such as those

Taxamatch Near Matching of Scientific Names
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considered in this work are essentially Boolean (binary) in

operation: either two text strings are designated as a phonetic

match or they are not, giving a simple pass/fail result for tests of

this type, in contrast to the dynamic algorithms where varying

degrees of distance or similarity can be reported and used for

specific ranking and dynamic filtering purposes as desired.

Non-phonetic algorithms typically measure either distance (on a

scale 0-x, where 0 = identical and increasing values of x indicating

increasing dissimilarity) or similarity, typically reported on a 1–0

scale where 1 = identical and 0 = no similarity. Again, a good

summary of available metrics is found in [25] including the

distance measures Levenshtein or Edit Distance, Damerau-

Levenshtein Distance, Bag Distance and Smith-Waterman

Distance, with similarity measures represented by n-grams

(designated therein as q-grams), positional q-grams, skip-grams,

normalised compression distance (NCD), plus the Jaro, Winkler,

sorted-Winkler and permuted-Winkler similarity measures, while

other authors e.g. Cohen et al. [26] present yet more options

including Jaccard similarity, cosine similarity, Jensen-Shannon

Distance, Monge-Elkan similarity and more. Taking first the

distance measures, the simplest (Levenshtein Distance, after

Levenshtein [30], hereinafter abbreviated LD) measures single

character insertions, deletions and substitutions, each contributing

a distance value of 1 to a cumulative count: therefore the

Levenshtein Distance between Fucus and Ficus = 1 on account of

the single character substitution (of ‘i’ for ‘u’) being all that is

required to transform the first string into the second. LD however

does not account for transpositions (reversals), thus the edit

distance calculated as LD between ‘aslo’ and ‘also’ is 2 (two

independent substitutions), not 1 as might be preferred considering

that this can be better regarded as an error resulting from a single

motor coordination slip. For this purpose an extension of the LD

test has been introduced, first by Lowrance & Wagner [27] and

christened by subsequent workers the Damerau-Levenshtein

Distance (herein: DLD), which also recognises transpositions as

single character operations and accords them a weight of 1, the

same as a single insertion, deletion and substitution.

In the course of the present work, an analogous case was

encountered on a small number of occasions where the

transposition affects not one but two adjacent characters, for

example Panulirus vs. Palinurus, serratulus vs. serrulatus, each of

which examples would be accorded an undesirably large edit

distance (ED) of 4 under either the LD or DLD measure. To

compensate for this effect, an extension of DLD has been

developed for this work which is termed Modified Damerau-

Levenshtein Distance or MDLD, which recognises the case(s) of

multiple character transpositions (for example transposed 2- or 3-

character blocks) and accords them the weight of the length of the

transposed substring rather than double this number which would

be the case if all changes were treated as independent substitutions.

This MDLD measure is then placed at the core of the Taxamatch

algorithm where it is employed for the edit distance calculation at

both genus and species epithet levels.

Edit distance tests such as the above have been preferred for

Taxamatch comparisons involving the scientific name components

since errors in these elements appear to closely follow the principle

of a relatively small number of character insertions, deletions,

substitutions or transpositions as previously documented by

Damerau [21] for plain text and Dalcin [12] for taxonomic

names. By contrast, mismatches in supplied authorities have the

potential to involve much more than just a few isolated characters

and for this purpose any usable threshold of edit distance is likely

to be seriously inadequate, thus a measure which detects residual

similarities rather than differences is considered to be more

appropriate in this case. For this reason, an approach has been

constructed using the relatively well established similarity measure

n-grams which are short, overlapping substrings of both input and

target terms of length n characters, commonly used values of n
being 2 or 3, the n-gram similarity being computed as the ratio of

common n-grams between the terms to the mean number of n-

grams in each term. As an example, for n = 2 (bigrams), the word

‘Tony’ (converted for example into uppercase) contains the n-

grams ‘TO’, ‘ON’ and ‘NY’ while ‘Toby’ contains ‘TO’, ‘OB’ and

‘BY’, a similarity measure of 1 out of a possible 3 or 0.333.

However, closer inspection of this initial approach reveals that the

terminal characters ‘T’ and ‘Y’ are under-represented, appearing

in only one n-gram each, as opposed to the internal characters

which occur in multiple n-grams, therefore to remove this

discrepancy it has been suggested to pad both terms to be

compared with n21 blank characters prior to substring generation

(refer [28] and elsewhere). After such padding, with a blank

character indicated by * the string ‘Tony’ now has the bigrams

‘*T’, ‘TO’, ‘ON’, ‘NY’ and ‘Y*’ while ‘Toby’ has the bigrams ‘*T’,

‘TO’, ‘OB’, ‘BY’ and ‘Y*’ giving arguably a more ‘realistic’

calculated similarity of 3/5 or 0.6.

In contrast to edit distance measures, it will be apparent that

calculated similarities using n-grams or analogous measures are

typically word length dependent, in that a single character error in

a short word will tend to affect the calculated similarity more than

the same error in a longer word. N-grams will also be more

affected than edit distance measures (at least in the case of LD and

DLD) by transposed characters, since these will affect more

adjacent n-grams than simple substitutions, insertions and

deletions. Interestingly, bigrams turn out to be unaffected by

word order, in that the calculated bigram similarity between

‘Smith & Jones’ and ‘Jones & Smith’ is 1 since they contain exactly

the same bigrams once padding is introduced as discussed above

(this is not the case for padded trigrams, which return a similarity

value of 0.7333 for the same pair of terms). Accordingly, the

choice of which n-gram method(s) to employ will have some

implications when it comes to incorporation into relevant

comparison routines. (Additional similarity-based measures have

not been considered at this time since, in the present use case

which is for authority comparisons, n-grams appear to function

adequately to indicate a first-order similarity when two strings

have at least some character patterns in common).

One final comment which applies to the dynamic tests (edit

distance and n-gram measures in the present context) is that, in

addition to their overall slower execution time in practice as

discussed above, such tests will in general scale non-linearly in

execution time according to the mean length of input and target

terms: for example a set of 20620 characters (example binomial

length) will in principle require four times as long to compare as a

set of 10610 characters (example uninomial length) on account of

requiring four times the number of individual character-by-

character comparisons. Therefore, as will be shown in the next

section, an approach which tests the genus and species epithet

portions of a binomial name separately could potentially have a 2

times speed advantage over testing the entire name as a single

string.

Algorithm metrics and optimization potential
Maximizing recall: retrieving ‘all’ true matches. Within

the general domain of information retrieval, algorithm perfor-

mance is commonly assessed against three leading criteria: recall,

precision (these also being combined as effectiveness) and efficiency

[29], [30]. Recall is defined as the proportion of ‘relevant’

documents retrieved by a given query out of the number actually

Taxamatch Near Matching of Scientific Names
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present in the target data storage system, usually on a 0–1 scale. In

the present context the result in individual cases will by definition

be either 1 or 0, therefore to get a representative metric we will

calculate the value averaged over all queries in a given set,

calculated as a fraction of 1 where 1 indicates perfect recall

(correct target returned on 100% of occasions) and 0 indicates that

correct targets were never returned. In the case of the dynamic

algorithms where thresholds can be varied at will, it is of course

possible to obtain a recall value of 1 by simply setting relevant

thresholds to exceed the maximum distance (or minimum

similarity) present in the data. Such behaviour is represented in

Figure 1 which includes a representation of recall (as number of

true hits in this instance) in the dataset of misspelled species names

used as training data (further described in Materials and Methods):

in this case an edit distance of 4 (as either LD, DLD or MDLD) is

sufficient to return all designated ‘correct’ targets (at genus level

the equivalent value is 3), while for bigrams a similarity threshold

of 0.688 is sufficient to return all designated target species, and

0.667 for genera alone (for trigrams the equivalent values are

0.516 for species and 0.609 for genera). However, along with such

wide or relaxed thresholds, the contribution of false hits can

become enhanced as also visible from Figure 1, which therefore

requires a strategy to manage as described below.

Maximizing precision (minimizing false hits). Precision
is defined as the proportion of ‘true’ to ‘all’ hits present in the

returned near match set, which may conceivably contain a

percentage of false positives in addition to true hits, so the closer

this value can be made to 1 on a 0–1 scale, the better. Inspection of

Figure 1 indicates that false hits can be suppressed reasonably

effectively at narrower thresholds such as ED 1 and 2 (or similarity

thresholds of e.g. 0.8 and above), however performance degrades

at larger values of edit distance (or reducing similarity thresholds

for the n-gram based measures). As an operational strategy, one

option here might therefore to be to mimic what a human

operator might do faced with a potentially misspelled name: first

look for lexically close hits using a narrow threshold, and only

widen this in the case that no result is obtained. Such an approach

is incorporated into Taxamatch where it is designated result
shaping (in essence a type of dynamic filter), although as will be

explored further below there may be situations where this results in

some more distant desired true hits being suppressed and, for that

reason, it is suggested to make this facility a switchable option for

disabling in some circumstances only.

A second approach, also incorporated into Taxamatch, is to

attempt to reduce the false positives associated with any particular

threshold setting via additional filtering based on a suite of

Figure 1. Sample species-level algorithm performance (as true vs. false hits returned) with increasing threshold settings.
Performance of five dynamic algorithm variants using the CAAB expert misspellings species dataset at a range of thresholds. Horizontal alignment
and scales are chosen to emphasize general similarities in response patterns between otherwise different algorithms. Curves for LD and DLD lie under
that for MDLD where not visible.
doi:10.1371/journal.pone.0107510.g001
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heuristic rules designed to match the lexical characteristics in real

world sample data (see [31], [32], [33]) but in this case from the

domain of misspelled taxonomic names. To take a well known

example, one such rule, included in the Soundex and the Rees

2001 phonetic algorithms, is to require that the leading character

of input and ‘approved’ target terms must always match. However,

inspection of sample data indicates that this condition is not always

fulfilled. One might therefore experiment with modifying the

initial rule and mandate that where the leading character is

different, the final character (or multiple characters) must be the

same, and re-test using the sample data; this process is then

continued iteratively until a rule (or set of rules) is devised which

appears to suppress the maximum practicable proportion of false

hits without impacting negatively upon recall of true hits.

Application of this approach then leads to the creation of post-
filters following the edit distance test at both genus and species

epithet levels, which incorporate the relevant heuristic rules and

serve to enhance algorithm precision in each case. In fact, these

rules can be further divided into those which require the measured

edit distance to be known and those which do not: for example, if a

rule is based on observed lexical patterns such as substring

matching (possibly in conjunction with word length) independent

of measured edit distance, then term pairs which fail this rule need

never be tested by the computationally expensive dynamic term

comparisons but rejected at an earlier stage, i.e. incorporated into

relevant pre-filters as described in the next section.

