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Abstract

Foot-and-mouth disease virus non-structural protein 3A plays important roles in virus replication, virulence and host-range;
nevertheless little is known on the interactions that this protein can establish with different cell components. In this work,
we have performed in vivo dynamic studies from cells transiently expressing the green fluorescent protein (GFP) fused to
the complete 3A (GFP3A) and versions including different 3A mutations. The results revealed the presence of a mobile
fraction of GFP3A, which was found increased in most of the mutants analyzed, and the location of 3A in a continuous
compartment in the cytoplasm. A dual behavior was also observed for GFP3A upon cell fractionation, being the protein
equally recovered from the cytosolic and membrane fractions, a ratio that was also observed when the insoluble fraction
was further fractioned, even in the presence of detergent. Similar results were observed in the fractionation of GFP3ABBB, a
3A protein precursor required for initiating RNA replication. A nonintegral membrane protein topology of FMDV 3A was
supported by the lack of glycosylation of versions of 3A in which each of the protein termini was fused to a glycosylation
acceptor tag, as well as by their accessibility to degradation by proteases. According to this model 3A would interact with
membranes through its central hydrophobic region exposing its N- and C- termini to the cytosol, where interactions
between viral and cellular proteins required for virus replication are expected to occur.
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Introduction

Foot-and-mouth disease virus (FMDV) is an aphthovirus that

belongs to the Picornaviridae family and the etiological agent of

an extremely contagious disease of cloven-hoofed animals (FMD)

that is responsible for high economic losses in affected countries

[1,2]. FMDV RNA is a positive strand molecule of about 8500

nucleotides that encodes a single ORF [3]. The polyprotein

resulting from its translation is processed by viral proteases to yield

structural proteins as well as precursors and mature non-structural

(NS) proteins [4]. The NS protein 3A is produced by cleavage of

3ABC precursor, reviewed in [5], and is one of the most variable

viral proteins encoded by FMDV, being the variable residues

preferentially accumulated at its C-terminus [6]. An 18 amino

acids long hydrophobic region (HR, spanning residues 59 to 76) is

predicted in the middle of the molecule [7,8,9]. In other

picornaviruses this hydrophobic domain has been reported to

target 3A to intracellular membranes [10,11] and could contribute

to locate the viral replication complex within a membrane context

[12,13,14,15], but the origin of the membranes involved in FMDV

replication and the type of interactions they establish with viral

proteins remain uncertain [16]. In cells transiently expressing

FMDV 3A, about 50% of the cellular pool of the protein was

recovered from the membrane fraction, suggesting an association

of 3A with cellular membranes [8].

FMDV 3ABC region shows unique characteristics among

picornaviruses, such as encoding 3 copies of viral genome-bound

3B protein [7,17] that serves as a primer for RNA replication [18].

The three copies of 3B are required for both optimal replication in

cell culture [19] and for virulence in natural hosts [20]. In

addition, the C-terminal fragment of FMDV 3A (up to the HR) is

considerably longer than those of the other picornaviruses. On the

other hand, 3A is not the responsible for blocking the endoplasmic

reticulum (ER)-to-Golgi transport of proteins as occurs in

poliovirus (PV), being this function carried out by 2B and 2BC

[8]. FMDV 3A partially colocalizes with ER and Golgi markers

[21,22] and recent evidences point to the involvement of ER exit

sites for virus replication, supporting to the involvement of ER in

virus replication [23].

On the other hand, 3A protein has been reported to play a role

on FMDV host range, as a single amino acid replacement (Q44R)

in this protein conferred FMDV the ability to cause vesicular

lesions in guinea pigs [24] and deletions and mutations in the C-

terminal region associate both to viral attenuation in cattle [25]

and to decreased replication rates in bovine epithelial cells [26].
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A molecular model of the N-terminal fragment of FMDV 3A

protein, derived from the corresponding NMR structure of the PV

3A [27], predicted a hydrophobic interface composed of two a-

helices spanning residues 25 to 44 as the main determinant for 3A

dimerization. Replacements L38E and L41E, involving charge

acquisition at residues predicted to contribute to the hydrophobic

interface, reduced dimerization and led to production of infective

viruses that replaced the acidic residues introduced (E) by non-

polar amino acids, indicating that preservation of the hydrophobic

interface is essential for virus replication [9].

To facilitate its study in transient expression assays we fused

FMDV 3A wt and mutant versions of this protein 2 including

different deletions, as well as point mutations at the dimerization

interface and at the odd cysteine present in 3A 2 to the green

fluorescent protein (GFP). Live cell imaging in combination with

photobleaching can provide insights into the movement of proteins

and on their interaction with cellular components [28,29]. Time-

lapse microscopy revealed that the cytoplasmic mobility of GFP3A

was spatially confined and the analysis of the fluorescence loss in

photobleaching (FLIP) [30,31] supported the location of GFP3A in

a continuous compartment in the cytoplasm. In addition,

fluorescence recovery after photobleaching (FRAP) analyses [32]

revealed the presence of a mobile fraction of GFP3A, which was

shown increased in most of the mutants analyzed. On the other

hand, biochemical analyses of transfected cells showed that about

60% of GFP3A protein interacted with cellular membranes.

Membrane bounded fractions of GFP3A and its precursor

GFP3ABBB were further analyzed by different biochemical

treatments, resulting in interaction profiles different from that of

an integral membrane protein. Further analysis of 3A interactions

with membranes by glycosylation tagging experiments and by a

biochemical protease protection assay allowed proposing a model

of 3A membrane topology.

