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Abstract

Cancer is a serious disease that causes many deaths every year. We urgently need to design effective treatments to cure this
disease. Tumor suppressor genes (TSGs) are a type of gene that can protect cells from becoming cancerous. In view of this,
correct identification of TSGs is an alternative method for identifying effective cancer therapies. In this study, we performed
gene ontology (GO) and pathway enrichment analysis of the TSGs and non-TSGs. Some popular feature selection methods,
including minimum redundancy maximum relevance (mRMR) and incremental feature selection (IFS), were employed to
analyze the enrichment features. Accordingly, some GO terms and KEGG pathways, such as biological adhesion, cell cycle
control, genomic stability maintenance and cell death regulation, were extracted, which are important factors for identifying
TSGs. We hope these findings can help in building effective prediction methods for identifying TSGs and thereby,
promoting the discovery of effective cancer treatments.
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Introduction

Currently, cancer is the second most common cause of death,

following cardiovascular disease. Cancer that originates from the

epithelial cells or mesenchymal cells is characterized by uncon-

trolled cell proliferation. In malignancy, cancer cells invade

adjacent normal tissues and metastasize through blood circulation,

lymphokinesis or body cavity transfer. In this process, proteins that

are coded by tumor suppressor genes (TSGs) play vital roles in the

mechanisms associated with cellular growth, DNA damage,

apoptosis and metabolic regulation [1].

It has been reported that tumor suppressor inactivation and

haploinsufficiency occur at several different levels in tumor

patients. In the past decades, many classic TSGs have been

widely identified, which are silenced by recurrent LOH (loss of

heterozygosity) and physical deletion in the tumor genome.

Increasing evidence has shown the abnormal DNA methylation

or histone modifications, and non-coding RNA affect the

expression of TSGs at the epigenetic level and post-transcriptional

level, respectively [2,3].

The first identified TSG was retinoblastoma protein (Rb), which

was identified by studies of familial retinoblastoma in early

childhood. Based on this, the ‘‘two-hit’’ hypothesis was introduced

by Knudson in 1971 [4,5]. As a guardian to the normal cell cycle,

the Rb protein is responsible for the G1/S checkpoint and

maintains regular cell growth. In addition to loss of heterozygosity,

the high frequent mutations or partial deletions are mainly located

in exon13,exon17 of Rb and have been found in various cancer

types, especially in lung cancer, breast cancer, osteosarcoma and

bladder cancer, with a frequency ranging from 15% to 50% [6–

10]. Like Rb, the p53 protein family as a key element of the tumor

suppression network, exerts much of its growth arrest in the cell

cycle and induces apoptosis. Changes to p53 are involved in

various cancers. Genetic variation mainly missense mutations, in

p53 are often regarded as the driver mutations that confer

apoptosis evasion and abnormal cell growth of tumor cells,

especially those that originate from the epithelial tissue. More than

86% of point mutations occur in the evolutionary conservative

regions, especially four mutation hotspots [11,12]. In addition, p53

is silenced via LOH in the genome and hypermethylation at the

epigenetic level in cancer patients [13,14].

Like Rb and p53, some tumor suppressor proteins control cell

behaviors directly by arresting cell proliferation, disturbing the cell

cycle and inducing apoptosis, and these are called the gate-

keepers. The destiny of a cell is also affected indirectly by some

tumor suppressor proteins that are associated with mutation

accumulation and genome stability maintenance such as BRCA1

and BRCA2, which are also referred to as caretakers [15,16].
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Additionally inherited mutations of BRCA1 and BRCA2 (breast

cancer 1/2) are associated with patients who have hereditary

breast cancer, accounting for 5–10% of all breast cancer patients

[17]. Loss function of their products causes abnormal homologous

recombination and genome instability, which increases the

susceptibility to breast and ovarian cancer [18].

Unlike the activated oncogene, suppression of TSGs occurs

more frequently, providing evidence for understanding the

initiation and progress of various cancers. The identification and

subsequent activation of TSGs can facilitate controlling cell

proliferation, restraining the biological activity of cancer. In this

study, we attempted to investigate the characteristics of TSGs. The

TSGs retrieved from the web-based database, TSGene (tumor

suppressor gene database), facilitated our investigation of TSGs.

These genes were called ‘positive genes’ and all of the remaining

genes in the STRING were selected as ‘negative genes’. Gene

Ontology (GO) is an acknowledged bioinformatics tool for

representing gene product properties across all species by defined

GO terms, the function of the genes and their products were

represented by the GO terms and predicted by the GO annotation

effectively [19,20]. In contrast, the Kyoto Encyclopedia of Genes

and Genomes (KEGG) is a comprehensive database based on

known molecular interaction networks and is usually used to

understand biological pathways and systems [21]. In view of this,

the enrichment scores of the GO terms and KEGG pathways were

used to encode all genes investigated in this study. Minimum

redundancy maximum relevance (mRMR) and incremental

feature selection (IFS) [22] combined with a prediction engine

were employed to analyze these features. The analysis of the

extracted GO terms and KEGG pathways suggests that they are

related to TSGs. In addition, the extracted GO terms and KEGG

pathways were used to predict the novel TSGs, indicating that

they may help build effective computational methods for

identifying TSGs.