Optimizing algorithm efficiency (reducing execution

time). In the domain of taxonomic names, reference target

compilations can be very large, for example at time of writing, The

Plant List [34] contains over 1 million names, while the Catalogue

of Life [35] and the Global Names Index [36] contain over 2

million and 17 million names, respectively. However, dynamic

processing algorithms are essentially slow: for example, the MDLD

comparison takes around 0.5 milliseconds per name pair (this

study) and on that basis would require 500 seconds (more than 8

minutes) to test a single input name against all targets in a

reference database of 1 million names, which is clearly undesirable

for live user queries in particular. It is therefore essential to

consider ways by which overall execution times per input query

can be reduced to an acceptable level (perhaps a second or two at

maximum), especially against large reference datasets. Potential

strategies to achieve shorter execution times include:

N selection of the fastest algorithm which possesses acceptable

precision:recall characteristics for the desired task;

N splitting binomial names into separate portions for testing,

which, for dynamic algorithms as mentioned above, will

typically lead to an improvement in individual processing time

even if the two tests are then summed;

N reducing the number of individual name pair tests to be

carried out, ideally without eliminating any desired true hits in

the process.

The first of these is revisited later in the section on ‘further

improving Taxamatch execution time’ but in the present context it

is preferred to use the algorithm which performs best against the

full range of error types encountered in real world misspellings of

taxonomic names, the MDLD test, as will be described further in

the experimental section. The second strategy is incorporated into

Taxamatch in that genus and species epithets are tested

individually, rather than as a combined text string. This then also

feeds into the third option which is to reduce the number of tests to

be carried out: if for example the ratio of species names held to

genera is in the order of 10:1 (in practice this might vary from

around 4:1 to 60:1 but the principle still holds), then testing the

genera first will reduce the number of initial tests considerably (e.g.

by up to 90%) and then the only species epithets to be tested would

be those associated with candidate ‘near match’ genera, a further

significant saving. In addition to the constraint just mentioned, the

set of names to be tested can be reduced still more by the addition

of pre-filters at both genus and species epithet levels, based on

logical principles. For example, if a maximum edit distance of 3 is

to be permitted in the genus match test, then it is unnecessary to

test target genus names greater than 3 characters shorter or longer

than the input genus since their edit distance can never be within

the permitted threshold (a minimum of 4 insertions or deletions

will always be required to make the two terms match); for

binomials the maximum permitted threshold is 4 so target epithets

more than 4 characters shorter or longer need not be tested. (In

practice, it is found that an even tighter threshold of 2 can be

employed in the genus pre-filter, provided that phonetic matching

is also permitted as an alternative which can bypass this threshold

as required). If we then add into the same pre-filters, those

heuristic filtering rules previously created which do not require

completion of the edit distance test, an even higher degree of

selectivity can potentially be achieved.

We can test the possible efficacy of such an approach by

inserting some hypothetical values into a sample workflow: let us

suppose a reference database contains 1 million species names

associated with 1,000 genera, of which only 100 genus names pass

the relevant genus pre-filter (a 90% selectivity) and are tested

against a given input name, and of these, 50 of these pass a genus

post-filtering stage and the remainder are rejected. These 50

‘candidate near match’ genus names have perhaps 500 species

epithets associated with them of which 50% are rejected by a

species pre-filter, leaving 250 to be tested before the overall result

set is returned. In all we have then tested only 100 genus names

and 250 epithets, a total of 350 tests as opposed to the original 1

million species names which would be tested in the naı̈ve/brute

force case, a saving of over 99.96% (some comparable real test

data are supplied later in this study). Furthermore, the individual

tests are carried out on shorter text strings (either a genus or

species epithet alone) than on the full binomial, an additional

potential 50% time saving owing to the quadratic penalty

associated with increasing word length.

Additional components for a total solution
Combining the elements above produces the core of a workflow

for comparing taxonomic names, but some additional elements are

still required, as follows:

N an initial pre-processing step of name parsing and normaliza-
tion may be necessary (unless the name elements are already

atomized and normalized). Name parsing in this context

means analysing the supplied input term and atomising the

relevant portions corresponding to genus, specific epithet

(where supplied) and authority (also where supplied) for

separate treatment within the algorithm workflow, also

allowing for the possible presence of rank indicators, subgenera

in parentheses, and any stray text which is not strictly a portion

of the taxonomic name.

N an authority comparison stage is provided, for reasons stated

above. In the present suggested workflow this is applied once

the set of near match scientific names has been generated in

order to avoid undue computation, and can be implemented at

either genus or species level according to the rank for which

the authority is supplied, although as desired it might be

applied to a wider set of names for other purposes;
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N a ranking step is typically useful, for example it may be desired

to rank the results by edit distance in the case that multiple

near matches are available, and/or present phonetic matches

separately from the others. As an alternative, it may be desired

to present hits with the best authority match as the leading

candidate, where such information is available for both input

and target terms.

Combining all the elements described above it is possible to

produce an ‘ideal’ algorithm workflow which is presented in

Figure 2, and is used for the design of Taxamatch; details of

operations presented as numbered steps 0 to 9 are described in the

next section. For simplicity, only the available target genus names

are shown as an input to the genus test although in practice, some

reference to their associated species is also required as an input to

the genus pre-filter. The main dynamic programming comparison

of both genera and species is undertaken using the relatively

expensive MDLD test but the cost of this is mitigated considerably

by the operation of the genus and species pre-filters as described in

the previous section.

Taxamatch Algorithm Description

The main Taxamatch algorithm is presented below. The pre-

processing (parsing and normalization) stage is presented as an

(optional) ‘step 0’, since this may not always be required as a part

of normal Taxamatch operation: for example in the case of

internal deduplication or comparison of already well structured

data such steps will potentially already have been applied, and in

the author’s system they are incorporated in all cases as a

precursor to exact matching and need not be repeated for the near

match. Additionally, it is possible that name parsing might not be

undertaken within the Taxamatch workflow but by making use of

a separate module such as the Global Names Parser available from

[37].

Figure 2. Overall schematic of an optimized algorithm for comparing taxonomic names as described above and implemented in
Taxamatch.
doi:10.1371/journal.pone.0107510.g002
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Step 0: Pre-processing (name parsing and normalization)
As introduced above, the requirement for parsing is to identify

and then isolate the required name components for treatment by

relevant portions of the algorithm. As an example, from the input

name ‘Fagus sylvatica L.’ we would like to extract genus = Fagus,

species epithet = sylvatica, species authority = L. while from

‘Fagus sylvatica subsp. orientalis (Lipsky) Greuter’ (example given

in [37]) we would like genus = Fagus, species epithet = sylvatica,

subspecies = orientalis and subspecies authority = ‘(Lipsky)

Greuter’ (if matching were continued to subspecies level). Other

parsing actions which might be required include identifying

subgenus names where supplied (for example in parentheses

between a supplied genus and species epithet); identifying and

possibly removing qualifier (uncertainty) terms such as ‘cf.’, ‘aff.’

and ‘?’; stripping and/or replacement of stray HTML mark-up

such as ‘,i.’, ‘,/i.’, ‘ ’ (the latter to be replaced with an

ampersand); and dealing correctly with hybrid symbols and hybrid

formulae, as discussed above. A degree of normalization is also

desirable which might include transforming all scientific names to

uppercase, removal of hyphens and leading or trailing white space,

and replacing any accented characters or ligatures with their plain

ASCII equivalents (normalizing of authorities ideally has slightly

different requirements and is dealt here separately under step 8).

Whatever parsing and normalization routines are used, it is of

course required that they be applied consistently to both input and

target terms, and also that operations on the latter are preferably

carried out in advance (with suitable indexing applied) in order to

avoid undue performance penalties at query time.

Step 1: Genus pre-filter
For this step it is presumed that the target set of unique genus

names can be queried either as a real set (for example in a ‘genus’

table) or as a virtual set, i.e. the set of unique genus names forming

portions of species names in a list; in either case the intention is to

avoid testing the same genus name more than once, even though it

may be associated with multiple species. This step comprises 3

heuristic rules developed from training data, satisfying any one of

which is sufficient to pass the name to the next step for testing:

N EITHER: (Rule 1a) The genus portion of the input name and

the genus portion of the target name are a phonetic match, as

indicated by the ‘Rees 2007 near match’ algorithm described

herein;

N OR: (Rule 1b) The species epithet portion of the input name

and the species epithet portion of the target name are a

phonetic match (including allowance for possible gender

variation), AND the difference in (normalized) length of the

input and target genus names does not exceed 3 characters;

N OR: (Rule 1c) The difference in length of the input genus and

target name does not exceed 2 characters AND selected

substrings of the input genus name and target genus match

(variable according to word length as below), as follows:

# Minimum genus length (i.e., shorter of input and target

names) ,5 characters: require a match on EITHER the first

character OR the last character only;

# Minimum genus length 5 characters: require a match on

EITHER the first 2 OR the last 3 characters;

# Minimum genus length 6 characters and above: a match on

EITHER the first 3 OR the last 3 characters.

Step 2: Genus comparison
This uses the MDLD algorithm (refer File S2 for an

implementation in Oracle PL/SQL) to return the edit distance

(ED) between the input genus and every target genus name passing

the genus pre-filter. In addition, if either the genus or species

names are a phonetic match as determined in step 1, the latter

information is carried through to subsequent steps to be used as

required. In principle the MDLD algorithm can test for transposed

character blocks of any length; in practice, setting the maximum

allowable transposed block length to 2 characters returns all true

hits (with sample data) while permitting a shorter average

execution time.

Step 3: Genus post-filter
This comprises three heuristic rules as follows, again designed

using training data:

N Rule 3a: Genera with ED of 4 or above are discarded;

N Rule 3b: Remaining genera which are a phonetic match (on

the basis of the Rees 2007 phonetic algorithm) are automat-

ically accepted;

N Rule 3c: For remaining (i.e. non phonetic match) genera at

least 50% ‘good’ characters are required (i.e. a maximum of

ED 1 is permitted in a 2 or 3 character word, maximum ED 2

in a 4 or 5 character word, maximum ED 3 in a 6+ character

word), AND the initial character must match in all cases of ED

2 and above (other genera are discarded).

Note that Rule 3c is a compromise between the requirement for

leading characters to match in all cases (which is considered to be

too strict, refer present work and also [38]) and ignoring this

requirement altogether (which leads to an undue proportion of

false hits being included in the relevant result set). Rule 3b which

accepts phonetic matches will also allow through a subset of names

which do not strictly match on the leading character but which

sound equivalent, such as potential substitution of ‘PH’ by ‘F’, etc.,

at the word start.