Materials and Methods

Cells and virus
Vero cells (African green monkey epithelial kidney cells; ATCC

CCL-81), IBRS-2 (swine kidney cell line) [33], HeLa (human

cervical epithelial cells) and BHK-21 cells (Baby hamster kidney

cells; ATCC CCL-10) were grown at 37uC and maintained in

Dulbecco’s modified Eagle’s medium (DMEM) (Gibco-BRL),

prepared without phenol red for in vivo microscopy, supplement-

ed with 5% fetal bovine serum (Gibco-BRL), 2 mM glutamine,

1 mg/ml streptomycin and 1 mg/ml penicillin. A viral stock from

type C FMDV C-S8c1 isolate [34] was produced by amplification

in BHK-21 cells.

Antibodies and reagents
Monoclonal Ab (MoAb) 2C2 to NS protein 3A (38), rabbit

polyclonal Ab 346 and 4792 directed to the C- and N- termini of

3A protein, respectively (9) 2, rabbit polyclonal Ab to caveolin-1

(BD Transduction Laboratories), rabbit polyclonal Ab to calreti-

culin (Abcam) and a MoAb to GFP (Roche) were used.

Construction of fusion proteins
For in vivo experiments 3ABBB, 3A and its mutants (3AL38E,

3AL41E and 3AC65S) were fused to the C-terminus of GFP using

plasmid pEGFP-C2 (Clontech). The sequences encoding 3A and

3ABBB wt proteins were amplified by PCR from the infectious

clone pMT28 that encodes the genomic RNA of FMDV isolate C-

S8c1 [35]. Primers 3A1/3A2 and 3A1/3A-3BBBr were used to

amplify 3A wt and 3ABBB, respectively (Table 1). The resulting

amplicons and pEGFP were digested with the corresponding

restriction enzyme (New England BioLabs), indicated in Table 1,

and ligated with DNA ligase T4 (Roche), as described [36].

Substitutions of selected amino acids were generated by site-

directed mutagenesis [9]. Deletion mutants were obtained by PCR

amplification of the selected 3A sequences: 3ADHR-C-ter (K53-

E153), 3ADC-ter (R82-E153) and 3ADN-ter (I1-L41), using

primers 3A1/DHR-C-ter, DC-ter f/DC-ter r and DN-ter f/DN-

ter r, respectively. The resulting amplicons were cloned into

plasmid pEGFP following digestion with the corresponding

restriction enzyme (Table 1). The correct orientation and

sequence of the plasmids obtained were confirmed by sequencing

with GFP primers.

N-glycosylation insertion mutagenesis and
deglycosylation assays

For topologic analyses 3A protein was cloned in pcDNA3.1+
vector (Invitrogen) using 3A wt amplicons and the restriction

enzymes BamHI and XbaI. To construct plasmids pcDNA3A-

glyc, pcDNAglyc-3A, and pcDNAglyc-3ADN-ter(I1-N58), a N-

glycosylation acceptor site (Asn-Ser-Thr-Ser-Ala-Asn) (36) was

fused in-frame to the C- or N-termini of 3A, or to the N-terminus

of 3ADN-ter. Amplicons were obtained by PCR using pcDNA3A

as template, the sense primers Gly-Nter F, Gly-TMC-ter F, and

the antisense primer C-ter-Gly R with the corresponding sense

and antisense primers (Table 1). For the deglycosylation assay,

Vero cells were grown in 35-mm dishes, transfected with 2 mg of

DNA and 24 h post transfection (pt) lysed in 200 ml NBP [50 mM

Tris-HCl, pH 7.5, 150 mM NaCl, 1% NP-40, 1% sodium

deoxycholate, 0.1% SDS, 1 mM phenylmethylsulfonylfluoride,

protease inhibitor cocktail 1x (Roche)], treated with 1 ml

benzonase (Novagen). Lysed cells were centrifuged 10 min at

3006g and the supernatant centrifuged 30 min at 300006g.

Pellets were resuspended in NPB and deglycosylation was

performed with PGNase F (New England Biolabs) as recom-

mended by manufacturer. Laemmli sample buffer [37] was added

and proteins were separated by SDS-PAGE and analyzed by

Western blot. As positive controls pTM-DV-NS4A(1–150)-GFP-

Glyc and pTM-DV-NS4A(1–100)-GFP-Glyc 2 expressing dengue

virus NS4A full length (FL) and a C-terminal truncation of NS4A

(amino acids 1–100), respectively [38] 2 were transfected. One h

before transfection with these plasmids, cells were infected with

vaccinia virus VTF7–3 expressing the T7 RNA polymerase to

allow cytoplasmic transcription of the constructs [39]. At 20 h pt

cells were lysed and processed as described above.

Biochemical treatment of cell lysates
Vero cells were grown in 60-mm dishes and transfected with 1–

2 mg of plasmid DNA using Lipofectamine (Invitrogen). 24 h pt

cells were lysed with PBS supplemented with protease inhibitor

cocktail 1x (Roche) by five cycles of freezing in liquid nitrogen and

thawing at 37uC. Lysed cells were centrifuged at 3006g for 10 min

and then at 300006g for 20 min twice. Pellets were resuspended

in the following solutions: 0.1 M Na2CO3, 4 M Urea (Merck),

1 M KCl (Merck), or 0.5% Triton X-100 (Sigma). Samples were

boiled, resolved on SDS-PAGE and immunoblotted, following

addition of Laemmli sample buffer.

Biochemical protease protection assay
HeLa cells grown in 35-mm dishes, without or with coverslips

(in case of immunofluorescence analysis), were transfected with

pcDNA3A. This cell line was used because of it high level of

transfection efficiency. 24 h pt cells were washed with KHM

buffer (110 mM potassium acetate, 20 mM HEPES pH 7.2,
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2 mM MgCl2) and permeabilized with 50 mM digitonin in KHM

buffer for 1 min at room temperature. Then, cells were washed in

KHM and treated with 0.025% trypsin or 50 mM proteinase K for

5 min at room temperature. Finally, cells were washed and lysed,

Laemmli sample buffer was added, and proteins were separated in

a SDS-PAGE and analyzed by Western blotting with antibodies to

the N- and C-termini of 3A and to calreticulin. For immunoflu-

orescence analysis, cells in coverslips with the same treatment were

fixed in 4% paraformaldehyde.

