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Abstract

Post-translational modifications (PTMs) are crucial steps in protein synthesis and are important factors contributing to
protein diversity. PTMs play important roles in the regulation of gene expression, protein stability and metabolism. Lysine
residues in protein sequences have been found to be targeted for both types of PTMs: sumoylations and acetylations;
however, each PTM has a different cellular role. As experimental approaches are often laborious and time consuming, it is
challenging to distinguish the two types of PTMs on lysine residues using computational methods. In this study, we
developed a method to discriminate between sumoylated lysine residues and acetylated residues. The method
incorporated several features: PSSM conservation scores, amino acid factors, secondary structures, solvent accessibilities and
disorder scores. By using the mRMR (Maximum Relevance Minimum Redundancy) method and the IFS (Incremental Feature
Selection) method, an optimal feature set was selected from all of the incorporated features, with which the classifier
achieved 92.14% accuracy with an MCC value of 0.7322. Analysis of the optimal feature set revealed some differences
between acetylation and sumoylation. The results from our study also supported the previous finding that there exist
different consensus motifs for the two types of PTMs. The results could suggest possible dominant factors governing the
acetylation and sumoylation of lysine residues, shedding some light on the modification dynamics and molecular
mechanisms of the two types of PTMs, and provide guidelines for experimental validations.
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Introduction

Post-translational modifications (PTMs) are crucial steps in

protein synthesis and are important factors contributing to protein

diversity. Among the various types of PTMs, lysine acetylation and

sumoylation are emerging as two major types for both nuclear and

cytoplasmic proteins, and they are related to several human

diseases such as metabolic disorders and cancers [1–3].

Initially discovered on core histones approximately half a

century ago, lysine acetylation has been found to be involved in

multiple cellular processes such as transcriptional control, epige-

netic program shaping, cytoskeleton organization, and energy

metabolism regulation [4–7]. This type of reversible modification

begins with the catalysis of lysine acetyltransferases (KATs, or

histone acetyltransferases (HATs)), by adding the acetyl-group of

an acetyl-CoA to the epsilon-amino group of an internal lysine

residue. The process has been extensively characterized in many

nuclear histones and transcription factors [8]. In contrast, lysine

deacetylases (KDACs, or histone deacetylases (HDACs)) are

responsible for the removal of acetyl groups [9]. Lysine acetylation

and deacetylation have not only been associated with chromatin

[4,10] but have also been found to be related to cytoplasmic

proteins in recent studies [5,11].

Lysine sumoylation is another type of essentially reversible and

highly regulated PTM. It occurs through covalent attachment of

the small ubiquitin-like modifier (SUMO) to target proteins and is

mediated by the activation of enzyme E1, conjugating enzyme E2,

and ligase E3 [12]. Numerous chromatin-associated proteins have

been found to be sumoylated [13]. Studies have revealed the

impact of lysine sumoylation on transcriptional activation and

repression, DNA replication and repair, and chromosome

segregation, among other processes. Similar to methylation, the

effects of lysine sumoylation are dichotomous, i.e. correlated with

either gene activation or gene silencing [12,14]. Additionally,
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sumoylation has been reported to act as a scaffold and facilitate the

assembly of multiprotein complexes [15].

Because a lysine residue can undergo different PTMs, it is

possible that there exists some cross-regulation among them [16–

17]. For example, acetyltransferase p300 itself can block sumoyla-

tion of certain sites, which subsequently leads to the relief of

transcriptional repression [18]. Nuclear receptor coregulators such

as RIP140 also harbor various PTMs including acetylation and

sumoylation, and their crosstalk may coordinate to direct RIP140

regulation [19]. To elucidate the cross-talk between acetylation

and sumoylation, the first step is identifying the acetylation and

sumoylation sites in proteins.