At this point the genus portion of the input name (which may be

the only portion if no epithet is supplied) can, as desired, proceed

to result shaping, authority comparison if available, and ranking

which are described below in steps 7–9, while in the case of

binomial names, the species epithet is additionally passed to step 4.

Step 4: Species pre-filter
This comprises a single additional, length-based constraint (rule

4b) in combination with the hierarchical relation with genus

names as passed from step 3 (rule 4a):

N Rule 4a: Target species must be a child of one of the set of

genera passing the genus post-filter;

N AND Rule 4b: The difference in length of the input species

epithet and target epithet does not exceed 4 characters.

Step 5: Species comparison
This uses the MDLD algorithm to return the edit distance (ED)

between the input species epithet and every target epithet passing

the species pre-filter. In this case a maximum block limit of 4

transposed characters can be allowed since the number of epithets

to be tested by this stage as relatively small, as discussed above, and

execution time is not normally a limitation.

Step 6: Species post-filter
The following heuristic rules are applied in this step:
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N Rule 6a: The combined edit distance of genus and species

epithet must not exceed 4 (others are discarded);

N Rule 6b: Remaining epithets which are a phonetic match are

automatically accepted;

N Rule 6c: For remaining (i.e. non phonetic match) epithets at

least 50% ‘good’ characters are required (i.e. a maximum of

ED 1 is permitted in a 2 or 3 character word, maximum ED 2

in a 4 or 5 character word, maximum ED 3 in a 6 or 7

character word, maximum ED 4 in a 8+ character word),

AND:

# for all cases of [species epithet] ED 2 and 3 the initial

character must match;

# for all cases of [species epithet] ED 4 the initial 3 characters

must match.

Step 7: Result shaping
The basic principle of the result shaping step of Taxamatch is in

essence, to return ‘close’ near matches where present without

requiring to widen the threshold unduly (thereby reducing the

return of false hits in most cases), without losing the facility to

detect more distant hits in the case where closer ones are absent.

When result shaping is not required (the Taxamatch ‘no shaping’

mode) all near matches are reported and this step is omitted.

Otherwise with result shaping enabled, the following rules are

employed, with minor differences according to whether a genus

name or a species epithet is being treated:

N Rule 7a: Names at ED 0 are returned as exact matches

(alternatively they may already been identified via a separate

‘exact match’ pass, in which case they can be excluded from

consideration by Taxamatch at an earlier stage);

N Rule 7b:

# For species, names at ED 1 + ED 2 (including errors in both

genus and species epithet) plus phonetic matches are always

returned, where present;

# For genera, names at ED 1 plus any phonetic matches are

always returned, where present;

N Rule 7c:

# For species, names at ED 3 are only returned in the absence

of ED 1, ED 2 or phonetic matches;

# For genera, names at ED 2 are only returned in the absence

of ED 1 or phonetic matches;

N Rule 7d:

# For species, names at ED 4 are only returned in the absence

of ED 1, ED 2, ED 3 or phonetic matches;

# For genera, names at ED 3 are only returned in the absence

of ED 1, ED 2 or phonetic matches.

Step 8: Authority matching
8.1 The following authority-specific normalization steps are

recommended as pre-processing:

N normalize ‘et’ and ‘and’ to ampersand character (except in the

special case ‘et al.’ which is retained unchanged), also any

HTML equivalent i.e. ‘&’ becomes an ampersand;

N normalize presentation of white space after full stops in the

case of author initials (e.g. ‘F. J. R. Taylor’ becomes ‘F.J.R.

Taylor’, or vice versa);

N normalize presentation of commas before dates (e.g. ‘Taylor

1971’ becomes ‘Taylor, 1971’, or vice versa);

N expand any apparent abbreviated author surnames detected (if

supplied) using a stored dictionary of known author abbrevi-

ations and their expanded forms (for relevant detail refer

Implementation section);

N normalize the strings to uppercase for comparisons.

8.2 If one string to be compared ends with a date (with or

without a final bracket) and the other does not, remove the last 3

digits from the date component in the string which contains this

prior to comparison, to reduce but not entirely eliminate the

influence of this discrepancy, such that, e.g. ‘Linnaeus, 1758’

becomes ‘Linnaeus, 1’; ‘(Linnaeus, 1758)’ becomes ‘(Linnaeus, 1)’

(the contribution of the retained single number plus preceding

space and comma indicate that there is some residual difference

between the strings, but does not overwhelmingly affect short

authority strings).

8.3 If one string commences with a bracket and the other does

not, remove the leading bracket in this case prior to comparison,

e.g. ‘(Linnaeus 1758)’ becomes ‘Linnaeus 1758)’ (rationale: reduces

by 50%, but does not entirely remove the effect of this

discrepancy).

8.4 Create a second (‘plain’) version of each string, with

characters employing diacritical marks and ligatures replaced by

their plain ASCII equivalents (‘Lacépède’ becomes ‘Lacepede’,

‘Sæther’ becomes ‘Saether’, etc.).

8.5 The authority n-gram comparison is now calculated using a

weighted blend of padded bigrams (n = 2) and padded trigrams

(n = 3) (bigram similarity is generally preferable for shorter words

but, as previously noted, this has the non-optimal characteristic of

being insensitive to word order; for that reason, a blend of 2/3

bigrams with 1/3 trigrams is utilized, so that the impact of

variation in word order is reduced but not completely eliminated).

This process is undertaken twice, once for the original string (with

accented characters retained if these exist) and once for the ‘plain’

form with diacritical marks removed, then the mean of the two

values is returned (note that if no accented characters are present,

i.e. original and ‘plain’ forms are identical, this calculation need

only be carried out once).

Step 9: Ranking
As discussed earlier, this is to some degree a matter of designer

preference. In the author’s system the following rules are applied:

N Rule 9a: candidate near matches at ED 1 plus any phonetic

matches are returned as ‘nearest matches’ at both genus and

species levels (alternatively, phonetic matches could be singled

out for special designation as the most plausible set);

N Rule 9b: remaining near matches are returned as ‘other near

matches’ for separate consideration (since they may also

contain a true hit on occasion, but less frequently than the

‘nearest match’ set).

In the author’s reference system authority similarity is not used

as a ranking criterion since on occasion it may give a misleading
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result (for example when the same author name is cited in very

different ways), but is included in result presentation as a visual aid

since in most cases it is helpful to the human user, when available.

A pseudocode representation of the entire Taxamatch algo-

rithm is presented as File S3, in conjunction with File S2 which

contains Oracle PL/SQL implementations of the MDLD algo-

rithm for reference (the ‘Rees 2007 near match’ and n-gram

algorithms can be created from first principles following the

information presented in Materials and Methods, or downloaded

from the Taxamatch web site [39]).

Implementation aspects
For Taxamatch implementation in an operational system, the

following components are required:

(a) routines for parsing of input text strings if required (in the

event that text is not already pre-supplied as e.g. genus,

species epithet and authority portions) and then normaliza-

tion as described above in steps 0 and 8 (separately for

scientific name and authority portions);

(b) programmatic implementations of the following:

N the ‘Rees 2007 phonetic algorithm’;

N the Modified Damerau-Levenshtein Distance (MDLD) edit

distance test, and

N if authority comparisons are desired, a facility to calculate

padded n-gram similarities between supplied strings for both

bigrams and trigrams;

(c) a reference set of notionally correctly spelled target names

(with authorities as preferred) against which input names can

be tested (if it is desired to further offer the facility to restrict

testing to a particular taxonomically or otherwise circum-

scribed subset as will be discussed later, equivalent necessary

indicators or flags will also need to be available in the

reference database);

(c) Note, in order to speed Taxamatch operation, it is

recommended that additional derived columns (with appro-

priate indexes) are created in this reference database and

also it will be necessary to update such columns in the event

that relevant content is changed or new rows added. For

genus level data the desirable additional columns applicable

to each stored name are genus length (in characters),

normalized genus name, and ‘Rees 2007 near match’

transformed version of the genus name, while for species,

equivalent columns are required, for the species epithet only,

together with a pointer to the containing genus name in the

Figure 3. Example search result from the author’s Taxamatch-enabled IRMNG data search as at May 2013. Sample result screen from
Taxamatch-enabled search via the current (2013) implementation of the IRMNG database web search interface using as input the misspelled name
Halymenia dilitata Zanardini, an error for Halymenia dilatata (genus exact match, ED 1 near match in species epithet). Note the additional return in
this case of the false hit Halymenia digitata J. Agardh at the same edit distance, however a poorer match on authority (0.17 vs. 0.88; species ordering
is alphabetic), also the return of multiple near match genera (even if no near match species is currently held in those genera) since on occasion the
desired target species may be missing from the reference database but the target genus may not.
doi:10.1371/journal.pone.0107510.g003
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event that this is held in a separate table (as is recommended

for operational efficiency.

(d) a reference set of known author abbreviations together with

their full (expanded) equivalents, in the case that the

authority comparison module is implemented;

(e) a means for users to submit either single input names or lists

of names for testing, as desired, plus relevant methods to

return candidate near matches to the user (e.g. as a web page

or supplied report); alternatively, for internal deduplication

or list matching purposes, custom code that calls Taxamatch

on a recursive (i.e. row-by-row) basis and deals appropriately

with the results (for example writes to relevant additional

database columns, or generates a report of some kind);

(f) a sufficiently well specified computing platform to provide

acceptable response times to real time user queries and if

desired, larger internal deduplication tasks, according to

target database size (an example specification for the

author’s present reference system is detailed in Materials

and Methods); and

(g) desired presentation and formatting choice/s for what

information is to be returned in response to user input. In

the author’s reference Taxamatch implementation operating

over the IRMNG (Interim Register of Marine and

Nonmarine Genera) database at CSIRO [40], in addition

to the ranking measures described in step 9 above, the edit

distance is reported for every match using the format ‘x,y’ for

genus and species epithet portions, respectively, and the

calculated authority similarity is reported where this is

available, as both a value and as an associated small graphic

(bar chart with filled versus unfilled columns) to facilitate

rapid visual assessment. Supplementary information regard-

ing the taxonomic and other status of each returned name is

also shown, obtained via queries to relevant columns and

other tables once the sets of near match names have been

constructed. In addition (for ongoing system performance

assessment) the numbers of individual names tested at both

genus and species level is reported, along with the overall

query execution time. A sample web response to a user

search on this system is shown in Figure 3.