Western blot analysis
Vero cells grown on 35-mm dishes were transfected as described

above with 1 mg of different plasmids. At 24 h pt, cells were

scraped on ice into NP-40 lysis buffer (10 mM EGTA, 2.5 mM

MgCl2, 1% NP-40, 20 mM HEPES pH 7.4) and sonicated. Equal

volumes of each sample mixed with Laemmli sample buffer were

boiled, separated by SDS-PAGE 12%, and transferred onto a

nitrocellulose membrane. The membrane was blocked, and

proteins were detected by incubation with the selected primary

antibody and the corresponding horseradish peroxidase-coupled

secondary antibody that was developed using a chemilumines-

cence kit (Perkin-Elmer).

Density gradient fractionation
The procedure for isolation of Triton X-100-insoluble mem-

branes by centrifugation to equilibrium in sucrose density

gradients was essentially as described [40]. Cells grown in 100-

mm dishes were transfected and 24 h later washed tree times with

cold PBS, scraped on 0.5 ml of 0.5% Triton X-100 in TNE buffer

(25 mM Tris-HCl, 150 mM NaCl, 5 mM EDTA pH 7.4) and

maintained for 30 min on ice. The lysate was passed through a 22-

gauge needle, mixed with 70% sucrose in TNE buffer supple-

mented with 1 mM PMSF and protease inhibitor cocktail, and

brought to 35% sucrose in a final volume of 4 ml beneath a 8 ml

5–30% linear sucrose gradient. Gradients were centrifuged at 4uC
for 18 h at 1800006g in a SW40 rotor (Beckman) and 12 fractions

of 1 ml, collected from top to bottom, were analyzed by Western

blotting or stored at 280uC.

Immunofluorescence and confocal microscopy
Cells grown on glass cover slips were transfected or infected with

FMDV C-S8c1 (moi = 5 PFU/ml). At 24 h pt or 4 h post

infection (pi), cells were fixed in 4% paraformaldehyde for 15 min

at room temperature, blocked, and permeabilized with PBTG

buffer (0.1% Triton X-100, 1% bovine serum albumin (BSA), and

1 M glycine in PBS) for 15 min. Samples were incubated with the

selected primary antibody diluted in 1% BSA in PBS for 1 h at

room temperature, washed with PBS and incubated with the

corresponding secondary antibody for 30 min. Finally, samples

were mounted in Fluoromount G (Southern Biotech) and cells

were observed with a Microradiance confocal (Biorad/Zeiss)

microscope.

Time-lapse microscopy
Time-lapse was performed in Vero cells grown on glass bottom

35-mm dishes (MatTek) transfected with GFP3A, which 6 h pt

were transferred to the microscope incubator previously warmed

at 37uC. Images (5 different planes along Z axis at intervals of

5 min for 3 h) were acquired using an inverted Axiovert200

microscope (Zeiss) with a 63x/1.2 Water C-Apochromat Corr,

coupled to a digital camera C9100–02 (Hamamatsu). Humidity,

CO2 and temperature (37uC) were controlled using the In Vivo
Cell Observer system (Zeiss). Manual tracking of the fluorescence

was performed using ImageJ plug-in: Manual tracking.

FRAP analysis
Vero cells grown on glass bottom 35-mm dishes were

transfected with GFP3A. At 6 h pt, cells were observed using an

in vivo system in an inverted Axio Observer Confocal laser

scanning microscope (Zeiss), in triplicate experiments (n.10 cells/

experiment). The 488-nm laser line was used to perform

photobleaching of a defined circular 10 mm ø region of interest

(ROI) at full laser power (100% laser power, 100 interactions).

Recovery of the fluorescence was monitored by continuous

scanning of a control ROI either in a neighbor cell or at a

different region in the cytoplasm of the same cell, using a low laser

power (1%) until the fluorescence of the bleached area reached a

plateau. Cells were scanned six times before photobleaching to

determine the maximum initial intensity of fluorescence. No

additional photobleaching was observed during recovery. The

images were captured with the Zenon (Zeiss) software. Fcalc

program, Turu Centre for Biotechnology, Finland [41] was used

to analyzed the FRAP data and to calculate the mobile fraction

fitting an exponential curve to the corrected data using a least

square fit: A1 (1-ek1t) +A2 (1-ek2t), where A1 and A2 represent

Table 1. Oligonucleotides used for construction of wt and mutant versions of 3A and 3ABBB fused to GFP.

Oligonucleotide Sequence (59R39) Genomic orientation Restriction enzyme

3A1 TAGGGGATCCGTATCTCAATACCTTCC S BamHI

3A2 GCAGATCTTTATTCAGCTTGCGGTTG A BglII

3A-3BBB GCAGATCTTTACTCAGTGACAATCAA A BglII

DHR-C-ter GCAGATCTTTAAAAAGCACGTTTCAC A BglII

DC-ter f GCGAAGCTTTCTAGAAATGATCTCAATACCTTCC S HindIII

DC-ter r GCCGGATCCTTACTTGTGAGTCTCGC A BamHI

DN-ter f CGGAGATCTGGATCCAACAAACTTCA S BglII

DN-ter r GCAAGCTTTTATTCAGCTTGCGGTTG A HindIII

GlyN-ter F TTCGCGGATCCGACATGAATTCGACCTCGGCTACATCTCAATACCTTCCCAA S BamHI

GlyTMC-ter F TTCGCGGATCCGACATGAATTCGACCTCGGCTACTTTGAAATTGTTGCACTG S BamHI

C-terGly R TCGCCTCTAGACTAGTTAGCCGAGGTCGAATTTCAGCTTGCGGTTGCTC A Xba I

doi:10.1371/journal.pone.0106685.t001
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the mobile fractions with a two function fit, and k the kinetic

constant.