However, traditional experimental methods including mass

spectrometry and Chip-on-Chip [20] techniques are often time

consuming, expensive, and sometimes insufficient to recognize all

of the modification sites in proteins. Computational methods could

complement experimental methods by predicting potential target

sites, revealing consensus motifs and providing insight into the

molecular mechanisms of the modifications. Several methods for

the prediction of lysine acetylation sites [9,21–24] and sumoylation

sites [25] have been developed. However, most of these prediction

approaches have focused on predicting only one type of PTM site,

i.e., either acetylation or sumoylation sites, thus providing little

information about their crosstalk. In this study, we developed a

computational method to discriminate between sumoylation sites

and acetylation sites. We also performed an analysis of the optimal

features selected in the method, which could suggest possible

differences between the two types of PTMs, shedding some light

on the governing factors and their molecular mechanisms.

Methods

The entire workflow of this study is illustrated in Fig. 1.

Dataset
All of the acetylation and sumoylation proteins used in this study

were obtained from the UniProt database (http://www.uniprot.

org/, release 2013_07). Proteins without experimentally verified

modification residues and with sequence identities .40% were

removed. We also removed sequences with lengths .2700 (e.g.,

P78527, Q96PK2, and Q9Y520) because SSpro4 software [26],

which was used in this study to calculate protein secondary

structures, cannot be run on proteins with lengths .2700.

However, secondary structure was one type of feature that was

necessarily used to construct our model. A small set of proteins,

whose sequences contained non-standard residues not belonging

to the 20 common amino acids such as ‘X’ (e.g., P83865), were

also removed. Finally, 1677 proteins remained, among which

there were 2780 acetylation sites (1566 proteins had acetylation

sites) and 218 sumoylation sites (138 proteins had sumoylation

sites); 27 proteins had both acetylation sites and sumoylation sites.

There was no site that was both an acetylation site and a

sumoylation site. The dataset is given in File S1.

Similar to development of PTM site predictors [27–32], in the

present study, the sliding window strategy was utilized to extract

positive and negative peptide samples. In our previous work, we

predicted sumoylation sites and achieved 89.18% accuracy by only

extracting 6 residues upstream and 6 residues downstream of the

sumoylation sites [31]. We also provided a biological analysis of

sumoylation, which suggested that the most important sites in

determining whether a peptide would be sumoylated were the 7th,

4th, 1st, 2nd, and 3rd sites [32]. Shi et al. [33] used 26,+6 region

surrounding the center lysine to develop PLMLA to predict

acetylated lysine residues. Gnad et al. [24] used 2 to 8 amino acids

upstream and downstream of the center lysine to predict

acetylation sites. It has been shown in structural studies that

peptide substrates coupled with lysine acetyltransferase (KAT)

domains do not exceed 14–20 amino acids in length [17,34]. In

summary, to the best of our knowledge, both sumoylation and

acetylation motifs should have a length of no more than 21.

Therefore, we adopted a window length 21 in this study to

investigate both types of PTMs; this window length was also

successfully used in our previous studies to predict several other

types of PTMs [27–30].

By sliding a 21-residue window along each protein sequence, we

extracted 21-residue peptide segments centered on a sumo-lysine

or on an acetyl-lysine residue, with 10 residues upstream and 10

residues downstream of the center lysine. Peptide segments with

lengths less than 21 were complemented by adding blank sites

whose features were set to 0. In this study, peptides with a centered

sumo-lysine were regarded as positive samples, while peptides with

a centered acetyl-lysine were regarded as negative. Accordingly,

218 positive and 2780 negative samples were extracted.

The dataset was unbalanced due to an extremely high number

acetylation samples. Therefore, we randomly split the set of 2780

acetylation samples into three parts without overlaps. There were

926, 927, 927 acetylation samples in the three parts. The 218

sumoylation samples were combined with the 3 parts of acetylation

samples to generate 3 datasets, respectively. In each dataset, all

218 sumoylation samples were presented with one of the 3 parts of

acetylation samples. The 3 datasets were named as Dataset 1,

Dataset 2, Dataset 3.

Feature extraction
We used the following features to encode all of the 21-residue

peptides, for both the positive and negative samples.