Experimental Section

Materials and Methods
Reference database and computing environment. The

reference database of notionally correctly spelled names used in

the present study was the author’s IRMNG database cited above,

which at time of testing in May 2013 contained 465,433 genus

names and 1,674,319 separate species; a small number of target

names flagged misspellings, nomina nuda and later usages

(duplicate names to be disregarded) were masked during the test

operation so as to avoid generation of misleading results, such as

would otherwise arise where an input misspelling matches a known

misspelled name held in the database, or a stored misspelling

masks a true hit during the result shaping stage. Additional details

on the content and construction method of this database are

available via the IRMNG ‘Frequently Asked Questions’ page [41].

It should be noted that at the present time, IRMNG contains a

significant percentage (307,000 of 465,000, or 66%) of genera with

no associated species which could therefore be excluded from

species-level tests for improved efficiency if desired, however are

retained in the production system to cover the possibility that the

desired target genus may be present in IRMNG even if the

relevant associated species is not currently held. At time of these

tests, this database operated on a Dell PowerEdge M610 with two

Intel Xeon X56 processors and 128 GB of RAM (processor speed

up to 4.4 GHz) running Oracle Enterprise Server 11.2.0 on SuSE

Linux Enterprise Server 11 SP2. This specification provides the

basis for relevant processing and web response times as reported

herein.

Training data used for devising heuristics used in the pre-

and post- filters. The set of names utilized as sample (training)

data for Taxamatch design comprised a set of 641 pairs of species

names (input misspelled name plus designated correctly spelled

target name) which were identified during routine quality

investigations of the CAAB (Codes for Australian Aquatic Biota)

marine species database for taxa in Australian waters [6] in 2007;

these names, designated the ‘CAAB expert misspellings’ set, are

included in File S1 along with the other sets of names used for

subsequent algorithm testing. As indicated earlier, lexical patterns

in this set of names were used to devise the heuristic rules

incorporated into the pre- and post-filters at both genus and

species epithet level, and then to manually tune the various filters

so that as many false hits as possible were removed without

affecting the recall of true hits. A small number of additional

adjustments (to two rules only) were subsequently made over the

period 2007–2011 when it was discovered that a few additional

classes of ‘true’ hits in subsequently supplied data were being

discarded prematurely, those errors not being represented in the

original sample data, resulting in the minor evolution of

Taxamatch from version 1.0 to 1.2 over that period (the newly

released version 2.0 is identical to 1.2 but under a different, less

restrictive License).

Test datasets: species level. 1. The ‘CAAB expert

misspellings’ set described above (binomials, n = 641; authorities

included; errors detected by manual scrutiny after otherwise

correctly spelled ‘match’ and ‘no match’ names identified and

removed); labelled ‘CAAB’ in relevant tables and charts.

Coverage: mostly extant animals (marine species in Australian

waters).

2. The ‘Dalcin name pairs’ set included in Appendix III of E.

Dalcin’s thesis [12] (binomials, n = 171; authorities omitted; errors

as reported by Dalcin); labelled ‘Dalcin’ in relevant tables and data

plots. Coverage: mostly extant higher plants (some animals also

present, originating from 2 of 5 data sources employed).

3. The ‘CAAB web misspellings’ set as retrieved from CAAB

web user logs in 2008 (binomials, n = 2,047; no authorities; errors

detected by manual scrutiny after otherwise correctly spelled

‘match’ and ‘no match’ names identified and removed); labelled

‘CAABWEB’ in relevant tables and data plots. Coverage: as per

dataset (1) above.

Test datasets: genus level. 1. The ‘GRIN genera’ set

comprising 189 identified misspellings within the set of 28,128

genus names for higher plants downloaded from the GRIN

reference taxonomy (USA) [42] in July 2011 (uninomials,

authorities included; errors detected by manual scrutiny after

otherwise correctly spelled ‘match’ and ‘no match’ names

identified and removed); labelled ‘GRIN Genera’ in relevant

tables and data plots. Coverage: exclusively extant higher plants.

2. ‘CAAB expert genera’ – being the unique misspelled genus

names (only) in the CAAB expert misspellings set as described

above (uninomials, n = 116; no authorities); labelled ‘CAAB

Genera’ in relevant tables and data plots.

3. ‘CAAB web genera’ – being the unique misspelled genus

names (only) in the CAAB web misspellings set as described above

Taxamatch Near Matching of Scientific Names
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(uninomials, n = 853; no authorities); labelled ‘CAABWEB Gen-

era’ in relevant tables and data plots.

4. ‘Dalcin genera’ – being the unique misspelled genus names

(only) in the Dalcin misspellings set as described above (unin-

omials, n = 32; no authorities); labelled ‘Dalcin Genera’ in relevant

tables and data plots.

All names in these test datasets, along with their designated

‘correct’ targets, are provided in File S1.

Error types. To assist in appraisal of comparative algorithm

performance against different classes of error, the following

categorization of error types was devised for this study:

N type 1 error: single character transformation in a single word,

further subdivided into:

# type 1a: single character insertion/deletion/substitution

(except initial character);

# type 1b: single character transposition (except initial

character);

# type 1c: error at word start (initial character inserted, deleted,

substituted, or transposed);

N type 2 error: 2-character insertion, deletion, or substitution in a

single word;

N type 3 error: 2-character transposition, or 3+ character

transformations, in a single word;

N type 4 error (species only): multi-word error (at least 1 character

transformation in both genus and species epithet).

In parallel, errors were classified as either phonetic or non-
phonetic on the basis of application of the ‘Rees near match 2007’

phonetic test, which also allows for common gender mismatches in

species epithets.

Algorithms used. The algorithms used for the tests reported

herein comprise three phonetic algorithms, five dynamic pro-

gramming algorithms with a range of selected thresholds (totalling

23 variants of the latter on test), plus two versions of Taxamatch

(in both normal and ‘no shaping’ modes), as described below.

Routines were then created to run these tests largely unattended

against all 4,049 names from the seven test datasets over an

extended period (several weeks) in May 2013.

1. The previously unpublished Rees near match 2001 phonetic

algorithm, as initially utilized in the CAAB database [6] from

2001 to 2007 and OBIS [7] from 2004 to 2007, applied

separately to each word in the case of binomial names. This

undertakes the following phonetic transformations: the string is

transformed to uppercase; the initial character is retained

unchanged (as per Soundex); then selected ‘soundalike’

replacements are performed. The following letters/character

groups are equated: AE, OE, E, U and Y are transformed to I;

IA and O to A; K to C; MC to MAC; SC, Z to S; H is

dropped. Repeated letters (after transformation) are then

deleted, i.e. double letters are replaced with single ones. (Note,

this is included largely for legacy interest, since it has been

superseded in relevant systems by the improved 2007 variant as

below).

2. The previously unpublished Rees near match 2007 phonetic

algorithm (including allowance for ‘silent’ leading characters

plus additional gender normalization component for species

epithets), as developed for later versions of CAAB and OBIS

and subsequently incorporated into Taxamatch. This intro-

duces the following additional treatments to those as given

above for the 2001 version: selected phonetic transformations

are undertaken on the initial character before this is

quarantined, as follows: leading AE, EA and OE are

transformed to E; leading CN, GN, KN and MN to N;

leading CT and PT to T; leading CZ to C; leading DJ to J;

leading EU to U; leading PH to F; leading PS and TS to S;

leading QU to Q; and leading X to Z. Residual transforma-

tions are made as per the Rees 2001 version i.e. the initial

character is now retained, ‘soundalike’ replacements are

carried out including dropping of ‘H’, and repeated letters

are deleted. Finally, if the word to be treated is a species epithet

(e.g. supplied identified as such, or comprising the second

‘scientific name’ element in a genus+species string), for words

now ending in -IS (includes original -is, -us, -ys, -es), -IM

(originally -um), -AS (originally -as or -os), the last 2 characters

are replaced with -A.

3. Soundex, for algorithm description refer e.g. [19]. For the

present tests the native Oracle SQL implementation was

employed, applied separately to each word in the case of

binomial names.

3. Note that for testing purposes, in order to obtain maximum

algorithm speed, relevant phonetic keys for each of algorithms

1-3 were computed in advance for all target terms and then

stored in appropriately indexed database columns along with

the original and normalized versions of genus and species

names.

4. Bigrams. An n-gram algorithm was constructed as a custom

Oracle PL/SQL function to provide either bigram or trigram

testing according to a supplied input value of n. This function

uses the padded n-gram comparison as described earlier and

also treats repeated n-grams in the same word as separate

instances (thus a second instance of the same n-gram in the

input term will be considered ‘new’ unless matched by a second

instance of the same n-gram in the target term). The calculated

n-gram similarity returned by this function is the proportion of

common n-grams as compared to the arithmetic mean of the

total number of n-grams in both words. In the tests as reported

here, bigrams (n = 2) were tested using the similarity thresholds

0.95, 0.90, 0.85, 0.80 and 0.75 as pass/fail criteria.

5. Trigrams. This is the case of the n-gram test with the value of n
set to 3. In these tests, trigrams were tested using the similarity

thresholds 0.95, 0.90, 0.85, 0.80, 0.75 and 0.70.

6. Levenshtein Distance (LD). This was computed using the

Oracle PL/SQL implementation of Levenshtein Distance

previously published by B. Boehmer [43]. LD tests were

undertaken using edit distance (ED) thresholds of 1, 2, 3 and 4.

7. Damerau-Levenshtein Distance (DLD). This was computed

using the custom PL/SQL MDLD algorithm devised for this

study (see next paragraph) with the value for block limit set to

1, which therefore allows only single character transpositions.

DLD tests were undertaken using ED thresholds of 1, 2, 3 and

4.

8. Modified Damerau-Levenshtein Distance (MDLD). This was

computed using the MDLD algorithm as detailed in File S2,

with the value for block limit set to 3, which therefore allows

double and triple character transpositions in addition to single

character transpositions. MDLD tests were undertaken using

ED thresholds of 1, 2, 3 and 4.

9. Taxamatch (normal mode). This was undertaken using a local

implementation of the PL/SQL Taxamatch algorithm de-

scribed herein, with result shaping engaged as recommended

for normal use.
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10. Taxamatch (no shaping). This was undertaken with result

shaping omitted, as might be used in situations where a

maximum degree of recall is required, at the expense of

(potentially) additional false hits.

The tests on execution time using a small subset of input names

were carried out as a search against the entire target dataset, but as

will be apparent from those data, in the case of the dynamic

algorithms, long execution times of between 180 and 1,011

seconds per input name were encountered at species level.