FLIP analysis
Cells grown on glass bottom 35-mm dishes were transfected

with pEGFP3A or plgLdR1KDEL-RFP [32]. Twenty four h pt

cells were observed as described before. The 488-nm laser line was

used to carry out sequential photobleaching events of a selected

ROI. This area was exposed to 15 interactions of 100% laser

power for RFP and 60% for GFP every six scanners (7 s) for 150

repeats. Loss of fluorescence was monitored in a different ROI in

the cytoplasm of the same repetitive bleached cell. Fluorescence

intensity of a neighbor cell ROI was determined to estimate global

photobleaching in the field. Images were analyzed with the Zenon

program.

Data analysis
To probe statistical significance of the data, one-way analysis of

the variance was performed with statistical package SPSS 19.0

(SPSS, Inc.) for Windows. For multiple comparisons, Bonferroni’s

correction was applied. The data are presented as means 6 the

standard deviations and statistically significant differences are

indicated in the figures by an *.

Results

Characterization of 3A fluorescent protein in transfected
cells

The analysis of protein dynamics in vivo requires fluorescent

probes whose biophysical properties can be monitored to infer

changes in cellular biochemistry [28,42]. In this work we have

studied in vivo the properties of FMDV 3A protein by means of its

fusion to GFP. A bioinformatic application (TMHMM) [43] that

estimates the likelihood of membrane protein topology indicated

that fusion of GFP to the N-terminus, but not to the C-terminus of

3A, maintained the topology of this viral protein. Therefore, GFP

was cloned as fusion with the N-terminus of 3Awt, and expression

of GFP3A confirmed by Western blot analysis (Fig. 1A). As a first

step in the use of GFP3A as a tool to study the 3A in vivo
distribution and dynamics, transfected cells were examined by

confocal microscopy. Fluorescence of GFP and GFP3A in Vero

cells is shown in Fig. 1B-i. While GFP fluorescence was observed

throughout the whole cell including the nucleus, GFP3A

fluorescence was restricted to the cytoplasm, including a perinu-

clear distribution similar to that found for 3A in FMDV-infected

IBRS-2 cells (Fig. 1B-ii). As expected, fluorescence of GFP and 3A

were shown to colocalize in transfected cells (Fig. 1B-iii).

Then, the cytoplasmic distribution of GFP3A was analyzed by

time-lapse microscopy. Representative images of Vero cells 6 h pt

with pEGFP3Awt are shown in Fig.1C. The in vivo record showed

a pattern of fluorescence with puncta located predominantly in the

perinuclear region as well as a diffuse fluorescence dispersed in the

cytoplasm. Tracking of punctate structures revealed a confined

movement pattern represented in the trajectories drawn in

Fig. 1D, and the velocity of the fluorescence puncta ranged from

0.1 to 0.7 mm/s. This confined pattern is different from those

described for other viral proteins associated to microtubules that

usually move over longer distances [32,44].

Cellular dynamics of GFP3A protein
Time-lapse imaging of proteins with a restricted mobility has to

face limitations imposed by long time and repetitive expositions of

cells to the excitation light that are detrimental for cellular

viability. Consequently, FRAP was used to further investigate the

movement of GFP3A in the cytoplasm of cells at different times pt.

As shown in Fig. 2, a fraction of GFP3A recovered fluorescence

after photobleaching indicating that, when transiently expressed,

3A protein shows a mobile (Mf) and a non- mobile fraction. From

the images in Fig. 2A-B a Mf of 35615% was determined at 24 h

pt. Higher Mf values were found at shorter times pt, being of

71611% at 6 h pt (Fig 2C). Most FRAP experiments are usually

conducted between 16 to 36 h pt to ensure the correct expression

of the transiently expressed protein, to have enough bright

specimens, as well as to minimize overexpression artifacts [45]; for

this reason further FRAP analysis were performed at 24 h pt.

As commented in the Introduction, FMDV 3A protein has been

associated to the ER, so we analysed the localization of GFP3A by

confocal microscopy. As reported for transiently expressed 3A

[22], our fusion protein colocalized with the ER marker

calreticulin (Fig. 3A), confirming the association of GFP3A with

this organelle. It is well documented that membranes and luminal

spaces of the ER are normally continuous throughout the cell and

that rough and smooth ER form an interconnected membrane

system [31,46,47], which has been confirmed by FLIP [30,48].

Therefore, we decided to repetitively photobleach a selected

fluorescent area in the cytoplasm to measure the fluorescence loss

in photobleaching in cells transfected with GFP3A. A mouse IgH

leader sequence-derived ER targeted mRFP1 version, termed

IgLdR1kdel [32], was used as control of a ER-resident protein. As

expected for a protein located at a continuous compartment,

repetitive photobleaching of a region in the cytoplasm led to

extinction of IgLdR1kdel fluorescence in the whole cell (Fig. 3B–

C). A similar behavior was found in cells expressing GFP3A

(Fig. 3D–E), supporting that this protein is also placed in a

continuous cytoplasmic compartment, which is compatible with its

localization at the ER.