Features of PSSM conservation scores. It is widely

believed that the evolutionary conservation observed in multiple

sequence alignments is important in biological sequence analysis

[27]. A conserved residue could be under strong selective pressure

and thus could play a vital role in protein function. In this study,

the conservation status of a residue in a peptide was measured

using Position Specific Iterative BLAST (PSI-BLAST) [35], which

is a powerful sequence searching method. This method was used

to search the UniRef100 database (Release: 15.10, 03-Nov-2009)

through 3 iterations with 0.0001 as the E-value cutoff. For each

residue in a peptide, a 20-dimensional vector was computed to

denote the probability of the residue against its mutations for the

20 types of native amino acids. Therefore, for a 21-residue

peptide, all such 20-dimensional vectors for the 21 residues in the

peptide composed a matrix, called position specific scoring matrix

(PSSM), which can be used to quantify the conservation status of

every residue in a peptide. These 20621 = 420 values in the

matrix (called PSSM conservation scores) were used in this study

as one type of feature to encode a peptide to construct our

classifier.

Features of amino acid factors. The 20 native amino acids

have different physicochemical and biochemical properties.

Different compositions of the 20 native amino acids in a protein

may endow the protein with different physicochemical and

biochemical properties and thus affect protein structure and

function. The AAIndex [36] is a database containing the

physicochemical and physiological properties of the 20 amino

acids. Atchley et al. [37] performed multivariate statistical analyses

on the database and generated 5 different numerical patterns for

each amino acid to reflect their five properties: codon diversity,

electrostatic charge, molecular volume, polarity and secondary

structure. Herein, we used the 5 numerical scores for each residue
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in a 21-mer peptide, called amino acid factor features, as another

type of feature to construct our model.

Note that because the center residue in a 21-mer peptide was

always lysine, it was not necessary to incorporate the numerical

scores of the centered lysine. Only the 20 surrounding residues

should be encoded. Therefore, there were only 5*20 = 100 amino

acid factor features for one 21-mer peptide.

Features of secondary structures. Protein secondary

structures are of great importance in residue modifications [17]

and should also be employed to construct classifiers. In this study,

the secondary structure state of every residue in a 21-mer peptide

was calculated using SSpro4 [26]. SSpro4 can predict the

secondary structural state of every residue in a protein and give

3 different ‘helix’, ‘strand’, or ‘other’ states for every residue. To

transform the 3 different secondary structure states to numeric

features, we represented each of the states as a 3-bit binary value.

The ‘helix’, ‘strand’ and ‘other’ states were denoted as ‘100’, ‘010’

and ‘001’, respectively. A 3-bit binary value can be regarded as

comprising 3 numeric features. For example, ‘100’ can be

regarded as the 3 numeric features 1, 0 and 0. Therefore, there

were 3621 = 63 secondary structure features for a 21-length

peptide, although each of these 63 features was either 0 or 1.

These 63 features for a peptide were also used as another type of

feature to construct our classification model.

Figure 1. Flowchart representing the entire workflow of this study. All samples were downloaded from UniProt. The acetylation samples
were separated into 3 parts. Then, every one of the 3 parts was combined in turn with all of the sumoylation samples to generate a dataset. In total, 3
datasets were generated. In each dataset, an optimal feature set was selected based on the mRMR and the IFS approach. The 3 optimal feature sets
were combined and analyzed.
doi:10.1371/journal.pone.0107464.g001

Discriminating between Lysine Sumoylation and Lysine Acetylation

PLOS ONE | www.plosone.org 3 September 2014 | Volume 9 | Issue 9 | e107464



Features of solvent accessibilities. We also took into

account residue solvent accessibility, because the effects of solvent

accessibilities on residue modifications have been demonstrated by

previous studies [38]. We used SSpro4 [26] to compute the solvent

accessibilities of every residue in a 21-residue peptide. SSpro4 can

give a ‘buried’ or ‘exposed’ categorization for every residue. To

transform the 2 different solvent accessibility states to numeric

features, we represented each of the 2 states as a 2-bit binary value.