Materials and Methods

Dataset
We compiled 716 human TSGs in the TSGene database

(http://bioinfo.mc.vanderbilt.edu/TSGene/download.cgi), which

were collected from two resources: public databases and literature

reports. In detail, 187 (human) and 170 (human) known TSGs

were retrieved from UniProtKB (28 January, 2012) and the TAG

database (http://www.binfo.ncku.edu.tw/TAG/GeneDoc.php)

(29 March, 2012), respectively, with only 41 overlapped genes

by mapping to the Entrez gene symbols. By combining two

exhaustive searches, PubMed and Gene Reference Into Function

(GeneRIF) [23,24], and after overlapping and synonymous genes

with same the Entrez gene ID were filtered, 637 protein-coding

TSGs and 79 non-coding TSGs were identified [25]. Because the

encoding method described in Section ‘‘Encoding method’’

employed the neighbors of each investigated TSG in the

STRING, we obtained 615 genes with their ensembl protein

IDs in the STRING. These genes were termed ‘positive genes’ and

are given in Table S1. The remaining 17,985 ensembl protein IDs

in the STRING were considered ‘negative genes’.

The number of negative genes was much larger than that of the

positive genes. This is an imbalanced dataset. Inspired by some

studies dealing with this type of data [26,27], we divided the

17,985 negative genes into six datasets, A1,A2, . . . ,A6, where

A1,A2, . . . ,A5 contained 3,075 negative genes and, A6 contained

2,610 negative genes. The 615 positive genes were put into each of

these datasets, comprising six new datasets, S1,S2, . . . ,S6, i.e., Si

(i = 1,2,3,4,5,6) consisting of genes in Ai (i = 1,2,3,4,5,6) and 615

positive genes.

Encoding method
To analyze the characteristics of the TSGs, it is very important

to encode each gene with its essential properties. GO is an

acknowledged bioinformatics tool for representing gene product

properties across all species by defined GO terms, while KEGG is

a comprehensive database based on known molecular interaction

networks and usually includes the biological pathway and system

information [21]. Therefore, we selected GO terms and KEGG

pathways to code each gene. TSGs have a strong relationship with

some GO terms and KEGG pathways. On the other hand, the

enrichment method of GO can reflect the relationship between the

genes and GO terms [28]. It is reasonable to use this method to

encode genes and analyze the relationship of the TSGs and GO

terms. Furthermore, this method can also be extended to KEGG

pathways [29] to find the relationship between the genes and

KEGG pathways.

GO enrichment. For one gene g and one GO term GOj, the

GO enrichment score is defined as the 2log10 of the hypergeo-

metric test P value [28230] of a gene set G containing g’s direct

neighbors in the protein-protein interaction network of STRING

and GO term GOj, which can be calculated by:

SGO (g,GOj)~{ log10

Xn

k~m

M

m

� �
N{M

n{m

� �
N

n

� �
0
BBB@

1
CCCA ð1Þ

where N is the number of overall proteins in human, M is the

number of proteins annotated to the GO term GOj, n is the

number of proteins in G, and m is the number of proteins in G,

which are annotated to the GO term GOj. The high score for one

gene and one GO term implies that the gene and GO term have a

Table 1. The number of remaining features after using Cramer’s coefficient to exclude non-essential features.

Dataset Number of remaining features

S1 3,347

S2 3,837

S3 4,632

S4 4,270

S5 4,956

S6 6,661

doi:10.1371/journal.pone.0107202.t001
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Figure 1. Six IFS-curves for six datasets. In detail, (A) shows the IFS-curve for the dataset S1; (B) shows the IFS-curve for the dataset S2; (C) shows
the IFS-curve for the dataset S3; (D) shows the IFS-curve for the dataset S4; (E) shows the IFS-curve for the dataset S5; (F) shows the IFS-curve for the
dataset S6. The Y-axis represents the Matthews’s correlation coefficient (MCC) and the X-axis represents the number of features participating in the
classification model.
doi:10.1371/journal.pone.0107202.g001

Table 2. The number of features in the optimal feature set for each dataset and the MCC values obtained by using these features.

Dataset
Number of features in
the optimal feature set Maximum MCC value

S1 366 0.3938

S2 440 0.4092

S3 181 0.4417

S4 318 0.4351

S5 302 0.4744

S6 261 0.5511

Mean 0.4509

doi:10.1371/journal.pone.0107202.t002
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special relationship. The 12,877 GO terms induced 12,877 GO

enrichment scores.

KEGG enrichment. For one gene g and one KEGG

pathway Pj, the KEGG enrichment score is defined as the –

log10 of the hypergeometric test P value [29] of a gene set G
containing g’s direct neighbors in the protein-protein interaction

network of STRING and KEGG pathway Pj, which can be

computed as follows:

SKEGG (g,Pj)~{ log10

Xn

k~m

M

m

� �
N{M

n{m

� �
N

n

� �
0
BBB@

1
CCCA ð2Þ

where N is the number of overall proteins in human, M is the

number of proteins in the KEGG pathway Pj, n is the number of

proteins in G, m is the number of proteins in both G and Pj.