Analysis of different mutants of GFP3A protein
Based on the predicted structure of FMDV 3A [9], different

mutations were introduced to analyze their effect on the properties

of this protein (Fig. 4A–B). These mutations included: i) replace-

ments L38E and L41E that had been shown to destabilize the

hydrophobic interaction between residues involved in 3A dimer-

ization, ii) substitution of the odd cysteine present in 3A and

located in the HR (replacement C65S), iii) a truncated protein

lacking the N-terminal region of 3A (DN-ter), and iv) truncated

proteins lacking the C-terminal region and maintaining (DC-ter) or

not (DHR-C-ter) the HR. The 3ABBBwt precursor was also

included in this study. All constructs were fused to the C-terminus

of GFP, and their expression was confirmed by Western blot

analysis as a band of the expected electrophoretic mobility was

found for each construction (Fig. 4C). In addition, no major

differences in the distribution of the fusion proteins were observed

by fluorescence microscopy of Vero cells transfected with each of

the plasmids, with the exception of GFP3ABBB whose distribution

was similar to that reported for 3ABBB [21], and of GFP3ADHR-

C-ter whose fluorescence was accumulated in the cytoplasm of

cells that showed an altered morphology and pyknotic nucleus

(Fig. 4D). For this reason GFP3ADHR-C-ter was not included in

the subsequent in vivo analysis. The trend of GFP3ADC-ter to

appear accumulated in the cytoplasm and the cell alterations

associated to its expression were of lower magnitude that those

observed for GFP3ADHR-C-ter; therefore, the properties of

GFP3ADC-ter were further analyzed.

The different 3A mutants constructed were analyzed in FRAP

experiments and their Mfs compared with that of GFP3A

(Fig. 4E). With the exception of replacement L38E at the

dimerization interface that did not alter the mobile fraction of
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the protein, the remaining single mutations resulted in a significant

increase of Mfs values. Such increase was also observed in the

deletion mutants GFP3ADC-ter and GFP3ADN-ter analyzed.

Thus, different 3A mutations can alter the interactions responsible

for the mobility observed for GFP3A.

To gain insight on the interactions established by 3A with

cellular membranes, biochemical analyses were performed with

cells transiently expressing the 3A fusion proteins. The solubility of

the GFP3A, GFP3ABBB and the mutant fusion proteins was

analyzed from supernatants (soluble fraction) and pellets (mem-

brane-associated insoluble fraction) recovered after centrifugation

of lysates from transfected cells. The presence of 3A was revealed

by immunoblotting using MoAb to 3A and to GFP. In Fig. 5A the

relative percentage of the Ab staining intensity in the soluble and

the insoluble fractions is represented for each fusion protein; in

these analyses a non-fused 3A wt protein (pRSV3A), as well as

GFP were included. A similar proportion, about 60%, of the

cellular pools of FMDV GFP3A and 3A was detected in the

soluble fraction while the remaining protein was found in the

membrane fraction supporting the partial association of both

proteins with intracellular membranes. As observed with the

substitution of the odd cysteine C65S, replacements 3AL38E and

3AL41E that diminish 3A dimerization, did not alter the protein

solubility. In the case of the precursor GFP3ABBB a slightly

Figure 1. Expression of GFP3A and in vivo analyses of 3A protein in transfected cells. A) Vero cells were transfected with 1 mg of pEGFP3A.
Proteins were detected by Western blotting with a polyclonal Ab to 3A (479) or a MoAb to GFP as primary antibodies. Blotting to b-actin was used as
control of protein loading. Molecular weights are indicated in kDa. B) Fluorescence microscopy of: i) Vero cells transiently expressing GFP or GFP3A;
ii) IBRS cells 4 h pi with FMDV; iii) Vero cells transiently expressing GFP3A (24 h pt) incubated with a polyclonal Ab to 3A (346) (red) or showing the
autofluorescence of GFP (green). Co-localization is shown in the merge image. Cell nuclei were counterstained with DAPI. C) For time-lapse
microscopy, Vero cells were transfected with pEGFP3A and 6 h later cells were scanned by 488-line laser every 5 min for 3 h, as described in Materials
and Methods. Images at different times are shown. Colored arrows point to selected tracked dots. D) Manual tracking of the fluorescence of selected
dots was performed using ImageJ plug-in. Scale bar, 20 mm.
doi:10.1371/journal.pone.0106685.g001
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increase was observed in the proportion of protein recovered in

the soluble fraction, although values were not statistically

significant. Among the deletion mutants, GFP3ADC-ter showed

the highest decrease in solubility, while GFP3ADN-ter, the 3A

version with the N-terminus truncated in the predicted dimeriza-

tion region, was the most soluble of the proteins analyzed. These

results suggest that N-ter contributes to 3A insolubility although

the single replacements that impair dimerization did not

significantly affect the solubility of this protein.

Biochemical characterization of the interaction of 3A with
cell membranes

Peripheral and integral membrane proteins differentially

respond to treatments with high salt, high pH, or chaotropic

reagents such as guanidine or urea that will dissociate peripheral

membrane proteins from the lipid bilayer [49,50]. In contrast,

interaction of integral membrane proteins with the lipid bilayer is

much stronger than that of peripheral membrane proteins,

requiring the use of detergents for its membrane extraction [15].