Therefore, for the bulk precision and recall testing required for

this study, for these algorithms some modest pre-filtering was

undertaking in order to reduce overall processing time: first, in the

genus case, target genera greater than 4 characters longer or

shorter than the input genus were not tested (and for species, target

species of such genera), and second at species level, target species

scoring less than 0.5 on the bigram similarity test were omitted

from testing by the other dynamic algorithms on the basis that

they would not be sufficiently similar to be worth further

consideration. By these means, the overall test regime for all

input names was reduced from potentially several months to

around 3 weeks.

Subsetting of input names for detailed performance

testing. For the individual run time data reported per

algorithm, a ‘randomized’ subset of names was obtained by

selecting the 500th, 1,000th, 1,500th, 2,000th and 2,500th species

name of 2,859 names across all input data sets (sorted

alphabetically) and then rearranging these for presentation by

name length, and for genera, the 200th, 400th, 600th, 800th and

1,000th name of 1,190 names, similarly re-sorted.

Metrics and methods used for reporting algorithm

performance. The performance metrics of recall and precision
have been described above. For algorithm effectiveness the F1

measure is reported, the harmonic mean of precision and recall,

both on a 0–1 scale, calculated as per [29], which facilitates

potential comparison with other studies since this is a commonly

used measure of general algorithm performance in the wider

information retrieval domain. In the present context, the relevant

effectiveness values enable more straightforward inter-algorithm or

inter-dataset comparisons to be made and in addition, when

determined at a range of thresholds, can be used to define a

notional ‘best’ setting, i.e. where the maximum F1 value is

achieved.

Algorithm efficiency is represented here via the proxy of

execution time on standard computer hardware. For Taxamatch

Figure 4. Species level precision:recall curves for all algorithms tested, as binomial names, means of three datasets (data from
Table 1). Performance of five dynamic algorithm variants, three phonetic algorithms plus two Taxamatch variants using the three available
misspellings datasets for species, at a range of thresholds in the case of the dynamic algorithms. Performance of Taxamatch and Taxamatch ‘no
shaping’ variant are highlighted in blue and red circles, respectively. Data values closest to 1,1 (upper right corner) indicate best performing setting
(maximum effectiveness) for a given algorithm. (Note at this scale, curves for certain variants i.e. LD, DLD lie behind others i.e. MDLD in some places,
similarly for bigrams versus trigrams).
doi:10.1371/journal.pone.0107510.g004
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(both normal and no shaping variants), execution times were

determined using a previously constructed PL/SQL routine as

accessed via the IRMNG web query interface, which as shown in

Figure 3 includes a report of execution time as well as the relevant

near match results.

Results and Preliminary Discussion

Comparative algorithm performance
File S1 gives numbers of true and false hits for all 2,859 input

species names and 1,190 genus names, from 7 datasets as

described above, tested against the IRMNG reference database

as at May 2013 using all 28 algorithm variants. Summary data for

algorithm performance, as average recall, precision and effective-

ness, against both species names and genera are presented in

Table 1, with precision:recall plots based on these data in

Figures 4–5. Figure 6 documents Taxamatch performance against

uninomials (genus names) as a function of word length.

From Table 1 and Figure 4 it is clear that at species level, each

of the dynamic algorithms perform quite well (although outper-

formed by Taxamatch) at their ‘best’ i.e. most effective settings

(highest F1) in that they quite closely approach the ‘ideal’ value

(precision = 1, recall = 1) before dropping off as thresholds are

widened; however it is noteworthy that is it not possible to retrieve

the last 3–5% of true hits without a corresponding decrease in

precision. By contrast, the Rees 2001 and 2007 phonetic

algorithms show high precision but only moderate recall, while

Soundex has better recall but poorer precision. Of the dynamic

algorithms, bigrams and trigrams perform well (good precision) up

to around 93% recall and the edit distance based algorithms LD,

DLD and MDLD up to around 96% recall before precision

decreases markedly. Taxamatch maintains high precision even at

99.7% recall while the ‘no shaping’ variant provides the same

displayed overall recall in this tests (in fact 1 additional hit is

returned at species level) with around a 12% drop in precision

overall.

At genus level (Figure 5) the situation is somewhat different,

principally because the text strings involved are shorter (which has

an influence on the n-gram similarity measures in particular) and

also many genus names, including potentially non-target ones are

quite similarly spelled, particularly shorter names (see below). The

n-gram based tests for genera alone show low recall at narrow

thresholds and precision is also affected since this cannot be high

unless at least some true hits are returned. Recall is substantially

better for the edit distance tests at narrow thresholds but precision

decreases rapidly when the edit distance threshold exceeds ED 1.

The normal version of Taxamatch does provide improved

performance but in this case fails to retrieve up to 4% of true

Figure 5. Genus level precision:recall curves for all algorithms tested, means of four datasets (data from Table 1). Performance of five
dynamic algorithm variants, three phonetic algorithms plus two Taxamatch variants using the four available misspellings datasets for genus names
only, at a range of thresholds in the case of the dynamic algorithms. Performance of Taxamatch and Taxamatch ‘no shaping’ variant are highlighted in
blue and red circles, respectively. As in previous Figures, data values closest to 1,1 (upper right corner) indicate best performing setting (maximum
effectiveness) for a given algorithm.
doi:10.1371/journal.pone.0107510.g005
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hits at genus level; these hits can largely be retrieved by the ‘no

shaping’ variant but with the loss of a significant amount of

precision. (In operation at species level, result shaping is not

applied until epithets have been tested which means that no near

match genera will be rejected if they possess an accepted near

match species).

A significant contribution to the comparatively poorer precision

results for genera alone as compared with species names (as

binomials) is the fact that many short genus names can be lexically

quite similar to other correctly spelled genera. As an example of

the latter, in IRMNG at the present time, within ED (as MDLD) 1

of the (correctly spelled) genus name Homo (humans and their

nearest fossil relatives) are two other unique names/genera namely

Hoho, an amphipod and Homa, a hemipteran, while within ED 2

are an additional 68 genera (61 unique names) (using the pre- and

post-filtering rules employed in Taxamatch this set of ED 2

matches is reduced to only 3, namely two instances of Hama,

representing a moth and a fossil fish, plus Homia, a beetle).

Extending the permitted edit distance to 3 (which would not be

possible within Taxamatch on account of the ‘minimum 50%

good characters’ rule) would return a further 960 genera (744

unique names) for this 4 character word. By contrast, with a

randomly selected longer genus name – for example Catharacta,

an example correctly spelled target name from this study, length

10 characters – equivalent values are much lower, namely 0

unique names/genera at ED 1, 5 unique names/genera at ED 2

and just 26 genera (22 unique names) at ED 3, prior to any

Taxamatch-associated filtering. This suggests that the poorest

precision (largest numbers of false hits) will be encountered with

short input or target names, a characteristic which is borne out in

practice as shown in Figure 6 using Taxamatch precision data as

examples.

From these data it can be seen that with result shaping

employed i.e. the ‘normal’ mode, genus precision is poor (e.g.,

0.4) until target genus length reaches around 9 characters, and

thereafter steadily improves. Fortunately, as can be seen from the

name frequency data also included in Figure 6, the most

commonly occurring genus names in the reference database

(approximating the whole of biology) are in the 9–12 character

range where precision is at least acceptable (varying from around

0.4 to 0.6) while for longer names, precision is better again (by

contrast, the no shaping variant performs relatively poorly in this

respect except in the case of very long names).

Returning to the inter-algorithm comparison data for genera,

Soundex is poor in the precision metric for a different reason,

namely that the same Soundex code (key) can be shared by

multiple genera, in many cases independent of term length since

typically the Soundex key is drawn from the leading 4–8

characters only. As an example, at the present time the Soundex

key ‘P232’ is shared by 2,953 genera in the IRMNG reference

database ranging in length from 6 to 24 characters, commencing

in the shortest case with Pectis, Pictus and Pistus and ending in the

longest with Pseudoglossodiplostomum, Pseudoschizorhynchoides
and Pseudocoeliodidymocystis, indicating that while in popular

descriptions this algorithm is classified as ‘phonetic’, in practice the

resulting near matches in the taxonomic domain certainly do not

qualify as a set of phonetic equivalents. In contrast to Soundex, the

Rees 2001 and 2007 algorithms are considerably more selective

for phonetic matching: for example the maximum number of

distinct genera sharing the same Rees 2007 phonetic key (in this

instance ‘RISA’) is 36, with the shortest Risa and Rusa, and the

longest Reuschia, Ruehssia and Ruyschia. At genus level, the recall

of the Rees 2007 near match algorithm is slightly worse than that

for the Rees 2001 algorithm, a result which was not anticipated on

account of the additional phonetic transforms of the initial

character/s incorporated into the 2007 version which are intended

to improve rather than degrade matching performance. Inspection

of the names in question reveals that this discrepancy is accounted

Figure 6. Genus-level precision values for Taxamatch (both variants) as a function of genus length. Data shown are from the four genus-
only datasets combined. Superimposed columns indicate distribution of target genus names in the reference database as a function of genus length.
The two most frequent lengths of genera in the reference (IRMNG) database at this time (n = 62,228 and 64,062 for genus lengths 10 and 11
characters, respectively) together comprise 29.7% of all genus names in the database, excluding known misspellings, nomina nuda, later usages and
virus genera.
doi:10.1371/journal.pone.0107510.g006
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for by the substitution of ‘F’ for a leading ‘Ph’ in relevant cases,

which now means that the latter will not match ‘P’ (with no ‘h’

following) and vice versa. However this step is retained since in

some cases it would notionally be useful, for example equating

‘Facus’ as a phonetic match for Phacus and so on.

Algorithm efficiency
Comparative algorithm efficiency, as represented by indicative

overall query execution times for five selected input species and

five genus names, is shown in Tables 2 and 3 (which as noted in

the Materials and Methods section, contain data without any

additional pre-filtering of target names employed elsewhere to

obtain shorter processing times). Also reported are the number of

names passing both the genus or species pre-filter stages (as

applicable) in Taxamatch operation for each query, giving

indications of the selectivity values associated with each, which

can then be compared with the hypothetical values discussed

earlier in the section on algorithm design.

These results show that, as expected, the three phonetic

algorithms are extremely fast in the present context (below

0.0001 ms per name-name comparison, less than 0.1 seconds to

test a single input name against all target names, whether as

species binomials or genera). The n-gram and edit distance based

algorithms are considerably slower in the implementations on test,

for a binomial term (species name) varying from 180 to over 1,000

seconds and for single term (genus name) varying from 23 to 62

seconds, principally according to input name length and algorithm

type (note that in the genus tests, input names are tested against a

smaller reference set, i.e. 28% of the number of targets, as

compared with the full species dataset, and are faster for that

reason, in addition to the shorter average target term length).