Additionally, the higher the KEGG enrichment score for g and Pj,

the stronger the relationship between them. The 239 KEGG

pathways induced 239 features of KEGG enrichment scores.

Each of the 12,877 GO enrichment scores or each of the 239

KEGG enrichment scores can be considered a dimension.

Accordingly, each gene g can be represented by a vector in

12,877+239 = 13,116-D space, which is formulated as:

vg~(SGO(g,GO1), . . . ,SGO(g,GO12877),

SKEGG(g,P1), . . . ,SKEGG(g,P239))T
ð3Þ

Prediction method
Dagging is a well-known meta classifier. The main idea of this

classifier is to integrate multiple classifiers derived from a single

learning algorithm that is trained by disjoint samples of the

original dataset [31]. The brief description of this method is as

follows. For a training dataset = with samples s1,s2, . . . ,sn,

construct k disjoint subsets by randomly taking n0 samples in =,

without replacement, such that kn0ƒn. These subsets were used to

train a basic classifier (e.g., support vector machine) and derive k
classification models, M1,M2, . . . ,Mk. For a query sample, each of

these models Mi (1#i# k) provides a predicted result. The

predicted result of dagging integrated these results by majority

voting.

In Weka 3.6.4 [32], the classifier ‘‘Dagging’’ implements the

dagging classifier mentioned above. Here, it was adopted as the

prediction engine. For convenience, it was run with its default

parameters. In detail, the SMO (Sequential Minimal Optimiza-

tion), which implements John Platt’s sequential minimal optimi-

zation algorithm for solving the optimization problem during the

training of a support vector classifier using polynomial or Gaussian

kernels [33,34], is set as the basic classifier, and k is set to 10.

Evaluation method
Ten-fold cross-validation is a widely used cross-validation

method for evaluating the performance of different classification

models [35238]. Compared to the Jackknife test [39,40], the 10-

fold cross-validation test requires less computing time and provides

similar results for a given dataset. Therefore, the current study

adopted this cross-validation method to evaluate the performance

of the prediction method.

To represent the predicted results of a two-class classification

problem, a confusion matrix was often employed, which contained

the following four entries: true positives (TP), true negative (TN),

false positives (FP), and false negative (FN) [41,42]. Based on these

values, the prediction accuracy (ACC), specificity (SP), sensitivity

(SN) [42] and Matthews’s correlation coefficient (MCC) [43] were

often used to evaluate the predicted results, which can be

computed by

ACC~
TPzTN

TPzTNzFPzFN

SP~
TN

TNzFP

SN~
TP

TPzFN

MCC~
TP:TN{FP:FNffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

(TNzFN):(TNzFP):(TPzFN):(TPzFP)
p

8>>>>>>>>>>><
>>>>>>>>>>>:

ð4Þ

As mentioned in Section ‘‘Dataset’’, five datasets were

constructed in this study to reduce the size difference of the

‘positive genes’ and ‘negative genes’. However, each dataset still

had very different class sizes. In detail, the number of ‘negative

genes’ was at least 4 times as many as that of ‘positive genes’. Thus,

the ACC is not appropriate for evaluating the predicted results on

the whole. MCC, as a balanced measure even if the classes are of

very different sizes, was employed as the key measurement.

Feature selection method
As mentioned in Section ‘‘Encoding method’’, each gene was

represented by 13,116 features of the enrichment scores, which

indicated the relationship between the genes and GO terms or

KEGG pathways. TSGs are related to some GO terms and

KEGG pathways. To identify key GO terms and KEGG

pathways, some feature selection methods were employed in this

study. The procedure of the feature selection method included two

stages: (I) Cramer’s coefficient [44,45], which used to discard non-

essential features and (II) minimum redundancy maximum

relevance (mRMR), incremental feature selection (IFS) [22] and

Dagging [31] for further selection.

The Cramer’s coefficient [44,45], derived from the Pearson

Chi-square test [46], is a statistical measure of two variables. Its

value is between 0 and 1. According to the fact that a high

Cramer’s coefficient of two variables indicates a strong association

of two variables, features with low Cramer’s coefficients to

samples’ class labels were deemed non-essential features. Here,

we used 0.1 as the threshold and features with Cramer’s

coefficients lower than 0.1 were excluded.