The ‘buried’ and ‘exposed’ states were denoted as ‘10’ and ‘01’,

respectively. A 2-bit binary value can be regarded as 2 numeric

features. Therefore, there were 2621 = 42 solvent accessibility

features for a 21-length peptide, although every one of these 42

features was either 0 or 1. These 42 features for a peptide were also

used as another type of feature set to construct our model.

Feature of disorder scores. If a region of a protein is devoid

of stable structure, or if it has a large number of conformations, it

is called a ‘‘disordered region’’. Disordered regions could play

important roles in protein structure and function [28,39–40].

Disordered regions always contain more PTM sites than non-

disordered ones; therefore, the disordered states of a protein are

quite important in PTM studies. The likelihood of one residue

forming a disordered structure can be measured by VSL2 software

[41]. VSL2, one of the best disorder predictors [41], can give a

disorder score for every residue in a peptide. The higher the score

is, the more likely that the residue forms a disordered structure.

We computed the disorder score for every residue in a 21-residue

peptide and used the 21 scores as another type of feature set to

Table 1. Features utilized to encode a 21-residue peptide.

Feature type Features Number

PSSM conservation scores 20-dimensional vector 420

Amino acid factors Polarity, secondary structure, molecular volume,
codon diversity, electrostatic charge (only for
surrounding sites, except the center)

100

Secondary structures Secondary structures: helix, strand, other 63

Solvent accessibilities Solvent accessibilities: buried, exposed 42

Disorder scores Disorder score reflecting the disorder status of the residue 21

Total 646

doi:10.1371/journal.pone.0107464.t001

Figure 2. The IFS curves for the 3 datasets. A series of classifiers can be constructed using different number of top features from the mRMR
tables during the IFS process. Plot showing the performances of the different classifiers, with MCC as the main measurement on the y-axis. As the
classifiers used different numbers of features, we represented the classifiers with the corresponding number of features used in x-axis. In Dataset 1,
the highest MCC (0.7046) was achieved at 118 features. This finding demonstrated that the classifier adopting the top 118 features in the mRMR table
for Dataset 1 performed the best, and the 118 features were regarded as composing the optimal feature set for Dataset 1. Similarly, a peak of MCC
0.7322 and 0.7267 was obtained at 35 and 41 features in Dataset 2 and Dataset 3, respectively. These results demonstrated that by using the top 35
and 41 features in the mRMR table for Dataset 2 and Dataset 3, respectively, the classifier performed the best. The 35 and 41 features were regarded
as composing the optimal feature set for Dataset 2 and Dataset 3, respectively.
doi:10.1371/journal.pone.0107464.g002
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construct our model. There were only 21 features of disorder

scores for a peptide because each residue only had one score value.

To summarize, the features utilized in this study are listed in

Table 1. As seen in Table 1, for a 21-length peptide, there are

420 PSSM conservation score features, 100 amino acid factor

features, 63 secondary structure features, 42 solvent accessibility

features and 21 disorder score features. A total of 646 features

were extracted for such a 21-length peptide. This method was

quite similar to that used in [28] for predicting protein c-

carboxylation sites, as well as to that used in [27] for predicting

protein pyruvoyl-serine sites.

Feature selection
We employed the mRMR (Maximum Relevance Minimum

Redundancy) method [42–44] to rank the importance of the 646

features, according to the Maximum Relevance Minimum

Redundancy criterion. The Maximum Relevance criterion selects

features most related to the target. The Minimum Redundancy

criterion excludes features containing redundant information

among the selected features. Briefly, to rank features using mRMR

criteria, two values were calculated for each feature: value A for

relevance and value B for redundancy. Then, the value A–B is

used to measure the feature; the higher the value A–B is, the

higher the feature ranks. For details of the mRMR method, please

refer to [27–28,42–44].