Individual execution times for these tests increase with algorithm

complexity i.e. bigrams to trigrams, LD through DLD to MLD

and also roughly linearly with input term length against these fixed

sets of target names.

The Taxamatch tests achieve their intended goal of much faster

execution time overall than the unmodified dynamic algorithms, in

line with the anticipated efficiencies introduced earlier in the

section on algorithm design. In that section it was suggested that a

genus pre-filter efficiency of 90% and an overall species-level

efficiency of 99.95% might result in ‘acceptable’ performance

against even large reference datasets; mean values from this

(limited) set of tests indicate a range between 96.6% and 99.8% for

the genus pre-filter, and an high overall species-level efficiency

(99.6%), permitting completion of the algorithm workflow in

between 0.8 and 1.7 seconds, varying chiefly according to

characteristics of the input genus name in particular. Using the

example names as tested in Table 2, numbers of genus names

requiring the dynamic test varied from under 3,000 to under

16,000 (a saving of between 449,000 to 463,000 genus tests alone)

and the residual number of species epithets tested varied from 35

to 900, a trivial number in relation to the almost 1.7 million names

in the reference database, an indication of the efficiencies gained

from operation of the Taxamatch pre-filters at the respective

levels.

One other aspect worthy of comment in the present set of tests is

that the reference database used is arguably fairly complete at

genus level (missing perhaps a maximum of 10% of names for all

biota, refer [41]) despite being considerably less complete –

probably missing 50% or more of all published names – at species

Table 2. Sample execution times by algorithm: selected species tests, tested against all IRMNG species (1.67 m names) in May
2013.

Input name Peronella lesueri Fusinius
undulatus

Sigonus
caraliculatus

Lutjanus
carponotatuus

Cephaloscyllium
fasciatumm

Input name length (chars) 17 18 21 22 26

Target name Peronella
lesueuri

Fusinus
undulatus

Siganus
canaliculatus

Lutjanus
carponotatus

Cephaloscyllium
fasciatum

Algorithm Execution time (seconds) Mean execution time per
name-name comparison

Soundex 0.027 0.030 0.014 0.030 0.005 ,0.0001 ms

Rees 2001 0.016 0.035 0.024 0.009 0.051 ,0.0001 ms

Rees 2007 0.027 0.020 0.008 0.027 0.051 ,0.0001 ms

Bigram 0.85 180.3 187.7 206.6 212.7 246.1 0.129 ms

Trigram 0.80 215.3 223.2 243.7 251.1 285.4 0.152 ms

LD 2 221.2 231.4 265.3 280.0 329.9 0.166 ms

DLD 2 421.2 427.7 497.1 522.3 640.5 0.314 ms

MDLD 2 645.6 662.5 773.6 814.1 1,011.4 0.488 ms

Taxamatch 1.487 1.067 0.982 1.530 1.677 0.257 ms *

Taxamatch pre-filter operation: Mean efficiency (as
reduction in total
tests required)

Taxamatch genera passing
pre-filter (of 465,433)

15,751 4,640 2,802 4,306 5,341 98.6%

Taxamatch species passing pre-
filter
(of 1.67 million)

900 329 289 658 35 99.6%

Taxamatch mean execution times per name-name comparison (indicated with asterisk) are calculated against the number of names actually tested (many names being
excluded by operation of relevant pre-filters).
doi:10.1371/journal.pone.0107510.t002
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level. Because the genus pre- and post-filters have the most

influence on overall algorithm performance, it is therefore likely

that the performance illustrated above may not degrade substan-

tially against even more comprehensive reference datasets since

the addition of more species without the requirement to add

further associated genera would have a relatively modest impact

on overall execution time.

Algorithm performance by error type
An issue with reporting aggregate performance data across

whole datasets (or all datasets combined) is that the results will tend

to be dominated by performance against the commoner error

types. However, from an operational perspective it is equally

desirable that less common error types (such as a mistake in the

leading character of a word, lexically more complex errors, or

simultaneous errors in both genus and species epithet) still result in

the intended target being returned where available (i.e., no false

negatives in these cases). To investigate this aspect of algorithm

performance in more detail, the pooled species data were

disaggregated by error types 1a through 4 as defined in the

Materials and Methods section, and also separately classified into

either phonetic or non-phonetic errors; in this case performance is

reported as recall alone since as stated above, the avoidance of

false negatives is our main interest. (Data for genera are not

presented but in general mirror those for binomials, except that

type 4 errors are not applicable in that case); results for this

analysis by algorithm and error type are presented in Table 4 and

Figure 7.

These results demonstrate that of all algorithms on test, only the

two Taxamatch variants achieve consistently good recall across all

error types in the available test species datasets. The Rees 2007

near match algorithm is improved over the original 2001 version

in particular against type 2 errors (which include a component of

potential gender mismatches in species epithets) and phonetic

errors in general (in equivalent genus-only data the differences are

less marked since the gender mismatch component is not

required). Type 1c errors (mismatch at word start) in general

defeat all of the phonetic algorithms, since (with the exception of

special cases built into the Rees 2007 algorithm, not extensively

represented in the present test data) these are constrained to

require a match on the leading character. The n-gram variants

perform poorly against more severe errors (types 3 and 4) at these

‘best’ settings and sub-optimally against type 1b and type 2 errors

(transpositions and 2-character errors), while the edit distance

based tests (again at the moderate thresholds at which they are

most effective) perform somewhat better against the simpler errors

(types 1 and 2) but less well against more severe errors of types 3

and 4; a small improvement against type 3 errors is seen in the

progression from LD through DLD to MDLD. By contrast, both

Taxamatch variants show consistent high recall levels against all

error types and are clearly superior to the other algorithms on test

in this regard, particularly in respect of the most ‘difficult’ i.e. type

3 and type 4 errors which include multi-character errors, 2

character transpositions, and simultaneous errors in both genus

and species epithet.

Inter-dataset comparisons
Since the main algorithm design stages were undertaken using a

single set of training data (the CAAB expert misspellings set) it is

appropriate to investigate any biases which may inadvertently

have been included as well as the inherent variation in available

sets of misspelled names, by examining algorithm performance by

dataset. These results are presented with the Y-axis representing

effectiveness (F1) per dataset using each setting of every algorithm
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employed for species names and for genera alone in Figure 8 and

Figure 9, respectively.

Inspection of these data suggests that at species level, the CAAB

expert misspellings set used as sample data is comparable with the

other datasets (at genus level the algorithms perform rather better

against this than the other sets, suggesting possibly the presence of

more severe errors in the latter). Selection of the best (most

effective) setting for each algorithm is broadly unaffected by choice

of dataset at both species and genus level. The CAAB web

misspellings dataset proved a somewhat more severe test for all

algorithms than the others, returning the lowest overall effective-

ness for most algorithms although Taxamatch performance was

equal best for this set (at species level). In general there appear to

be no particular biases introduced by the particular choice of

sample data which give some confidence in the more general

applicability of the various rules and thresholds derived from use of

this source for the initial algorithm development.

Figure 7. Species-level recall by error type for each algorithm tested in the present study. Values for the dynamic/variable threshold
algorithms are derived from their ‘best’, i.e. most effective settings, for all species data pooled (data from Table 4).
doi:10.1371/journal.pone.0107510.g007
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General Discussion and Conclusions

Taxamatch performance against design goals
Overall it can be seen that by adopting the strategies outlined in

the theoretical portion of this paper, Taxamatch achieves its

design goals of high recall, high precision and acceptable efficiency

(in this instance, execution time of generally less than 2 seconds per

input name against a large reference database) and does this to a

more effective degree than the other algorithms on test, against a

full spectrum of error types, especially the more ‘difficult’ type 3

and 4 errors. Phonetic algorithms are very fast in execution time

but fail to retrieve non-phonetic errors except (to a degree) in the

Figure 8. Species-level effectiveness (F1) for all algorithms at all settings, disaggregated by dataset. Note variation in F1 value with
varying threshold setting for each of the dynamic algorithms, with peak at setting 0.85 (bigrams), 0.80 (trigrams) and ED 2 for the LD, DLD and MDLD
tests.
doi:10.1371/journal.pone.0107510.g008

Figure 9. Genus-level effectiveness (F1) for all algorithms at all settings, disaggregated by dataset. Note variation in F1 value with
varying threshold setting for each of the dynamic algorithms, with peak at setting 0.80 (bigrams), 0.75 (trigrams) and ED 1 for the LD, DLD and MDLD
tests. Taxamatch values are slightly depressed by this metric compared with some of the ‘best’ dynamic algorithms on account of sacrificing some
precision for close to 100% recall (cf. Figure 5).
doi:10.1371/journal.pone.0107510.g009
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case of Soundex, however the latter performs poorly in the area of

precision (in other words this algorithm may return large sets of

candidate near matches, however many of these can be lexically

quite distant from the desired target term). The dynamic

algorithms used at their maximum effectiveness settings perform

well against simple errors but are defeated by more complex error

types and in addition, are almost unusably slow against substantial

sets of target data such as thousands or millions of names without

additional pre-filtering to avoid testing all names, along the lines

introduced with Taxamatch.

Options to further reduce false hits with Taxamatch
In the present study Taxamatch, even in the no shaping mode,

returned few false positives at species level but an increased

number for genera alone, especially for short words, despite

application of the pre- and post-filters at genus level. Figure 6

indicates that precision can be 0.1 (9 false hits out of every 10) or

less for 4 and 5 character words, rising only to 0.2 for 7 character

words and not passing 0.5 until 10 character words are reached. If

these values are considered sub-optimal then two approaches are

conceivable: one is to further tighten the operation of the filters at

genus level (a possible area for future investigation) and the other is

to use a smaller reference database which omits may non-target

terms, for example comparing only insects with insects, higher

plants with higher plants, and so on. Such options are currently

offered in the Taxamatch instance deployed in the current

IRMNG web interface [40] where they can prove very useful in

further reducing false hits. However, they will not be 100%

infallible in a few cases where higher taxonomy is uncertain, as is

the case with some taxa e.g. fossil forms possibly representing

either Porifera or Bryozoa, or in groups where relevant higher

classification is unstable (such as the uncertain area between single

celled algae and Protista or Chromista, and similarly with certain

current or ex-current fungal groups).