The second stage of the feature selection involved the mRMR,

IFS and Dagging. In detail, the mRMR method sorted the

remaining features in two lists, while the IFS and Dagging were

used to extract key features based on the feature lists obtained by

the mRMR method. The mRMR method, proposed by Peng et
al. [22], has two criteria: Max-Relevance and Min-Redundancy,

producing the following two feature lists: (I) MaxRel feature list

and (II) mRMR feature list. The MaxRel feature list sort features

only based on the Max-Relevance criterion, while the mRMR

feature list sort features based on both the Max-Relevance and

Min-Redundancy. In this study, these two lists were formulated as

follows:

MaxRel features list : FMaxRel~½f M
1 ,f M

2 , � � � ,f M
N �

mRMR features list : FmRMR~½f m
1 ,f m

2 , � � � ,f m
N �

(
ð5Þ
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where N is the total number of features. The mRMR method has

been widely used in recent years to analyze complicated biological

problems [36,47252]. Since the mRMR feature list was built with

both the Max-Relevance and Min-Redundancy criteria in mind, it

was used to extract important features by combining the IFS and

Dagging. This procedure was as follows:

(I) Construct N feature set from the mRMR features list

FmRMR, say F1
mRMR,F2

mRMR, . . . ,FN
mRMR, such that

Fi
mRMR~½f m

1 ,f m
2 , � � � ,f m

i �(1ƒiƒN), i.e. Fi
mRMR consisted

of the first i features in FmRMR.

(II) For each Fi
mRMR, Dagging was conducted on samples

represented by features in Fi
mRMR, evaluated by 10-fold

cross-validation, thereby obtaining ACC, SP, SN and MCC

(cf. Eq. 4).

(III) The feature set that can produce the maximum MCC is the

optimal feature set. Additionally, an IFS-curve was plotted

with the MCC value as its Y-axis and the superscript i of

Fi
mRMR (the number of features that participate in the

classification) as its X-axis.

Results and Discussion

Results of the feature selection
As mentioned in Section ‘‘Dataset’’, 6 datasets, S1,S2, . . . ,S6,

were constructed. For each, we calculated the Cramer’s coeffi-

cients of the features and the samples’ class labels. Then, the

features with Cramer’s coefficients lower than 0.1 were excluded.

The remaining features were kept for the further selection. The

number of remaining features for each dataset is shown in

Table 1.

The mRMR method, IFS method and Dagging were used to

analyze the remaining features for each dataset Si. The mRMR

program, downloaded from http://research.janelia.org/peng/

proj/mRMR/, was executed on each dataset Si, in which each

sample was represented by the remaining features. For conve-

nience, the mRMR method was conducted with its default

parameters. As mentioned in Section ‘‘Feature selection method’’,

the MaxRel features list and mRMR features list were obtained for

each dataset Si. However, to reduce the computation time, we

only obtained the first 500 features in each of the two feature lists,

which are summarized in Table S2.

The IFS method and classifier Dagging were executed

according to the mRMR features list for each dataset Si, which

was evaluated by 10-fold cross-validation. The SNs, SPs, ACCs

and MCCs obtained for each dataset Si are given in Table S3. For

easy observation, we plotted an IFS-curve for each dataset Si. The

six IFS-curves are shown in Figure 1; the maximum MCCs for

datasets S1,S2, . . . ,S6 were 0.3938, 0.4092, 0.4417, 0.4351,

0.4744, and 0.5511, respectively. These values are listed in

Table 2, in which the numbers of the features used to obtain

these maximum MCCs are also listed. In detail, by using the first

Figure 2. Frequency and ratio of GO terms of biological process in OS. (A) Frequency of GO terms of biological process in OS. (B) Ratio of GO
terms of biological process in OS.
doi:10.1371/journal.pone.0107202.g002
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Figure 3. Frequency and ratio of GO terms of cellular component in OS. (A) Frequency of GO terms of cellular component in OS. (B) Ratio of
GO terms of cellular component in OS.
doi:10.1371/journal.pone.0107202.g003

Figure 4. Frequency and ratio of GO terms of molecular function in OS. (A) Frequency of GO terms of molecular function in OS. (B) Ratio of
GO terms of molecular function in OS.
doi:10.1371/journal.pone.0107202.g004
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366, 440, 181, 318, 302, and 261 features in the mRMR features

lists of the six datasets (see Table S3), respectively, the MCCs

calculated by Eq. 4 were 0.3938, 0.4092, 0.4417, 0.4351, 0.4744,

and 0.5511, respectively. Accordingly, six optimal feature sets,

OS1, OS2, …, OS6 can be obtained by selecting the first 366, 440,

181, 318, 302, and 261 features in six mRMR feature lists of six

datasets, respectively.

Analysis of the GO terms in the total optimal feature set
As mentioned in Section ‘‘Results of the feature selection’’, six

optimal feature sets were obtained. We took the union operation of

these sets and obtained a new dataset denoted by OS
(OS~OS1| � � �|OS6) and termed the total optimal feature

set, consisting of 708 enrichment features of the GO terms and 9

Table 3. Top forty putative tumor suppressors based on features in the total optimal feature set.