Using this method, the 646 features were ordered. In the

ordered list, called the mRMR table, a feature with a smaller index

indicated that it had a better trade-off between the maximum

relevance and the minimum redundancy and thus could be more

important. Based on the ordered feature list, a series of classifiers

can be constructed by using different features. For example, a

classifier can be constructed by using only the top 1 feature from

the list. By using the top 2 features from the list, another classifier

can be constructed, and so on. The classifier of the next round

always contained 1 more feature from the ranked list, following the

previous round. In this procedure, features in the ranked feature

list were added one by one in decreasing order of rank. A new

feature set was generated when another feature had been added,

and for each of the feature sets, a classifier was constructed. If

there were 646 features in the list, a total of 646 classifiers could be

constructed. This procedure is called the IFS (Incremental Feature

Selection) method [45–46]. The 646 classifiers constructed use the

first feature, the first 2 features, the first 3 features, and so on, up to

all 646 features, respectively, from the ranked feature list. From

the 646 classifiers, we can select the best one to discriminate the

two modifications, based on which had the best performance, and

the features used by that classifier were regarded as composing the

optimal feature set.

Prediction methods
We employed the Random Forest (RF) algorithm to construct

the classifier. Developed by Loe Breiman [35], RF is a popular

machine-learning algorithm that has recently been successfully

applied in various biological problems [27–28,47]. As an ensemble

classifier, the RF method contains several decision trees. The final

classification result is determined by the class with the most votes

among all of the trees. For a detailed description of the RF

algorithm, please refer to [48–49]. In this study, the Random

Forest classifier in Weka 3.6.4 [50] software was employed to

perform the prediction. The algorithm was run with default

parameters.

Performance measurements
In this study, we used the jackknife cross-validation test to assess

the efficiency of our classifier, witch was regarded as the most

objective among various evaluation methods.

The following measurements were used in this study:

ACC~ TPzTNð Þ= TPzFPzTNzFNð Þ|100% ð1Þ

Sensitivity~TP= TPzFNð Þ|100% ð2Þ

Table 2. The classification performances of the 3 best classifiers for the 3 datasets.

Optimal Features SN SP ACC MCC

Dataset 1 118 66.51% 97.30% 91.43% 0.7046

Dataset 2 35 71.10% 97.09% 92.14% 0.7322

Dataset 3 41 68.35% 97.63% 92.05% 0.7267

doi:10.1371/journal.pone.0107464.t002

Figure 3. Type distributions of the 125 combined optimal
features. The 125 features were obtained by combining the 3 optimal
feature sets for the 3 datasets. The histograms show the number of
optimal features belonging to each type, as well as the total number of
features of each type.
doi:10.1371/journal.pone.0107464.g003
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Specificity~TN= TNzFPð Þ|100% ð3Þ

MCC~ TP|TN{FP|FNð Þ=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
TPzTNð Þ TPzFNð Þ FPzTNð Þ FPzFNð Þ

p ð4Þ

in which TP, TN, FP, FN denoted the number of true positives,

true negatives, false positives and false negatives, respectively.

When measuring the performance of a classifier, it is important

to note that a naive method could make use of the composition of

the data to label all instances as the dominant class (acetylation in

this study), resulting in an accuracy (ACC) equal to the percentage

of instances of that class (e.g., 926/(218+926) = 80.94% in our

Dataset 1). In actuality, such a naive method is useless, although its

Figure 4. Sub-type distributions of the 125 combined optimal features. Histogram showing (A) the distribution of subtypes of the
conservation score features; (B) the distribution of subtypes of the secondary structure features; (C) the distribution of subtypes of the amino acid
factor features; (D) the distribution of subtypes of the solvent accessibility features.
doi:10.1371/journal.pone.0107464.g004
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accuracy may be high. Therefore, several other measurements

must be used in addition to the accuracy.

Sensitivity is the percentage of positive samples (sumoylation)

that are correctly classified as positive by the method. By contrast,

specificity is the percentage of negative samples (acetylation) that

were correctly classified to be negative. Sensitivity and specificity
values ,100% reflect the occurrence of false-negative and false-

positive errors of the method, respectively.