Analysis of residual true hits not returned using
Taxamatch (false negatives)

The mean values for Taxamatch recall presented in Table 1 for

species do not quite attain the ‘ideal’ value (i.e. 0.997 instead of

1.000) on account of a small number of designated target names

not retrieved from a single data source, the CAAB web

misspellings set, for which 19 true hits were not returned out of

a total 2,047 (18 for the no shaping variant). Further investigation

showed that 6 of those names exceeded either the combined or

species epithet alone maximum edit distance threshold (ED 4) and

can arguably be discounted as severely misspelled. One input

name (Aleura scripta) failed to match its designated target, Aleuron
scriptor (a moth in the family Sphingidae) on account of being

masked by the lexically closer (ED 2 versus ED 4) designated false

hit Asura scripta (also a moth but in a different family) in the

normal Taxamatch mode; in the ‘no shaping’ mode the correct

match was returned along with two more false hits, Alesia striata
and Asura striata. The residual 12 true hits not returned were

rejected in either the genus pre-filter (1 case), the genus post-filter

(2 cases) or species post-filter (9 cases) on account of possessing

lexical characteristics not present in the sample data used for

Taxamatch filter design. A question then arises as to whether to

relax the rules in question so as to accommodate these rare cases,

which would almost certainly reduce algorithm precision for all

searches, or whether to leave the rules on their present settings and

accept that a small percentage of unusual misspelled names may

be rejected. At present the recommendation is for the latter of

these two options but this can be reviewed through time as desired.

Further improving Taxamatch execution time
As shown in Table 4 and on the basis of the author’s experience

over a 5+ year period, Taxamatch operation in the current system

is probably acceptable for single name queries (between 1 and 2

seconds per input species name, slightly less for genera alone) but

further improvement would be desirable, particularly in the case of

large scale data deduplication: for example testing 2 million species

names against each other currently requires several weeks of

continuous operation (2 m62 m names at average 1.5 seconds per

test would take 833 hours or 34.7 days to complete). To this end,

some potential avenues for future speed enhancement can be

envisaged and might include:

N increasing the speed of the MDLD comparison (for example

by porting to a faster programming language, deploying on a

more powerful platform, and/or other enhancements);

N splitting the phonetic and edit distance portions of the

algorithm, i.e. first seeking a phonetic match, and if found

omitting the remaining tests (together with any additional near

matches they might return);

N restricting name-name comparison to the names in the same

taxonomic group, as previously discussed in the context of

reducing false positives, however here to reduce execution

time;

N drastically reducing the set/s of names to be tested – for

example restricting genus testing to names where either genus

or species epithet is a phonetic match;

N further streamlining/optimizing the internal algorithm imple-

mentation if possible, via external code review and/or shared

development.

Of these, the first and last comprise hardware and software

optimization and incremental improvement, and may be expected

to happen through time as a normal process of ongoing

development, though it is unlikely that more than perhaps 50%

improvement in overall execution time would be anticipated

unless the software were deployed on substantially faster hardware.

The second option would be quite feasible if desired and would

lead to some searches operating very rapidly (perhaps 50%) while

the remainder would be unaffected; it would however have the

potential side effect of masking non-phonetic matches in the

presence of phonetic ones, which could be undesirable in some use

cases. The third option should be acceptable in most cases, except

where a name has been mis-classified, and could save from

approx. 60% to over 90% of required tests, according to the group

in question, while the fourth option has been found to be highly

effective in bulk species-level tests, covering over 99% of cases in

practice, eliminating almost no true hits, however will not provide

an acceptable alternative for genus-only tests since non-phonetic

errors in genera alone will not be detected. This facility has been

available on the present Taxamatch-enabled IRMNG web search

interface since 2008, where it is designated ‘Taxamatch rapid’. In

use, taking for example the misspelled input name Sigonus
caraliculatus (example from Table 2, selected because it represents

a mid-range name length in characters) the following comparative

results are obtained:

N normal Taxamatch operation (data from Table 2): ED test is

applied to 2,802 genera+289 species, execution time = 0.982

seconds;

N restrict testing to names from the same taxonomic group, in

this example: ‘superclass’ Pisces (option c above): ED test is

applied to 193 genera +64 species, execution time = 0.536

seconds;
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N restrict genus testing to names where either genus or species

epithet is a phonetic match (option d above, ‘Taxamatch

rapid’ mode): ED test is applied to 1 genus+44 species,

execution time = 0.022 seconds.

These data certainly suggest that improved run times would be

available using the above principles where required, and for

example might be of value in the cases of either bulk matching of

user-supplied lists of input names without an extensive wait period,

or for extensive internal data deduplication runs at species level in

particular, where the failure to retrieve a very small number of true

hits would be an acceptable trade-off.

Two other approaches have been proposed for improving the

operational performance of the dynamic comparison methods

discussed here. For n-gram comparisons, n-grams for all target

terms can be generated in advance, stored (at the cost of minor

additional database space) and indexed for fast access [44], which

then reduces the overall computational cost of each individual n-

gram comparison if this is required (in the present context this is

not an issue since edit distance is the preferred approach for the

bulk of term comparisons). For Levenshtein distance or variants

thereof, the use of a Levenshtein automaton has been described in

[45]; in essence, running the automaton (based upon the input

term as starting point) generates the set of all possible new terms

which can be created by any potential insertion, deletion,

substitution or transposition operation to the required maximum

edit distance, and this set is then intersected with all available

target terms as an exact match process. If the alphabet to be used

is kept small (e.g. the 26 a–z characters only, discounting case) one

can see that, for example, with a 4-character word there are 130

(5626) potential insertions, 4 potential deletions, 100 (4625)

potential substitutions and 3 potential single character transposi-

tions, a total of 237 new words that could be formed at ED 1, and

for a 10-character word the equivalent number is 555, still a

relatively trivial set to test by exact matching. The penalty with this

approach is that it scales roughly factorially, in that if there are in

the order of 500 ED 1 transformations for a 10-character input

term there will be in the order of 250,000 (5006500) ED 2

transformations, 125,000,000 (50065006500) ED 3 transforma-

tions and so on, and first computing these and then testing either

all or even a subset of them, for example as suggested in [46], may

not produce a significant time saving over a standard run time

Levenshtein approach at edit distances greater than 2, or more

particularly with Taxamatch which further limits the degree to

which the dynamic tests are required.

Extending Taxamatch operation to ranks not covered
above

The basic Taxamatch algorithm presented here shows how the

algorithm addresses the issue of matching generic names, species

names as binomials and the authority portions of taxonomic

names. The algorithm can be extended as required to cope with

uninomials at other ranks (i.e. higher than genus level), subgenus

names (for example supplied in parentheses following a genus

name) and infraspecific taxon names, for example by searching

zoological subgenera against a the same database of generic names

(the two are interchangeable in zoology) or in botany, against a

separate, smaller list of subgenera. (Infraspecific taxon names

would most likely be searched against lists of known infraspecific

names only, which would be a logical recursive step to follow the

search at species epithet level). Hybrid formulae for species, where

the genus and species names of both parents may be included, can

similarly be accommodated with little difficulty provided that

appropriate parsing can be done in a controlled and effective

manner.

Appraisal of alternative (non-Taxamatch) ‘near match’
approaches currently offered in the taxonomic domain

Having investigated in some detail the performance of different

algorithmic approaches in comparison with Taxamatch, it is now

possible to offer comments on the small range of near match

options currently offered by other systems. Soundex, as offered by

systems [3], [4] and [5] mentioned in the Introduction, is likely on

the basis of present tests to miss around 15% of desired correct

targets at both genus and species levels, in particular excluding

those where the leading character does not match, and at the same

time produces quite large numbers of false hits; in addition,

Soundex will not discard likely non-matches on the basis of word

length and will frequently suggest some fairly bizarre matches as

noted above. Taxonome [11] uses a modified n-gram test

(trigrams, with two padding characters at the beginning only)

and a default internal threshold of 70% similarity, which can be

altered as desired in the source code, further constrained to match

on the leading 3 characters of genus so as to avoid testing all

names. The nearest equivalent in these tests (Trigrams at 0.70

thresholds, padded both ends) did return 98.8% of species targets

on average (89% for genera), however without additional pre- or

post-filtering will tend to produce elevated levels of false hits. As

presently deployed in Taxonome, ‘correct’ targets with a

difference in the leading 3 characters of the genus name will also

be eliminated from the near matches offered; in the present test

data, this would apply to 252 of 2,860 misspelled species and to

215 of the 1,191 genera, values of 8.8% and 18.1%, respectively.

The standard Levenshtein Distance, as employed in the GRIN

Taxonomic Nomenclature Checker [8] with a user-selectable

threshold of edit distance, will perform adequately against all but

the transposed syllable error class, although it will catch these at

threshold ED 4, provided that the user starts with a reasonably

tight initial threshold setting e.g. ED 2 and then manually widens

this and re-runs the search in the event that no hits are returned.

However as with n-grams, LD will be susceptible to elevated levels

of false hits in the absence of a mechanism to address these.

PlantMiner [9] and Taxonstand [10]) both use ‘agrep’ which is

very fast according to its creators (algorithm not tested in this

study) but even if this provides adequate recall will suffer the same

problem of elevated false hits in its native form without additional

filtering. In addition, Taxonstand currently undertakes near

matching only on species epithets and therefore will not return

any result in the presence of a misspelled genus name.

FishBase [47] presents an approach based on substring

matching, previously documented in [48]. If a binomial name

known to the system is entered no near match is attempted,

otherwise the system presents names with a match on genus but

not on species, matches on species but not on genus, then any

binomial names where both the first and last two letters of genus

and species epithet are the same. While in the majority of cases this

will return lists of candidate names which most likely include the

desired target, in some cases such lists will be quite long, for

example in the case of genera with a large number of species, or

commonly used species epithets, and no attempt is made to filter

the more from the less similar names offered.

One might also consider whether standard (not specifically

taxonomic) available approaches might also be suitable, for

example the open source java text search engine Lucene [49]

from Apache is available for many platforms and incorporates a

near match facility ‘FuzzyQuery’ based on Damerau-Levenshtein

(or optionally: Levenshtein) distance up to a maximum of ED 2,

Taxamatch Near Matching of Scientific Names

PLOS ONE | www.plosone.org 23 September 2014 | Volume 9 | Issue 9 | e107510



plus an n-gram indexing technique is incorporated in its

‘SpellChecker’ component. While Lucene may therefore perform

well for some or many misspelled names, it will miss the more

distant matches and, as in the cases above, without additional

dedicated filtering will almost certainly return an elevated

proportion of false positives.