Given that about half of 3A was found associated to membranes

in transfected cells, the subcellular membrane fractions including

GFP3A and its precursor GFP3ABBB were subjected to further

biochemical treatments to characterize its interactions with cell

membranes (Fig. 5B). Pellets of lysed transfected cells were either

dissolved in PBS or treated with mild chaotropic salt conditions

(4 M urea), high pH (0.1 M Na2CO3) or high salt concentration

(1 M KCl), as described [11,51], as well as with a non-ionic

detergent (0.5% Triton-X 100), prior to a second fractionation by

centrifugation. The effect of these treatments on calnexin was

analyzed, as a control for the behavior of an integral membrane

protein. As expected statistically significant increases in calnexin

solubility were only observed upon treatment of pellets with triton

X-100. The solubility of GFP3A and GFP3ABBB differed from

that of calnexin. Upon centrifugation the solubility in PBS of

GFP3A and GFP3ABBB, was of about 50%, a value similar to that

obtain for 3A and GFP3A in the first fractionation, suggesting a

dynamic equilibrium between membrane-associated and soluble

GFP3A that pulls protein from the membrane when the initial

soluble protein is removed. Furthermore, no statistically significant

Figure 2. FRAP analysis. Vero cells were transfected with pEGFP3A. A) Images of transfected cells pre bleaching, bleaching and post bleaching. At
different times pt a ROI of 10 mm Ø circular region (red circle) was photobleached. Recovery of the fluorescence was monitored by continuous
scanning the whole cell (including ROI). The area selected as control in the neighbor cell is indicated by a blue circle. Experiments were done in
triplicate (n.10). B) Relative intensity vs. time in FRAP determined in (A). C) Percentages of the GFP3A mobile fraction, determined as described in
Materials and Methods, at different times pt. Data are presented as means 6 the standard deviations. An asterisk denotes statistically significant
differences (P#0.005). Scale bar, 20 mm.
doi:10.1371/journal.pone.0106685.g002
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increases in solubility were observed with any of the treatment

conditions tested. These results indicate that 3A and its precursor

3ABBB interacts with cellular membranes in a manner different

from that of an integral membrane protein.

Lack of interaction of 3A with lipid rafts
Since the previous results showed that 3A protein could be

associated with lipid membranes, the possible involvement in this

interaction of cholesterol enriched micro domains of lipid rafts was

analyzed. The association of different viral proteins to lipid rafts

has been described for many viruses [52,53,54,55,56]. Detergent-

resistant membrane (DRM) fractions were isolated by sucrose

density gradient from Vero and BHK-21 cells transfected with

pEGFP3A (Fig. 6). Western-blot analysis showed no overlapping

between the fractions detected by the anti-GFP antibody and those

stained with an anti-caveolin 1 antibody (present in lipid rafts),

confirming that 3A is not associated with lipid rafts.

Membrane topology of 3A protein
Characterization of membrane topology of viral proteins

contributes to understand the structural organization of viral

replication complexes in infected cells. Glycosylation assays can

provide information on membrane topology of proteins associated

with the ER [57]. To address the membrane topology of FMDV

3A wt, a glycosylation acceptor site was fused in-frame to the C- or

N-termini of 3A, as well as to the N-terminus of the HR in a

construction with the N-terminus deleted (Fig. 7A). None of the

proteins expressed were found glycosylated under the assay

conditions used. As expected, glycosylation was observed for

dengue virus NS4A protein carrying the same glycosylation

acceptor, used as positive control [38] (Fig. 7B), supporting that

both 3A protein termini are located towards cytosol.

To confirm the topology suggested by the glycosylation results, a

biochemical protease protection assay [58] was performed. Thus,

cells transiently expressing 3A were treated with trypsin or

proteinase K and analyzed, using antibodies to the N- and the

Figure 3. Distribution of GFP3A in the cytoplasm of transfected cells. A) Colocalization of GFP3A and calreticulin in Vero cells transfected
with pEGFP3A. B) FLIP analysis; images of pre and post bleached cells. Vero Cells were transfected with pEGFP3A and 24 h pt the indicated area
(white rectangle) was subjected to sequential photobleaching. An image of the field was acquired after each bleaching event to determine the loss of
fluorescence in the cytoplasm of the cell. C) The percentage of the fluorescence intensity determined in B is represented for bleached and neighbor
control (not bleached) cells. Mean fluorescence intensities of prebleached events (black bars) and after all the bleaching repeats (white bars) are
indicated. FLIP analysis, as in (B), of cells transfected with plgLdR1KDEL-RFP. E) Percentage of the fluorescence intensity determined in (D). Scale bar,
20 mm.
doi:10.1371/journal.pone.0106685.g003
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Figure 4. Analysis of GFP fusion proteins carrying mutations in 3A. A) Structural model for FMDV 3A protein dimer (9). Ribbons represent
a-helixes 1 and 2. Leucines at positions 38 and 41 are indicated. B). Schematic representation of the fusion proteins analyzed in which GFP (green stars), a-
helixes (orange boxes) and the hydrophobic region (gray boxes) are indicated. Substitutions (L38E, L41E and C65S at residues conserved in 99, 99 and 85%
among the FMDV sequences from the NCBI database, respectively) and deletions 2 DN-ter (I1-L41), DC-ter (R82-E153) and DHR-C-ter (K53-E153) 2,
generated as described in Materials and Methods, are shown. Asterisks denote single replacements. An alignment of the 3A sequences spanning the
different mutations constructed among different FMDV serotypes can be found at [9] C) Western blotting of cells transiently expressing fusion proteins.
Vero cells were transfected with 1 mg of plasmids expressing the fusion proteins indicated. Proteins were detected by incubation with a primary polyclonal
antibody to the C-terminus (346) 2 with the exception of GFPDHR-C-ter and GFPDC-ter (shown boxed) that were blotted with serum 443 to the N-terminus
2 or with a MoAb to GFP. Blotting to an anti-b-actin was used as control of protein loading. Molecular weights are indicated in kDa. D) Fluorescent pattern
of different GFP fusion proteins. Vero cells 24 h pt with the plasmids expressing the fusion proteins indicated were fixed and processed for confocal
microscopy as described in Materials and Methods. E) Comparison of mobile fractions in FRAP of GFP3A fusion proteins. Vero cells were transfected as in
(D), and 24 h pt FRAP was determined as described in the legend of Fig. 5. Data are presented as means 6 the standard deviations of triplicate experiments
(n.10). Statistically significant differences relative to GFP3A percentage of mobile fraction are indicated by an asterisk (P#0.001). Scale bar, 20 mm.
doi:10.1371/journal.pone.0106685.g004
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C-termini of the protein, by immunofluorescence (Fig. 7C) as well

as by Western blotting (Fig. 7D) [57,58]. The results revealed that

both termini of the protein were proteolyzed indicating that the N-

and the C-termini of 3A are accessible to the enzymes and,

therefore, oriented towards the cytosol. Indeed, no proteolysis was

observed for calreticulin, a protein that resides in the protease-

protected ER lumen.