Ensembl ID
Number of key tumor
suppressor functionsa Gene symbol

ENSP00000297261 353 SHH

ENSP00000324806 353 GSK3B

ENSP00000389184 345 MARK2

ENSP00000264657 338 STAT3

ENSP00000355069 338 PAX2

ENSP00000293549 337 WNT1

ENSP00000353483 331 MAPK8

ENSP00000263253 331 EP300

ENSP00000218894 327 SUPT20H

ENSP00000328181 327 NOG

ENSP00000228872 327 CDKN1B

ENSP00000338548 325 FGF1

ENSP00000250003 322 MYOD1

ENSP00000206249 322 ESR1

ENSP00000245451 321 BMP4

ENSP00000352514 317 RUNX2

ENSP00000348986 316 INS-IGF2

ENSP00000263025 315 MAPK3

ENSP00000354558 313 MTOR

ENSP00000363822 311 AR

ENSP00000361066 310 NCOA3

ENSP00000339004 309 FOXG1

ENSP00000320604 309 FAXDC2

ENSP00000338018 308 HIF1A

ENSP00000278385 308 CD44

ENSP00000216797 306 NFKBIA

ENSP00000222330 304 GSK3A

ENSP00000255465 304 CCNA1

ENSP00000222726 303 HOXA5

ENSP00000334458 303 GATA4

ENSP00000264498 303 FGF2

ENSP00000323588 302 SOX2

ENSP00000392858 299 TNF

ENSP00000302665 299 IGF1

ENSP00000338297 298 -

ENSP00000362649 297 HDAC1

ENSP00000318977 297 GEN1

ENSP00000343745 296 DICER1

ENSP00000265165 294 LEF1

ENSP00000415481 293 PROM1

aThe value in this column is the number of features in the total optimal feature set whose values are greater than –log10(0.05).
doi:10.1371/journal.pone.0107202.t003
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enrichment features of the KEGG pathways, which are available

in Table S4. The analysis of 708 GO terms is described below.

Seven hundred and eight GO terms can be divided into the

following three parts: (1) Biological Process (BF); (2) Cellular

Component (CC); and (3) Molecular Function (MF). We mapped

the 708 GO terms to the children terms of three GO domains. As

we can see in Figures 224, the GO terms in the OS were

significantly enriched in some specific children terms with a high

frequency and high ratio, which is defined as ‘‘the number of each

GO term’’/‘‘the scale of the number of its children terms’’.

Biological process GO terms. The top five biological

process GO terms of the frequency shown in Figure 2(A) are

GO: 0065007: biological regulation (221), GO: 0044699: single-

organism process (117), GO: 0032502: developmental process (75),

GO: 0050896: response to stimulus (60) and GO: 0009987:

cellular process (35). The top five biological process terms with

large base numbers that perform fundamental functions in

organisms and tumor suppressor proteins may be functional

disturbance in health maintenance of cancer patients.

For the ratio of the biological process GO terms shown in

Figure 2(B), the top five are GO: 0022610: biological adhesion

(4.39%, 5/114), GO: 0040007: growth (2.72%, 4/147), GO:

0032502: developmental process (2.28%, 75/3294), GO:0065007:

biological regulation (2.09%, 221/10551) and GO:0050896:

response to stimulus (2.0%, 60/3001). The GO terms biological

adhesion and response to stimulus should be noted and relevant

TS proteins act in the alarm reaction and have protective roles in

tumorigenesis and the metastasis process. The GO term single-

organism process involved in death and cell proliferation is

highlighted too, although its percentage is not high. The destiny of

an organism is critically regulated by the cell cycle and apoptosis in

which TSGs play an important part. TSGs act like brakes on a car

and are involved in maintenance of the cell cycle checkpoints and

apoptosis induction [53].

Cells are under constant attack by various agents and oncogenic

DNA variants form because of endogenous (normal cell metab-

olite) and exogenous agents (chemical species and physical

mutagens). To maintain genome stability, TSGs participated in

multiple mechanisms to repair DNA damage and arrest cell

proliferation. In DNA double-strand break repair (DSBR), several

TS genes, including ATM, NBS1, BRCA1 and BRCA2, are

activated by DNA damage to induce cell cycle checkpoint arrest

and DSB repair complex formation [54]. The highly conserved

DNA mismatch repair (MMR) proteins composed of MSH2,

MLH1, PMS1 and PMS2 tumor suppressor proteins in people, are

required to correct base mismatches that are formed in response to

exogenous or endogenous substances. If the expression of MLH1

or MSH2 is suppressed, cells lose the ability to perform mismatch

repair and have resistance to alkylation mutagens that would

normally activate G2/M checkpoint or apoptosis [55]. In

nucleotide excision repair (NER), the DNA repair genes are

regulated by p53 to remove bulky DNA adducts including

pyrimidine dimmers induced by UV [56]. Normal, unrepaired

DNA variants promote cells apoptosis.

Normally, cell proliferation is tightly regulated in different

periods of the cell cycle. The pRb (retinoblastoma protein), known

as the first TSG, maintains the G1/S checkpoint through its

regulation of the E2F family. Inactivation of pRb, which caused by

mutations, promoter methylation or interaction with oncoproteins,

results in loss of control of the checkpoint R, allowing for

uncontrolled cell proliferation [57,58]. In addition, cancer cells

inhibit the expression of many other tumor suppressor proteins to

gain malignant proliferation ability. For example, with mutations

or the low expression of TGF-bR II (transforming growth factor

breceptor II) and its downstream proteins Smad2/3/4 (SMAD

family member 2/3/4), cancer cells will be insensitive to the

proliferation inhibition of TGF [59,60]. Similar to pRb, the INK4

(cyclin -dependent kinase inhibitor, e.g., p16INK4A) family, which

is regulated by TGF-b, can block CDK, causing cell growth arrest

in a different period of the cell cycle. The dysfunction of INK4 or

TGF-bR II will allow cells to pass through the checkpoint

abnormally and accumulate variations [61,62].