MCC (Matthews Correlation Coefficient), first used in Mat-

thews’s study [51], is a single-valued but robust measurement of

performance. The MCC value ranges from 21.0 to +1.0, where 0

represents a random correlation between the classified variables

and the actual variables, +1.0 a perfect correlation, and 21 a

perfect negative correlation [52–54]. MCC takes into account both

false-positive and false-negative errors and is generally deemed to

be a balanced measurement even if the classes are of very different

sizes [17]. For these reasons MCC is more reliable than accuracy.

Therefore, the MCC was used throughout this study as the main

evaluator and has also been used to assess PTM prediction

methods in the literature, such as in [17,27–28].

Results

Feature selection and the optimal classification
We employed the mRMR (Maximum Relevance Minimum

Redundancy) method [42–44] to rank the importance of the 646

Figure 5. Site distributions of the 125 combined optimal features. The solid bars, checked bars, gray bars, light gray bars and hatched bars
represent features of PSSM conservation scores, disorder, secondary structures, solvent accessibility and amino acid factors, respectively.
doi:10.1371/journal.pone.0107464.g005

Figure 6. Amino acid occurrence frequencies surrounding the active-lysine generated by WebLogo [70]. Logo illustrations were
generated based on all of the 21-residue peptides in our dataset, showing the occurrence frequencies of 20 amino acids surrounding the sumo-lysine
(a) or the acetyl-lysine (b). N and C represented the N- and C-terminuses of the 21-residue peptides, respectively.
doi:10.1371/journal.pone.0107464.g006
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features. Using this method, the 646 features were ordered in the

generated mRMR table. Because there were 3 datasets in this

study, 3 iterations were performed with each of the 3 datasets.

Therefore, 3 mRMR tables were obtained, one for each dataset.

The 3 mRMR tables are provided in File S2.

In the IFS (Incremental Feature Selection) procedure, 646

classifiers were constructed using the first 1 feature, the first 2

features, the first 3 features, and so on until all 646 features were

used, respectively, from the ranked feature list in the mRMR table.

Then, the performance of each of the 646 classifiers was measured

according to ACC, sensitivity, specificity and MCC. The perfor-

mance results of the classifiers can be found in File S3. We used

MCC as the main evaluator to measure the performances of the

classifiers. We plotted the MCCs against different classifiers in

Fig. 2 to show the performances of the classifiers; the resulting

curve is called the IFS curve. As the classifiers used different

number of features, we represented the classifiers on the x-axis

with the corresponding number of features they used.

The optimal feature set, with which the corresponding classifier

yielded the best performance, can be obtained. From Fig. 2 and

the data in File S3, it can be observed that in Dataset 1, the

classifier adopting the top 118 features performed the best, with an

MCC of 0.7046. In Dataset 2, the best classifier was the one using

the top 35 features, yielding an MCC of 0.7322. In Dataset 3, the

MCC reached a maximum of 0.7267 when the classifier was

constructed using the top 41 features. The MCC values and the

SN, SP, ACC measurements for the best classifiers in the 3

datasets, respectively, are summarized in Table 2. The 118, 35

and 41 features were regarded as composing the 3 optimal feature

sets for the 3 datasets, respectively. The detailed features of the 3

optimal feature sets can be found in the mRMR table in File S2.

From Table 2, it is clear that the successful classification

indicated that the optimal features are capable of distinguishing

the two types of PTMs: lysine sumoylation and lysine acetylation.

The features selected in the optimal feature sets reflect the

differences and governing factors of the two types of PTMs.

Analysis of the features may shed some light on the mechanisms of

their formations.

The combined optimal feature set
We combined the 3 optimal feature sets for the 3 datasets,

excluding duplicates features. Finally, 125 optimal features were

obtained, which can be found in File S4. These 125 optimal

features were analyzed and are discussed below, because features

that can be optimally used to discriminate acetylation and

sumoylation are good candidates for analyzing the differences

between them.