The results obtained led us to propose a membrane topology

model (Fig. 7E) in which 3A protein interacts with ER membranes

through its hydrophobic stretch, while its N- and C-terminus face

the cytosol being accessible to other viral proteins for viral

replication.

Figure 5. Solubility of GFP3A fusion proteins. A) Distribution of fusion proteins in soluble or insoluble fractions of transfected cells. Vero cells
transfected with 1 mg of pEGFP, pRSV3A and the plasmids expressing the fusion proteins indicated, were lysed in PBS buffer by freeze–thawing and
fractionated by centrifugation. Proteins in pellets and supernatants were resolved on a 12% SDS-PAGE, transferred to a membrane, and blotted with
MoAb to GFP or 3A (2C2). Statistically significant differences, relative to GFP3A are indicated by * (P#0.05). B) Insoluble fraction association of
transiently expressed GFP3A and GFP3ABBB proteins. Vero cells transfected with 1 mg of pEGFP3A or pEGFP3ABBB, were processed as in (A). Pellets
were further treated with: Na2CO3, Urea, KCl or Triton X-100 (as described in Materials and Methods) and their proteins blotted with MoAb to GFP or
to calnexin. Plots represent the percentage of the relative intensity of the protein bands in the blot that were quantified by densitometry with ImageJ
program. Statistically significant differences, relative to PBS treatment, are indicated by * (P#0.05).
doi:10.1371/journal.pone.0106685.g005

Figure 6. Lack of association of 3A with membranes rich in lipid rafts. Cells were transfected with pEGFP3A and 24 h later lysed with cold
0.5% Triton X-100 in TNE Buffer and the rafts were purified by density gradient fractionation, top and bottom are indicated. Detergent resistant
membrane fractions (DRM) are indicated. Proteins in the different fractions were resolved on a 12% SDS-PAGE and blotted with a polyclonal antibody
to caveolin-1 and a MoAb to GFP.
doi:10.1371/journal.pone.0106685.g006
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Discussion

Replication of positive strand RNA viruses is intimate associated

with membranes, which confers advantages not only for viral

replication but also in protecting viral RNA from sensing by cell

pattern-recognition receptors and the subsequent triggering of

innate immunity [59]. The FMDV NS protein 3A is involved in

the host range, pathogenicity and virulence of the virus

[24,25,26,60] and exhibits properties and characteristics different

from those of other picornaviruses. It is thus interesting to gain

insight on the function and properties of this ‘‘key-protein’’

involved in FMDV replication.

The picornavirus replication cycle occurs in the cell cytoplasm

[61,62]. Replication complexes appear associated to virus-recruit-

ed membrane structures to which NS proteins anchor [63,64,65].

In this context, the data available for picornaviruses point to 3A as

a multifunctional NS protein [66].

Characterization of protein dynamics in the cell may contribute

to understand the different functional roles of viral proteins. To

this end, we have in vivo studied the properties of GFP fusions

with FMDV 3A wt protein and with mutant versions including

point mutations that either destabilize dimer formation (L38E and

L41E) or impair the establishment of disulfide intermolecular

bonds in the odd cysteine residue present in 3A (C65S), as well as

deletions corresponding to the N-terminal or the C-terminal

regions of 3A protein.

FMDV GFP3A was correctly expressed and its fluorescence

displayed a punctuated perinuclear distribution similar to that

described for 3A wt in FMDV infected cells [21,22]. The

movements of the GFP3A fluorescent puncta, revealed by time-

lapse microscopy, showed a confined track in the cytoplasm. This

pattern is different to that associated with microtubules and could

be related to the location of the protein in association with the

membranes involved in formation of the replication complex.

Alterations in the distribution of microtubules and intermediate

filaments components have been described in FMDV-infected

cells, being 3C(pro) the only FMDV protein involved in these

changes [67].

The study by FRAP analysis of the inner dynamics of the sites

where GFP3A resides in the cytoplasm revealed that the mobile

Figure 7. Membrane topology of 3A. A) Schematic representation of fusion proteins of the complete 3A and 3ADN-ter, with the glycosylation
acceptor site Asn-Ser-Thr-Ser-Ala-Asn (black curve lines). For 3A, a-helixes (orange boxes) and the hydrophobic region (gray boxes) are indicated.
B) Deglycosylation assay of transiently expressed fusion proteins. Vero Cells were transfected with pcDNAGlyc-3A, 3A-Glyc or Glyc-3ADN-ter, and 24 h
later cells were lysed in NPB and PNGase F treated for 1 h at 37uC. Proteins were separated in 12% SDS-PAGE and blotted with a polyclonal antibody
to the C-terminus of 3A (346). As positive control for glycosylation cells previously infected with vaccinia T7/F3 were transfected with pTM-DV4AFL(1–
150)-eGFP-Glyc or with pTM-DV4A(1–100)-eGFP-Glyc and processed as before using a MoAb to GFP. C and D) Biochemical protease protection assay
of transiently expressed 3A. C) Vero cells grown on coverslips were transfected with pcDNA3A and 24 h later were permeabilized with digitonin for
1 min, treated with trypsin for 5 min and fixed in PFA 4% after proteolysis. Cells were analyzed by immunofluorescence with a MoAb to the C-
terminus (2C2) and a polyclonal Ab to the N-terminus (479) of 3A. Alexa fluor 488 anti-mouse and alexa fluor 555 anti-rabbit were used as secondary
antibodies. D) Vero cells were transfected and processed as in (C). Cells were lysed and analyzed by Western blotting using polyclonal antibodies to
the C- (346) and the N-termini (479) of 3A and to calreticulin (CR). E) Schematic representation of the model proposed for the membrane topology of
3A protein. Cytosol and lumen are indicated. Scale bar, 20 mm.
doi:10.1371/journal.pone.0106685.g007
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fraction of the protein was higher at early times pt (70%) and