Apoptosis, known as programmed cell death, can be initiated by

two distinct signaling pathways, BCL2 induced and death receptor

induced, which ultimately converge in the caspase cascade. The

most famous TSG, p53, is mutated in ,50% of human cancers

and related to some tumor suppression network [14]. p53 is a

transcriptional regulator that can be activated by DNA damage,

certain oncogenes and other cytotoxic stress signals, triggering cell

cycle arrest (G1/S checkpoint), DNA repair and apoptosis.

Dysfunction of p53 caused by mutations or methylation prevents

the damage-induced cell cycle arrest and apoptosis [63,64]. As a

TSG, PTEN (phosphatase with tensin homology) negatively

regulates the PI3K (the phosphatidylinositol 3-kinase) pathway,

preventing inappropriate metabolism via effects on TOR and

promoting cell proliferation via effects on proapoptotic proteins

[65]. CYLD(cylindromatosis), first identified as a TSG in the

familial cylindromatosis, is a DUB (deubiquitinase) of the USP

subfamily. Multiple myeloma patients with dysfunction of CYLD

have abnormal activation of NF-kB and cell cycle and apoptosis

dysfunction [66,67]. The insufficient activation of caspase 8

(apoptosis-related cysteine peptidase), a key TS gene in the caspase

cascade, leads to the interruption of signal transduction from death

receptors, inducing normal apoptosis [68,69].

Many tumor cell types acquire the capacity to invade and

metastasize though loss of cell-cell adhesion or cell-ECM

(extracellular matrix) junctions. The silencing or suppression of

E-cadherin, which is regulated by promoter methylation, histone

methylation, transcriptional repression or frequent mutations

cause EMT (epithelial-mesenchymal transition), disruption of cell

contacts, tumor cell detachment and invasion [70,71]. Integrins, a

family of heterodimeric transmembrane proteins, mediate cell–

ECM (extracellular matrix) interactions. Aberrant integrin can

induce the activation of proteolytic enzymes and cause degrada-

tion of the extracellular matrix and basement membrane,

promoting tumor cells metastasis [72]. MMPs (matrix metallo-

proteinase) are endopeptidases that are involved in the breakdown

of the extracellular matrix; they are regulated by inhibitors,

TIMPs (Tissue Inhibitor of Metalloproteinases). Loss of function of

TIMPs, which are TSGs, may cause a MMP/TIMP equilibrium

shift into a malignant status [73,74].

Except the features above, which help us comprehend the

relevance between tumor suppressors and specific GO terms or

pathways, some rare investigated terms were highlighted such as

metabolic process (GO:0008152), reproductive process

(GO:0022414), locomotion (GO:0040011), localization

(GO:0051179)/establishment of localization (GO:0051234) and

multi-organism process (GO:0051704). These features remind us

tumor suppressors participate in protein localization intracellular,

various cells migration and locomotion intercellular, complex

metabolic process and multi-organism process in the whole

organism. Particularly, in some tumor types, tumor suppressors

play key roles in reproductive process, usually related to hormone

and hormone receptors. These features are not studies deeply as

others, but need more attention to mine novel tumor suppressors.

Cellular component GO terms. It can be seen from

Figure 3(A) that the top five CC GO terms with regard to

frequency are GO:0044464: cell part (19), GO:0044422: organelle
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part (10), GO:0032991: macromolecular complex (9),

GO:0030054: cell junction (3), and GO:0044425: membrane part

(3), which also have a corresponding high percentage. Their ratios

(cf. Figure 3(B)) are GO: 0030054: cell junction (8.57%, 3/35),

GO: 0044422: organelle part (0.73%, 10/1361), GO: 0044464:

cell part (0.67%, 19/2823), GO: 0032991: macromolecular

complex (0.49%, 9/1824), and GO:0044425: membrane part

(0.41%, 3/724). Cell junction is a cellular component that forms

connections between two cells or between a cell and the

extracellular matrix. As discussed above, TSGs such as E-cadherin

and integrin play critical roles in tumor cell adhesion and

metastasis. Additionally, organelles, including the mitochondria,

ribosomes and UPS (ubiquitin-proteasome system), participate in

the biological process involved in carcinogenesis. Many macro-

molecular complexes consist of tumor suppressor protein inside

cells, such as TSgene SMAD2/3(SMAD family member 2/3) in

the SMAD protein complex [75] and SMARCB1(SWI/SNF

related, matrix associated, actin dependent regulator of chromatin,

subfamily b, member 1) in the Swi/Snf complex [76].