We examined the feature type of the combined 125 optimal

features, and the feature type distributions are depicted in Fig. 3.

It can be observed in Fig. 3 that of the 125 optimal features, 77

belonged to the PSSM conservation score, followed by 24

belonging to the amino acid factor, 6 belonging to the solvent

accessibility, 10 belonging to the secondary structure and 8

belonging to the disorder. PSSM occupied the majority of the

optimal features (61.6%), and amino acid factor was the second

highest (19.2%), indicating their prominent roles in discriminating

acetylation and sumoylation modifications.

Discussion

Optimal feature type analysis
PSSM features. The distribution of the selected PSSM

features against mutations of 20 native amino acids is shown in

Fig. 4(A). The mutations of 20 different amino acids could have

different impacts on discrimination between acetylation and

sumoylation. Mutations to P (Proline), S (Serine) and I (Isoleucine)

could affect the most, with more than 6 features. As proline is the

residue most commonly found near interaction sites, protecting the

integrity of the sites [55], it is suggested that the two modifications

would show a distinct difference in the conservation of proline.

Proline is frequently involved in acetylation and plays an

important role [56–57]. In contrast, while a mutation of proline-

90 in small ubiquitin-related modifier (SUMO) genes is fatal for

both hydrolase and isopeptidase activities of SUMO peptidases in

humans [58], there is limited evidence supporting a link between

prolines and sumolyzation. However, some SUMO targets, such

as estrogen receptor b, are subjected to SUMO modification,

depending on phosphorylation of its serine residues [59].

Amino acid features. Sub-type distributions of amino acid

factor features in the 125 optimal features are depicted in

Fig. 4(C). It was found that secondary structure and electrostatic

charge were the most important, while molecular volume, polarity

and codon diversity contributed almost equally. In principle, the

protein-protein interaction interface is determined by the amino

acid types and the secondary structures of residues in the interface

[60]. Secondary structures have been accepted to be essential for

protein-protein interactions and appear to be useful for the

characterization and classification of the interacting sites [61]. As

acetylation and sumoylation are both enzymatic and reversible,

the importance of secondary structure here might suggest again

the different interaction modules of enzymes and targets between

them. Additionally, the secondary structure feature of site 13

always ranked at first in the 3 mRMR feature lists, suggesting that

the secondary structure of this site could be quite different between

acetylation and sumoylation. Furthermore, the electrostatic charge

feature of site 10 ranked above 12 in all the 3 mRMR feature lists,

indicating that it could show much difference between acetylation

and sumoylation.

Other features. Though only a few features were selected in

the PSSM conservation score and amino acid factor in quantity,

secondary structure features still made up the subordinate portion.

It can be seen from Fig. 4(B) that ‘‘other’’ non-regular structures

were more important than ‘‘strand’’ and ‘‘helix’’ regular struc-

tures, perhaps because the flexibility of non-regular structures

allow the protein with an easy fit into enzyme catalytic sites [62–

63]. Because previous studies have shown that some types of post-

translational modifications prefer to occur in coiled regions

[6,11,17,64–65], our result supported the aforementioned finding

that these two modifications occupied different modes of action. A

much higher ratio of disorder features (8 out of 21) was selected

than other feature types (Fig. 2), suggesting the importance of

disorder in the topology of protein modifications as well as in

protein-protein interactions [62].

In contrast, there were only 6 solvent accessibility features

selected in the optimal feature set, accounting for a small fraction;

there was no difference between buried and exposed solvent

accessibility features, as observed in Fig. 4(D). Several reports

have demonstrated that both acetylation and sumoylation are

prone to utilize hydrophobic residues as dominant residues for

their modifications [63,66–69]. It is suggested that solvent

accessibility may not be a very efficient feature for distinguishing

the two types of modifications.