decreased at 24 h pt (about 35%); this later time was chosen for

further analyses as it was considered to better reflect the

interaction of mature GFP3A with the cell components. Most of

the mutations studied, including deletions on the N- and C-termini

and the single replacements L41E and C65S, resulted in an

increase in protein mobility. Alterations in the mobility and

fluorescent pattern of the C-ter deleted mutant could be related

with the lack of the interaction domain of 3A with the cellular

protein DCTN3 that has been implicated in the motility of viral

proteins and whose deletion attenuates the disease in cattle [68].

The lack of effect of replacement 3AL38E on the protein mobility

remains to be explained. Taken together, these results indicate that

different mutations can alter the interactions responsible for the

mobility observed for GFP3A, suggesting a remarkable complexity

in the determinants of 3A cellular dynamics.

In FLIP analyses, fluorescence in one area of the cell is

repeatedly bleached while images in a non-bleached region are

collected. If fluorescent molecules from any other region of the cell

can diffuse into the area being bleached, loss of fluorescence will

occur in both ROIs, indicating that the regions are connected and

the protein can diffuse between them [28]. FLIP experiments have

been used to clarify the extent of continuity of various intracellular

membrane systems [29,47]. Here, a monomeric red fluorescent

protein targeted to the ER via an immunoglobulin leader sequence

and retained in the ER lumen by a KDEL retention signal

(IgLdR1kdel) was used as a control of a protein resident in a

continuous compartment [32]. When an area in the cytoplasm of

cells transiently expressing IgLdR1kdel or GFP3A was repeatedly

photobleached, loss of fluorescence was observed to occur in the

whole cell cytoplasm, indicating that the protein is located in a

continuous compartment. These results, along with the colocaliza-

tion observed between GFP3A and calreticulin, support an

interaction of 3A with the ER, which is consistent with previous

data [21,22].

The interactions of FMDV 3A with cell membranes are poorly

understood. In this work we also performed a biochemical

characterization GFP3A and of different point and deletions

mutants of this protein. In cells transiently expressing 3Awt and

GFP3A, these proteins were similarly found in the soluble (about

60%) and the insoluble (about 40%) membrane fractions. The

partial association of 3A and GFP3A with cell membranes

observed is in agreement with previous analysis of 3A in

transfected cells [8]. Interestingly, a fraction of GFP3ABBB was

also found in the insoluble fraction indicating that the presence of

the 3 copies of 3B does not significantly alter ability for membrane

interaction of 3A protein. Deletion of the N-terminus of 3A

(GFP3ADN-ter) significantly increased the solubility of GFP3A.

Conversely, deletion of the C-terminus (GFP3ADC-ter) decreased

the solubility, which appeared to be associated to a tendency of

this fluorescent protein to accumulate in define points of the

cytoplasm (Fig. 4D). On the other hand, an increase in

GFP3ADC-ter mobility was found in FRAP. This apparent

discrepancy between solubility and mobility could be due to a

bias introduced by the exclusion of cells with highly altered

morphology from FRAP analyses.

None of the point mutations analyzed resulted in significant

alterations of 3A solubility, suggesting that neither the potential

establishment of intermolecular disulfide bridges, nor the efficient

3A dimerization are critical for 3A association to cellular

membranes. These results indicate also that residues other than

L38 and L41 are likely to be involved in the increase in solubility

associated with deletion of the N-terminus of 3A.

Further analyses of the insoluble fraction of GFP3A and

GFP3ABBB revealed that high ionic strength and high pH,

conditions that favor solubilization of proteins whose binding to

membranes mainly depend on electrostatic forces, slightly altered

the solubility of GFP3A. The most stringent conditions tested (a

chaotropic agent and a non-ionic detergent) enhanced GFP3A

solubility, albeit in a non-statistically significant manner. Interest-

ingly, the results obtained with the solubilization treatments

demonstrated that GFP3A and GFP3ABBB are not integral

membrane proteins, such as calnexin, albeit they can establish

strong interactions with intracellular membranes. These results led

us to investigate 3A topology by different approaches. The

deglycosylation assay used indicated that 3A could display both N-

and C-termini towards cytosol, an observation that was confirmed

by the protease protection assay. Based on these results, we

proposed a model for the 3A membrane topology in which both

protein termini are exposed to the cytosol (Fig 7E). This model

could be compatible with an infected cell context, where the

mature protein and the 3AB precursors would face the cytosol

where viral replication takes place and protein-protein interactions

expected to occur.

In the model proposed for the interaction of PV 3A/3AB

proteins with cell membranes (14), 3A can adopt a transmembrane

topology when expressed alone, while its precursor 3AB behaves

as a non-transmembrane protein. FMVD 3A differs from the rest

of picornaviruses in the length of its C-terminus (66 amino acids

longer than PV), which could enable 3A to acquire a cytosolic

topology, without the contribution of 3B as required in PV. The

non-transmembrane association with intracellular membranes and

the display of both protein termini to the cytosol are novel

evidences of the differences existing among FMDV 3A and those

of other picornaviruses.
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