Molecular function the GO terms. It can be observed from

Figure 4(A) that the five highest frequency of MF GO terms are

GO: 0005488: binding (45), GO: 0003824: catalytic activity (19),

GO: 0030234: enzyme regulator activity (19), GO:0004872:

receptor activity (4), and GO:0060089: molecular transducer

activity (3). On one hand, these high frequency MF GO terms

consist of a huge number of proteins that perform basic biological

functions; on the other hand, the catalytic activity and enzyme

regulator are involved in most vital biological processes, including

cell proliferation, DNA damage repair and apoptosis. The cell

junction requires protein binding and enzymes catalyze, which can

involve biological processes such as phosphorylation, acetylation,

the cell-extracellular matrix link and cell cycle control. The

transcription factor Dp (DPDP-polypeptide) forms a complex with

E2F1 to regulate its binding to DNA and the expression of certain

genes (such as myc) catalyzed by enzymes [77]. Genomic

instability is essential in almost all tumor factors, and mutations

in ATM (ataxia telangiectasia mutated) which belongs to the PI3/

PI4-kinase family, leave DSBs (DNA double-strand breaks)

unrepaired [78]. The receptor proteins transduce extracellular or

intracellular messenger to the biological effectors, triggering a

serial biochemical reaction. The typical receptor protein and

tumor suppressors in the TGF-b signaling pathway are TGF-bR II

and BMPR2 (bone morphogenetic protein receptor, type II

(serine/threonine kinase)) [79]. The five most common MF GO

terms (cf. Figure 4(B)) are GO: 0030234: enzyme regulator

(12.33%, 19/154), GO: 0000988: protein binding transcription

factor activity (3.28%, 2/61), GO: 0005488: binding (2.64%, 45/

1703), GO:0004872: receptor activity (1.02%, 4/391), and

GO:0060089: molecular transducer activity (0.74%, 3/405). The

corresponding percentages of the top five MF terms are similar to

the top MF frequency, which are associated with the BP

percentage and CC percentage and participate in tumorigenesis

at different level.

Directed acyclic graph (DAG) analysis of the GO children

terms. To further understand the function of the selected GO

terms, we analyzed the directed acyclic graph of the GO children

terms. We found that the GO children terms clustered in several

particular modules under the primary GO terms discussed above.

In addition to cell adhesion, the cellular response to UV-induced

DNA damage and subsequent activated apoptotic signaling

pathway and cell cycle regulation, phosphate metabolism, signal

transduction and some molecular complex were highlighted in the

biological modules.

The phosphorus utilization including phosphorylation and

dephosphorylation catalyzed by kinases and phosphatases, respec-

tively, is a key mechanism in a number of vital cellular pathways

such as the cell cycle, cell proliferation and apoptosis. Mutations or

low expression in certain TSGs, such as PTP (protein tyrosine

phosphatase), should bring the phosphorylation/dephosphoryla-

tion ratio out of balance [80,81].

Cancer is a disease of aberrant signal transduction. In the

functioning biological system, tumor suppressors keep the signal-

ing cascades in balance, such as for the TGF-bR II and Smad2/3/

4 in TGFb signaling pathways [59,60] and ptch1 protein (patched

1) in hedgehog pathway [82].

In addition, some molecular complex and enzyme activity

should be noticed. The SWI/SNF complex, which contains a

subunit from the BAF family, mediated chromatin remodeling in

cell differentiation, proliferation and DNA repair. Several

components of the SWI/SNF complex, such as BAF47, function

as tumor suppressors, and BRM and BRG1 act as putative tumor

suppressors, which is evidenced by frequently loss of heterozygos-

ity [83].

Analysis of the KEGG pathways in the total optimal
feature set

Nine KEGG pathway terms in the OS, were hsa04115 (p53

signaling pathway), hsa00100 (steroid biosynthesis), hsa05213

(endometrial cancer), hsa05216 (thyroid cancer), hsa05218 (mel-

anoma), hsa05219 (bladder cancer), hsa05220 (chronic myeloid

leukemia), hsa05221 (acute myeloid leukemia) and hsa05223 (non-

small cell lung cancer). As discussed above, p53 participates in cell

death regulation and cell cycle control as a key central element.

Aberrant genetic inactivation or diminished expression of p53 was

found in the most of KEGG cancers terms. In addition to Rb in

bladder cancer and chronic myeloid leukemia [7,84286],

abnormal PTEN was also found in thyroid cancer and endome-

trial cancer [7,84286]. In melanoma, chronic myeloid leukemia

and non-small cell lung cancer patients, there is reported silence or

suppression of ink4a/arf leading to cell cycle disorder and

sustained cellular proliferation [7,84286]. Steroids and steroid

metabolism have markedly influenced in some cancer types, such

as breast cancer and prostate cancer, which may mediate the

apoptosis network [87,88].

Unlike oncogenes, TSGs act as guardians regulating the

network of cell cycle and apoptosis factors involved in controlling

cell fate. Furthermore, maintaining genomic stability and balanced

cell adhesion demand that the TSGs perform normal physiological

functions.