Optimal feature site analysis
To investigate whether there was a certain pattern around the

modified lysine site to determine acetylation or sumoylation, we

analyzed the site distribution of the 125 optimal features, and the

results are depicted in Fig. 5.
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It can be observed that sites 9, 10 and 13 accounted for the most

features, suggesting their important roles in discriminating the two

modifications. The selected optimal conservation features also

largely resided at sites 9 and 13, suggesting the conservation

differences in the protein sequences at these two sites. From

Fig. 5, it also can be observed that amino acid factor features at

site 10 contributed the most, followed by sites 9, 13, 14 and 16.

However, features at site 1 contributed the least (only 1 optimal

feature).

It is also worth pointing out that none of the ‘‘hot’’ sites,

including 9, 10 and 13, contained disorder features, while site 11

only had secondary structure and disorder features. One possible

explanation might be that the disorder status at specific sites plays

a vital role in determination of different modifications required for

forming specific conformations and bind specific enzymes, which

again reinforces the importance of including protein structures in

post-translational modifications. From Fig. 5, it was also demon-

strated that irrespective of feature types, features downstream of

the center lysine were much more important than those upstream,

especially for the disorder and amino acid factor features. This

finding suggested that we should pay more attention to the

downstream sequence of the center modified lysine in cross-talk

studies of acetylation and sumoylation in future.

Occurrence frequencies of amino acids
Occurrence frequencies of 20 native amino acids surrounding

the acetylation and sumoylation sites were each represented with

WebLogo [70] (http://weblogo.berkeley.edu/) (and shown in

Fig. 6). It can be observed that consistent with previous reports,

the preferred motif of acetylation emphasized the great impor-

tance of amino acid K [71]. However, only a few amino acid

preferences for sumoylation can be found in its consensus motif

YKXE (where Y represents an aliphatic amino acid, and X is any

amino acid) [25,72]. These findings also corroborated the finding

that site 13 (domination of E in sumoylation) had a large number

of features belonging to the PSSM mentioned above (Fig. 5).

Combined with our mRMR result, in which the secondary

structure feature of site 13 ranked the first in the optimal feature

set (see File S2), it could be inferred that site 13 was a strong

governing factor to the discrimination of the two modifications.

Interestingly, site 10 also contributed, with a high frequency of G

and E for acetylation, but V and I for sumoylation.

Guidelines for experimental validation
Until now, few reports available have distinguished acetylation

and sumoylation of proteins in silico; therefore, it is worth noting

that the selected optimal features at different sites from this study

could provide useful clues for experiments to identify the

differences and cross-talks between the two modifications. Among

all of these optimal features, the PSSM conservation scores were

determined to be the most important, followed by the amino acid

factors (Fig. 3). It was also suggested that secondary structures and

electrostatic charges of amino acids at sites 9, 10, 13 and 16 played

pivotal roles (Fig. 5). Although both acetylation and sumoylation

usually occurred within coiled regions, they could be a part of

different interaction modules, and therefore, more non-regular

secondary structure features should be taken into consideration

(Fig. 4(B)). In addition, many studies have found that both

Acetyl- and SUMO-interacting motifs are hydrophobic; however,

the solvent accessibility features (buried or exposed) were not

efficient enough to discriminate (Fig. 3(D)). Moreover, acetyla-

tion and sumoylation showed differential preferences in terms of

amino acid frequency. K was prone to appear in the acetylation

flanking sequences, while only a few amino acids showed strong

conservation, such as E at site 13 in sumoylation (Fig. 6).

Accordingly, these optimal features could be good candidates for

validation by experiments and further investigations.

Conclusion

In this study, we analyzed the factors discriminating sumoyla-

tion and acetylation by constructing classifiers and using hybrid

features of sequences: PSSM, amino acid factors, secondary

structures, solvent accessibilities, and disorder scores. Our results

were consistent with consensus motifs previously found for

acetylation and sumoylation. The results of the feature analysis

from this work might contribute to an understanding of the

mechanisms of lysine acetylation and sumoylation and provide

guidance for related experiments for validations.
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