Comparison with previous findings in the taxonomic and
general information retrieval domains

As noted in the introduction, Damerau’s original (1964) premise

that ‘over 80%’ of misspellings in plain text were attributable to a

single character insertion, deletion, substitution or transposition

has been broadly confirmed in this study (79.7% at DLD 1 for

species binomials, 89.7% for genera) in the context of taxonomic

names. Dalcin [12] reported 63.1% LD 1 errors at species level

only in his study, which does not include single character

transposition errors, and 93.4% recall by LD 2. From his Figure

29 he also reported 84% recall for bigrams and 60% for trigrams

on species level names, apparently using a fixed threshold of 0.75

per name component (as a summed threshold of 1.5 for binomials);

recall values in this study are somewhat higher at equivalent

similarity thresholds. His Soundex recall rate was 74% for species,

again with degraded levels of precision, as compared with around

85% in the present study. In his study, the only algorithm on test

which was capable of 100% recall was the LD edit distance using a

threshold of ED 4, although arguably the same result could have

been achieved at some point for bigrams and trigrams by lowering

the thresholds until all true hits were returned.

In terms of strategic approaches, the result shaping option

employed in Taxamatch extends the manually designated (semi-)

equivalent process potentially available in the GRIN Taxonomic

Nomenclature Checker, in which a user would most likely search

initially at a moderate edit distance (the value of LD 2 is presented

as a default) and then perhaps manually increase the threshold

recursively if no hits were returned. Taxamatch automates this

step and in practice only requires to perform the search once since

all results are generated in a single pass with the more distant hits

simply being masked in the presence of closer ones using the

default result shaping option, or exposed automatically where

needed.

The strategy of a using a 2-stage filter, i.e. a computationally

cheap ‘coarse’ filter as a prelude to a more expensive but accurate

comparison, as employed in Taxamatch at both genus and species

levels, is a well known optimization technique to aid algorithm

efficiency in other domains. In analogous areas of information

such as the retrieval of census data [26] and medical name

matching (e.g. [25]) the term ‘blocking’ has been introduced,

referring initially to geographic census blocks, used as a pre-filter

device so that input names might be compared only with other

names in the same ‘block’ rather than against all names. By

extension, blocking can be also be envisaged based upon other

extrinsic characteristics of the data (for example in personal name

matching, requiring a match on gender, year of birth, data source,

etc.) or intrinsic characters (such as a match on initial letter of both

input and target terms, which as we have already seen is a feature

of Soundex and some other related phonetic algorithms). Blocking

could also be carried out (and tests repeated as parallel or

sequential passes) using multiple criteria if no single one is

considered be 100% reliable. One difference between such an

approach and Taxamatch is that with classic blocking techniques,

the assignment of target terms to blocks is static and can be carried

out in advance; however with the Taxamatch approach all names

must be available for initial consideration since the ‘blocking’/pre-

filter approach is dynamic and depends upon a range of

characteristics of the input name which cannot be determined in

advance.

A related approach known as the sorted neighbourhood method

[2] involves sorting the target data using some criterion (let us say

alphabetic order in the first instance), determining the closest

match point for the input term, and then testing target terms either

side of the nearest match within a pre-defined window (for

example 50 names below and 50 above the match point); once

again, this might be repeated using a range different sort criteria

on the basis that if the criteria are well chosen, using at least one of

them the input term and the desired target should sort close

together. Such an approach has been described by Müller et al.

[50] in the area of taxonomic content matching using not only the

name but also other extrinsic criteria such as collection, accession

number and more, in order to reduce numbers of names for

comparison to a manageable level, although in this case no test

results were provided for evaluation of the degree of success or

failure of this technique.

A final area to be briefly mentioned is that in which Taxamatch,

or a similar near match function, provides one component of a

more complete workflow, for example not only resolving a

misspelled to its correctly spelled equivalent but providing

additional information on its taxonomic status (plus resolving

synonyms to current names), taxonomic placement and more.

Such a facility is in fact provided in the Taxamatch-enabled

IRMNG system already cited utilizing additional IRMNG content

to just the taxonomic names, and has more recently been enabled

(again using Taxamatch) in other online systems such as OBIS, the

Ocean Biogeographic Information System [51], WoRMS, the

World Register of Marine Species [52], PESI, the Pan-European

Species Directories Infrastructure [53], the iPlant Taxonomic

Name Resolution Service (TNRS) [54] and more, the latter system

also being the subject of additional documentation in Boyle et al.

[55]. At present the Taxamatch component of such systems is hard

wired into the respective workflows but one could conceive of a

further degree of modularization or decoupling (perhaps via web

services) whereby the near matching and the subsequent further

name resolution might occur at different locations or using

different datasets, or where users could plug in a selection of

different reference datasets to test against. A somewhat similar

approach in this regard is already offered by the Global Names

Resolver [56], again using a Taxamatch-derived near matching

element, wherein a user-supplied set of names can be tested

against either all or a subset of seven available reference datasets

stored locally (for additional detail refer Table 5).

Current Taxamatch Implementations Plus Source
Code and Data Availability

Over the period since its initial construction and dissemination,

Taxamatch has been incorporated into a number of significant

regional and global biodiversity information systems as shown in

Table 5. A copy of the present ‘reference’ Oracle PL/SQL

implementation of Taxamatch is available from [57], with

implementations in other languages including PHP+MySQL,

Java and Ruby available from third parties as indicated under a

range of licenses including Apache 2.0 ([57], [58]), Mozilla Public

License 1.1 ([59]), BSD ([60]) and Gnu Lesser GPL ([61]). The

version of IRMNG used for the testing (last update: 2013-01-11) is

available for download from [57] and will shortly also be available

via the Global Names Classification and List Repository

(GNACLR) [62].

Taxamatch Near Matching of Scientific Names

PLOS ONE | www.plosone.org 24 September 2014 | Volume 9 | Issue 9 | e107510



Summary

This study demonstrates that a hybrid approach incorporating

both a Modified Damerau-Levenshtein Distance algorithm and a

phonetic algorithm customized to the characteristics of taxonomic

names can detect close to 100% of errors in taxon scientific names,

of multiple error types, and that good levels of both precision

(rejection of false hits) and efficiency (algorithm performance) can

be obtained via incorporation of appropriate rule-based filters at

relevant points in the algorithm design. Efficiency is further

enhanced by separate consideration of genus and species epithet

portions, resulting in only a small number of epithets requiring to

be tested once the initial set of near match genera has been

obtained. The inclusion of a result shaping stage effectively

automates the selection of relevant accept/reject thresholds on the

basis of real-time results and requires no intervention from the

user. Some residual problems with elevated levels of false hits in

the case of genus names alone, in particular with shorter names,

can be further assisted by the inclusion of a taxonomic or other

filter in addition to a purely lexical component, where such

Table 5. Summary of current Taxamatch-enabled taxonomic data systems known to the author as at August 2013.

System name Acronym Year available Content Remarks
Taxamatch
implementation

Interim Register of
Marine and
Nonmarine
Genera [40]

IRMNG 2007 465,000 genus names and 1.67
million species at May 2013, all
groups, extant and fossil

Emphasis on genus-level
completeness at the present
time. Incorporates the
author’s reference Taxamatch
implementation.

Oracle PL/SQL – reference
implementation [57]

SilverBiology
SilverArchive [58]

- - Not known Product development
apparently in abeyance,
but source code available

SilverBiology PHP [59]

University of Vienna
Herbarium [60]

- 2009 Source databases currently include
Vienna virtual herbarium, Catalogue
of Life 2010 and 2011 editions and
Fauna Europaea versions 1 and 2

PHP (custom)

Euro+Med
PlantBase [61]

- 2009 Vascular plants of Europe and the
Mediterranean region

PHP (custom)

World Register of
Marine Species [52]

WoRMS 2010 381,000 species names, other
ranks not stated, fairly complete
for global marine species, the
majority extant with a small
number fossil

Includes several dozen
component systems with
individual identities e.g. World
List of Porifera, Belgian Register
of Marine Species, etc, refer
http://www.marinespecies.org/
about.php

Modified SilverBiology
PHP

Pan-European
Species Directories
Infrastructure [53]

PESI 2010 An integration of Fauna Europaea
for all European land and freshwater
animals, Euro+Med PlantBase (refer
own entry above), the European
Register of Marine Species and the
EU component of Index Fungorum

As per WoRMS

Atlas of Living
Australia National
Species Lists
project [62]

ALA-NSL 2011 Integration of names, taxa and
references in the Australian Faunal
Directory (AFD), the Australian
Plant Name Index (APNI) and the
Australian Plant Census (APC)

Java [63]

The Global Names
Index [36]

GNI 2011 17 million names (all ranks),
all groups

No fuzzy search option
offered, but uses Taxamatch
as pre-processing to create
‘lexical groups’

Ruby [64]

Biodiversity
Information
Group IOZ [65]

- 2011 PHP (?)

The iPlant Taxonomic
Name Resolution
Service [54]

iPlant TNRS 2012 Choice of source databases for
matching plant names: the Missouri
Botanic Garden’s Tropicos database,
the Global Compositae Checklist
and the United States Department
of Agriculture PLANTS database

Extended SilverBiology
PHP [66]

The Global Names
Resolver [56]

2013 Checks input names for exact
matches against up to 7 large
reference sources concurrently
including Catalogue of Life, ITIS,
Index Fungorum, GBIF taxonomic
backbone, IPNI, Encyclopedia of
Life and Union

Fuzzy search appears to
return a result from only a
single resource at this time

As per Global Names Index

doi:10.1371/journal.pone.0107510.t005
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additional information is available, or simply by use of a smaller,

domain-specific reference dataset.

In tests using three sets of misspelled species names and four of

genera alone, Taxamatch performance is shown to be superior in

both recall and precision to other algorithms evaluated, which

include Soundex and two custom phonetic algorithms, the n-gram

variants bigrams and trigrams and either Levenshtein Distance,

Damerau-Levenshtein Distance, or Modified Damerau-Levensh-

tein Distance used at fixed thresholds and without additional

filtering. The three phonetic algorithms execute more rapidly but

are deficient in recall of non-phonetic errors in particular, while

the remaining (dynamic programming) algorithms show improved

recall of most non-phonetic errors but are unacceptably slow in

operation without additional substantial pre-filtering or blocking as

introduced in Taxamatch. Taxamatch performance time per input

name, at around 1.5 seconds per query, is considered reasonable

in the present web-enabled system when searching against a

reference database containing 465,000 genus and 1.67 million

species, a value which might be improved further with additional

optimization of either software or hardware environments, or by

use of a faster version of Taxamatch described herein as

‘Taxamatch rapid’ for data-intensive tasks such as deduplication

of very large datasets.
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