Analysis of candidate tumor suppressors predicted based
on optimal features

We try to predict the novel TSGs based on features in the total

optimal feature set, i.e., the key functions that defines tumor

suppressor. For each ‘negative gene’, we counted the number of

key tumor suppressor functions that it was annotated onto. The

genes with great number of key tumor suppressor functions were

considered as candidate tumor suppressors, since they shared

similar functions with the known tumor suppressors. Since

oncogene and tumor suppressor are two sides of a coin, their

functions are difficult to distinguish. To better prioritize candidate

tumor suppressor, we removed the 330 oncogenes from oncogene

family of GSEA MSigDB (Molecular Signatures DATAbase,

http://www.broadinstitute.org/gsea/msigdb/gene_families.jsp)

and 251 oncogenes from HGNC (HUGO Gene Nomenclature

Committee, http://www.genenames.org/) with the oncogene as
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the keyword. MSigDB is an online database, which collected

annotated genes sets for GSEA analyze and categorize genes into

gene family to provide a functional overview. HGNC is a

collection of unique symbols and names for genes, ncRNA genes

and pseudogenes. Subsequently, the overlap genes between these

genes and the ‘negative genes’ were filtered out, 17,553 ensembl

protein IDs remain in the end, which are available in Table S5.

Our study performs the gene enrichment and pathway

enrichment analysis, providing a support to identify novel tumor

suppressor in these features and pathways. In Table 3, we

revealed a list of novel tumor suppressor genes, which shared at

least 293 key annotations with known tumor suppressors. It has

been demonstrated part of them play suppressive roles in

tumorigenesis and more genes need verification by functional

evidence and a larger clinical pathological characteristics data set.

There are many tumor suppress genes proved partly, such as

EP300 [89291], GATA4 [92], ESR1 [93] and NFKBIA [94,95],

which still need a large clinic data validation and functional

research.

Glycogen synthase kinase 3 beta (GSK3b) belongs to the

glycogen synthase kinase subfamily. GSK2b regulated Wnt

signaling and PI3K/Akt pathway negatively, which play key roles

in cell cycle, anti-apoptosis and invasion [96,97]. It has been

identified suppression of GSK3b in many tumor types including,

oral squamous cell carcinoma (OSCC), lung cancer, cutaneous

squamous cell carcinoma and esophageal carcinoma [982101].

Inhibition of constitutively active GSK3b leads to epithelial-

mesenchymal transition (EMT) transition during tumorigenesis

[102]. In vitro, GSK3b play a negative regulator of myeloid cell

leukemia-1(Mcl-1), which has anti-apoptotic function and is

correlated to the poor prognosis of breast cancer patients

[98,103,104]. Although there are some controversial reports,

GSK3b is a putative tumor suppressor and need more studies

[105,106].

Homeobox A5 (HOXA5) is belonging to a DNA-binding

transcription factor family, homeobox genes cluster A, and

regulates organism gene expression, adult differentiation and

embryonic development in organism. It has been observed a

frequently increased methylation of the HOXA5 promoter region

in various tumor tissues [1072109] and is related to decreased

expression [107,110]. In addition, HOXA5 up-regulates p53

transcription through binding to a target element in its promoter

[111]. These evidences document that HOXA5 is a putative

tumor suppressor for tumorigenesis. But it still warrants further

functional studies that how HOXA5 suppress tumorigenesis in

animal model and in clinic.

Holliday Junction 59 Flap Endonuclease, previous named gen

endonuclease homolog 1 (GEN1) is an enzyme, evolved in

Holliday junctions (HJs) formation during homologous recombi-

nation and DNA repair. The activity of Yen1, the ortholog of

GEN1, is inhibited by phosphorylation events in the G1/S

transition, keep inactive through S-phase and G2, and activated by

dephosphorylation at the later stages of mitosis [112,113].

Similarly, in the early stages of the cell cycle, GEN1 is excluded

from the nucleus, and access chromatin and HJs [113]. GEN1

participates in some specific features: cell cycle, DNA repair and

phosphorylation/dephosphorylation, which involved in many

tumor suppressors. In Bloom’s syndrome cells, depletion of

GEN1 results in severe chromosome abnormalities [114]. It has

been identified rare recessive at-risk alleles of GEN1 in breast

cancer by Ekatherina Sh [1152117], and two somatic frameshift

mutations in breast cancer cell lines and primary tumors through

exome sequencing [114]. Above all, GEN1 is a novel tumor

suppressor akin to some other DNA repair genes, BRCA1 and

BRCA2 in breast cancer, although there is rare study prove GEN1

make a high-appreciable contribution to breast cancer. In future

study, it would be focus on the methylation or LOH level and anti-

tumorigenesis mechanism to explore function of GEN1.

Besides these genes discussed above, our study reveals more

novel candidate tumor suppressors including SHH, STAT3,

SUPT20H and GSK3A, which are highlighted and need more

focus and research in future cancer research.

Conclusions

This study summarizes the enrichment analysis of TSGs. The

features of the GO and KEGG pathway enrichment scores were

used to encode the investigated genes and some feature selection

methods were employed to analyze these features. The analysis of

the 708 GO terms and 9 KEGG pathways implies that they are

strongly related to the determination of TSGs. We hope that

effective methods based on these GO terms and KEGG pathways

can be built to identify TSGs.
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